首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Clear S-to-P converted waves from the crust–mantle boundary (Moho) and lithosphere–asthenosphere boundary (LAB) have been observed on the eastern part of the Dead Sea Basin (DSB), and are used for the determination of the depth of the Moho and the LAB. A temporary network consisting of 18 seismic broad-band stations was operated in the DSB region as part of the DEad Sea Integrated REsearch project for 1.5 years beginning in September 2006. The obtained Moho depth (~35 km) from S-to-P receiver functions agrees well with the results from P-to-S receiver functions and other geophysical data. The thickness of the lithosphere on the eastern part of the DSB is about 75 km. The results obtained here support and confirm previous studies, based on xenolith data, geodynamic modeling, heat flow observations, and S-to-P receiver functions. Therefore, the lithosphere on the eastern part of the DSB and along Wadi Araba has been thinned in the Late Cenozoic, following rifting and spreading of the Red Sea. The thinning of the lithosphere occurred without a concomitant change in the crustal thickness and thus an upwelling of the asthenosphere in the study area is invoked as the cause of the lithosphere thinning.  相似文献   

2.
The previously published results of a deep seismic refraction study of the Dead Sea—Gulf of Elat rift show crustal thinning underneath the rift and the presence of a 5 km thick velocity transition zone in the lower crust along the rift. The structural interpretation of the first-arrival data was revised using the detailed velocity-depth distribution.The revised crustal thicknesses are 35 km near Elat and 27 km, 160 km south of Elat.The crustal thinning and the presence of the velocity transition zone are interpreted as being the result of intrusion of upper mantle material into the lower crust, possibly representing the initial shape of the processes which have been active further south in the Red Sea since earlier times.  相似文献   

3.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

4.
《Tectonophysics》1999,301(1-2):61-74
In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.  相似文献   

5.
C. Bois 《地学学报》1992,4(1):99-108
Deep seismic reflection images from a set of profiles shot in Western Europe have been reviewed and compared, and tentative conclusions have been proposed concerning the evolution of the layered lower crust and the Moho. The disappearance of Variscan mountain roots is related to the set-up of a new Moho at a typical 30-km depth and the creation of seismic layering in the lower crust. Deep seismic profiles suggest that these processes resulted, at least in part, from magmatic intrusion, partial crustal melting and metamorphism of deep crustal rocks into eclogite. On the other hand, the layered lower crust is greatly attenuated beneath Cretaceous basins and Tertiary rifts in relation to prominent Moho upwellings. The unusual amplitude of the Moho reflection and the presence of anomalously high seismic velocities in the lowermost crust beneath the Tertiary rifts suggest that the Moho and part of the layering are comparatively young features related to interactions between crust and mantle. Beneath Triassic-Jurassic basins, the layered lower crust was not affected by the subsidence of the basement, with the whole crustal thinning being entirely concentrated in the upper crust. This indicates that the layered lower crust and the Moho were formed or restored during or after the main rifting phase. Seismic data reveal constraints on the processes that affect the crust-mantle transition and seem to restore the Moho to its typical depth after any mechanical deformation of the lithosphere.  相似文献   

6.
A map of Moho depth for the Black Sea and its immediate surroundings has been inferred from 3-D gravity modelling, and crustal structure has been clarified. Beneath the basin centre, the thickness of the crystalline layer is similar to that of the oceanic crust. In the Western and Eastern Black Sea basins, the Moho shallows to 19 and 22 km, respectively. Below the Tuapse Trough (northeastern margin, adjacent to the Caucasus orogen), the base of the crust is at 28 km, whereas in the Sorokin Trough, it is as deep as 34 km. The base of the crust lies at 29 and 33 km depths respectively below the southern and northern parts of the Mid-Black Sea Ridge. For the Shatsky Ridge (between the Tuapse Trough and the Eastern Black Sea Basin), the Moho plunges from the northwest (33 km) to the southeast (40 km). The Arkhangelsky Ridge (south of the Eastern Black Sea Basin) is characterised by a Moho depth of 32 km. The crust beneath these ridges is of continental type.  相似文献   

7.
David E. James  Fenglin Niu  Juliana Rokosky   《Lithos》2003,71(2-4):413-429
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is 15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.  相似文献   

8.
Omar  Kh. A.  El-Amin  E. M.  Dahy  S. A.  Ebraheem  M. O. 《Geotectonics》2019,53(6):765-773
Geotectonics - The Gulf of Aqaba is situated along the southern part of the Dead Sea Rift Area transform (DST), 1000 km (620 miles), the boundary between the African plate and the Arabian plate. It...  相似文献   

9.
The southern segment of the seismic profile EUROBRIDGE—EUROBRIDGE-97 (EB'97)—located in Belarus and Ukraine, crosses the suture zone between two main segments of the East European Craton—Fennoscandia and Sarmatia—as well as Sarmatia itself. At the initial stage of our study, a 3-D density model has been constructed for the crust of the study region, including the major part of the Osnitsa–Mikashevichi Igneous Belt (OMIB) superimposed by sediments of the Pripyat Trough (PT), and three domains in the Ukrainian Shield—the Volhyn Domain (VD) with the anorthosite–rapakivi Korosten Pluton (KP), the Podolian Domain (PD), and the Ros–Tikich Domain (RTD). The model comprises three layers—sediments with maximum thickness (6 km) in the PT and two heterogeneous layers in the crystalline crust separated at a depth of 15 km. 3-D calculations show the main features of the observed gravity field are caused by density heterogeneities in the upper crust. Allocation of density domains deeper than 15 km is influenced by Moho topography. Fitting the densities here reveals an increase (up to 2960 kg m−3) in the modelled bodies accompanied by a Moho deepening to 50 km. In contrast, a Moho uplift to a level of 35–37 km below the KP and major part of the PT is associated with domains of reduced densities. An important role for the deep Odessa–Gomel tectonic zone, dividing the crust into two regions one of basically Archean consolidation in the west (PD and RTD) and one of Proterozoic crust in the east (Kirovograd Domain)—was confirmed.2-D density modelling on the EB'97 profile shows that in the upper crust three main domains of different Precambrian evolution—the OMIB (with the superimposed PT), the VD with the KP, and the PD—can be distinguished. Deeper, in the middle and lower crust, layered structures having no connection to the surface geology are dominant features of the models. Least thickness of the crust was obtained below the KP. Greatest crustal thickness (more than 50 km) was found below the PD, characterised also by maximum deviation of velocity/density relation in the rocks from a standard one. The velocity and density models along the EB'97 profile have been interpreted together with inferred Vp/Vs ratios to estimate crustal composition in terms of SiO2 content. In the course of the modelling, the status of the PD as a centre of Archean granulitic consolidation has been confirmed. The crustal structure of the anorthosite–rapakivi KP is complex. For the first time, a complicated structure for the lower crust and lower crust–upper mantle transition zone beneath the KP has been determined. The peculiarities of the crustal structure of the KP are quite well explained in terms of formation of rapakivi–anorthosite massifs as originating from melt chambers in the upper mantle and lower crust. An important role for the South Pripyat Fault (SPF), repeatedly activated during Proterozoic–Palaeozoic times, has been ascertained. At the subplatform stage of crustal evolution the SPF was, probably, a magma channel facilitating the granitic intrusions of the KP. In the Palaeozoic the fault was reactivated during rifting in the PT.  相似文献   

10.
南海西北部重磁场及深部构造特征   总被引:9,自引:3,他引:9  
通过对南海重磁数据的重新处理,得到南海西北部自由空间重力异常图、布格重力异常图、磁异常图和化极磁异常图,并对所反映的地球物理场特征加以分析。根据重力场资料对研究区的地壳结构进行了反演计算,结果表明地壳厚度在10~38km之间,总的趋势由陆向洋逐渐减薄,对应于地壳类型从陆壳、过渡壳到洋壳的分布特征。根据磁力资料计算了居里面深度,其埋深变化于11~27km之间,在陆区居里面是下地壳顶界面和莫霍面之间的另一个物性界面,而在海区则接近于莫霍面埋深。  相似文献   

11.
南海南部地壳结构的重力模拟及伸展模式探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
对南海南部地壳结构研究有助于揭示南海完整的演化历史。本研究对南海南部获取的两条多道地震剖面进行了地震 解释,并对重力数据进行了壳幔密度反演。其中 NH973-1 测线始于南海西南次海盆,覆盖了南沙中部的北段;NH973-2 测 线始于南海东部次海盆,穿越礼乐滩东侧。反演结果显示,莫霍面埋深在海盆区 10~11 km,陆缘区 15~21 km 左右,洋壳向 陆壳莫霍面深度迅速增加。海盆区厚度在 6~7 km,为典型的洋壳;陆缘区地壳厚度在 15~19 km,为减薄型地壳。进一步研 究表明(1)在西南次海盆残余扩张脊之下,莫霍面比两侧略深;(2)在礼乐滩外侧海盆区有高值重力异常体,推测为洋壳与深 部岩浆混合的块体;(3)南沙区域上地壳存在高密度带,且横向上岩性可能变化。南海南部陆缘未发现有下地壳高速层,有 比较一致的构造属性和拉张样式,为非火山型陆缘。我们对两条测线陆缘的伸展因子进行了计算,发现上地壳脆性拉伸因 子与全地壳拉伸因子存在差异,其陆缘的拉张模式在纵向上是不均匀一的。  相似文献   

12.
In 1991, a deep seismic reflection line, MPNI-9101, was acquired in the southern North Sea from the Mesozoic Broad Fourteens Basin, across the West Netherlands Basin onto the London-Brabant Massif (LBM). The resultant section shows a strongly reflective lower crust beneath the area of Mesozoic basin development. This lower crustal reflectivity continues to be strong beneath the LBM. The travel time to the base of the reflective zone increases from approximately 11.0 s beneath the Mesozoic basins to 12.5 s beneath the LBM, suggesting a southward thickening of the crust (Rijkers et al., 1993). Based on these travel times and information from deep wells and refraction surveys. Moho depth is estimated to increase from about 31 km beneath the Mesozoic basins to about 38 km beneath the LBM. This difference in depth to the Moho can partly be explained by coaxial stretching of the crust beneath the Mesozoic basins. In comparison with the Mesozoic basins, the crust beneath the LBM was thickened during the Caledonian and Variscan orogenies.  相似文献   

13.
This paper reviews the complex crustal and upper-mantle seismic velocity structure of Ireland and surrounding seas. Data from 11 seismic refraction profiles reveal that onshore Ireland mean crustal velocities range between 6.25 and 6.5 km s−1 with crustal thickness of 28.5–32 km. Superimposed on a three-layer crust, the sedimentary layer has a thickness of approximately 6–8 km at the southern coastline, but only 3–4 km in the vicinity of the Shannon Estuary in western Ireland. The lateral heterogeneity of the upper-crustal layer is pervasive throughout Ireland, with velocities of 5.7–6.2 km s−1 and a layer thickness of 3–10 km. A low-velocity zone is found in the south-east which is interpreted as the buried south-western extension of the Leinster Granite. The mid-crustal layer (6.3–6.7 km s−1) is between 8 and 16 km thick. Significant changes occur in the vicinity of the Shannon Estuary, around the location of the Iapetus Suture Zone. The lower crust is fairly uniform with velocities of 6.8–7.2 km s−1 and a thickness of approximately 8–10 km except towards the south of Ireland where the Moho appears as a transition zone. Offshore Ireland, a two-layer crust with a thickness of 24–26 km beneath the North Celtic Sea Basin and only 14–15 km beneath the Rockall Trough prevails.  相似文献   

14.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

15.
ABSTRACT

The land-sea transition zone in the northern South China Sea (SCS) records important information from the continental rifting to the seafloor spreading. The crustal structure is the key to explore the deep tectonic environment and the evolution of the SCS. In 2015, the onshore-offshore 3D deep seismic experiment was carried out on the Pearl River Estuary (PRE). Explosions and air guns were used as sources on land and at sea respectively in this experiment.Onshore seismic stations and Ocean Bottom Seismographs (OBSs) synchronously recorded the seismic signals. We focus on an onshore-offshore seismic profile (L2, SE-trending) along the eastern side of the PRE. By modelling the seismic travel times, we constructed a P-wave velocity model along the profile. The model shows that the sediment on land is thin and has seismic velocities of 4.5–5.5 km/s. In contrast, thickness of the offshore sediment gradually increases to more than 4.0 km, and the velocities vary between 2.0 km/s and 4.5 km/s. The onshore and offshore crustal velocities are 5.8–6.8 km/s and 5.5–6.8 km/s, respectively. At depth between 15 km and 20 km, a low-velocity layer (LVL; only 5.9 km/s) is detected, pinching out under the Littoral Fault Zone (LFZ). The LVL has probably accommodated the crustal extension beneath the land area, resulting in low extent of the crustal thinning. A slightly uplifted Moho exists beneath the Dongguan fault depression zone, representing a place where hot mantle materials ascend. Localized thickening of the sediments and rapid thinning of the crust characterize the LFZ, and it can be regarded as a tectonic boundary between the South China (SC) with normal continental crust and the northern SCS margin with extended continental crust.  相似文献   

16.
Interpretation of a long-range seismic refraction line in Saudi Arabia has shown that beneath the Arabian Shield velocity generally increases with depth, from about 6 km s−1 at the surface to about 7 km s−1 at the top of the crust-mantle transition zone. The base of this transition zone (Moho) occurs at 37–44 km in depth. Intracrustal discontinuities can also be recognized, the most important being in the 10–20 km-depth range and separating the upper from the lower crust. Laterally, the variations in the intracrustal discontinuities and the total crustal thickness can be correlated with previously defined tectonic regions. Beneath the Red Sea shelf and coastal plain the crust, including 4 km of sediments, is only 15–17.5 km thick. With the aid of both seismic and gravity data an abrupt, steeply dipping transition from the crust of the Red Sea shelf and coastal plain to that of the Arabian Shield has been derived. With a jump of more than 20 km in Moho depth, this appears to be the major discontinuity between the Red Sea depression and the Arabian continental shield.  相似文献   

17.
Claus Prodehl 《Tectonophysics》1981,80(1-4):255-269
The crustal structure of the central European rift system has been investigated by seismic methods with varying success. Only a few investigations deal with the upper-mantle structure. Beneath the Rhinegraben the Moho is elevated, with a minimum depth of 25 km. Below the flanks it is a first-order discontinuity, while within the graben it is replaced by a transition zone with the strongest velocity gradient at 20–22 km depth. An anomalously high velocity of up to 8.6 km/s seems to exist within the underlying upper mantle at 40–50 km depth. A similar structure is also found beneath the Limagnegraben and the young volcanic zones within the Massif Central of France, but the velocity within the upper mantle at 40–50 km depth seems to be slightly lower. Here, the total crustal thickness reaches only 25 km. The crystalline crust becomes extremely thin beneath the southern Rhônegraben, where the sediments reach a thickness of about 10 km while the Moho is found at 24 km depth. The pronounced crustal thinning does not continue along the entire graben system. North of the Rhinegraben in particular the typical graben structure is interrupted by the Rhenohercynian zone with a “normal” West-European crust of 30 km thickness evident beneath the north-trending Hessische Senke. A single-ended profile again indicates a graben-like crustal structure west of the Leinegraben north of the Rhenohercynian zone. No details are available for the North German Plain where the central European rift system disappears beneath a sedimentary sequence of more than 10 km thickness.  相似文献   

18.
Shallow and deep sources generate a gravity low in the central Iberian Peninsula. Long-wavelength shallow sources are two continental sedimentary basins, the Duero and the Tajo Basins, separated by a narrow mountainous chain called the Spanish Central System. To investigate the crustal density structure, a multitaper spectral analysis of gravity data was applied. To minimise biases due to misleading shallow and deep anomaly sources of similar wavelength, first an estimation of gravity anomaly due to Cenozoic sedimentary infill was made. Power spectral analysis indicates two crustal discontinuities at mean depths of 31.1 ± 3.6 and 11.6 ± 0.2 km, respectively. Comparisons with seismic data reveal that the shallow density discontinuity is related to the upper crust lower limit and the deeper source corresponds to the Moho discontinuity. A 3D-depth model for the Moho was obtained by inverse modelling of regional gravity anomalies in the Fourier domain. The Moho depth varies between a mean depth of 31 km and 34 km. Maximum depth is located in a NW–SE trough. Gravity modelling points to lateral density variations in the upper crust. The Central System structure is described as a crustal block uplifted by NE–SW reverse faults. The formation of the system involves displacement along an intracrustal detachment in the middle crust. This detachment would split into several high-angle reverse faults verging both NW and SE. The direction of transport is northwards, the detachment probably being rooted at the Moho.  相似文献   

19.
There is an ongoing debate about the tectonic evolution of southeast Australia, particularly about the causes and nature of its accretion to a much older Precambrian core to the west. Seismic imaging of the crust can provide useful clues to address this issue. Seismic tomography imaging is a powerful tool often employed to map elastic properties of the Earth's lithosphere, but in most cases does not constrain well the depth of discontinuities such as the Mohorovi?i? (Moho). In this study, an alternative imaging technique known as receiver function (RF) has been employed for seismic stations near Canberra in the Lachlan Orogen to investigate: (i) the shear-wave-velocity profile in the crust and uppermost mantle, (ii) variations in the Moho depth beneath the Lachlan Orogen, and (iii) the nature of the transition between the crust and mantle. A number of styles of RF analyses were conducted: H-K stacking to obtain the best compressional–shear velocity (V P /V S) ratio and crustal thickness; nonlinear inversion for the shear-wave-velocity structure and inversion of the observed variations in RFs with back-azimuth to investigate potential dipping of the crustal layers and anisotropy. The thick crust (up to 48 km) and the mostly intermediate nature of the crust?mantle transition in the Lachlan Orogen could be due to the presence of underplating at the base of the crust, and possibly to the existing thick piles of Ordovician mafic rocks present in the mid and lower crust. Results from numerical modelling of RFs at three seismic stations (CAN, CNB and YNG) suggest that the observed variations with back-azimuth could be related to a complex structure beneath these stations with the likelihood of both a dipping Moho and crustal anisotropy. Our analysis reveals crustal thickening to the west beneath CAN station which could be due to slab convergence. The crustal thickening may also be related to the broad Macquarie volcanic arc, which is rooted to the Moho. The crustal anisotropy may arise from a strong N–S structural trend in the eastern Lachlan Orogen and to the preferred crystallographic orientation of seismically anisotropic minerals in the lower and middle crust related to the paleo-Pacific plate convergence.  相似文献   

20.
The western Barents Sea and the Svalbard archipelago share a common history of Caledonian basement formation and subsequent sedimentary deposition. Rock formations from the period are accessible to field study on Svalbard, but studies of the near offshore areas rely on seismic data and shallowdrilling. Offshore mapping is reliable down to the Permian sequence, but multichannel reflection seismic data do not give a coherent picture of older stratigraphy. A survey of 10 Ocean Bottom Seismometer profiles was collected around Svalbard in 1998. Results show a highly variable thickness of pre-Permian sedimentary strata, and a heterogeneous crystalline crust tied to candidates for continental sutures or major thrust zones. The data shown in this paper establish that the observed gravity in some parts of the platform can be directly related to velocity variations in the crystalline crust, but not necessarily to basement or Moho depth. The results from three new models are incorporated with a previously published profile, to produce depth-to-basement and -Moho maps south of Svalbard. There is a 14 km deep basement located approximately below the gently structured Upper Paleozoic Sørkapp Basin, bordered by a 7 km deep basement high to the west, and 7–9 km depths to the north. Continental Moho-depth range from 28 to 35 km, the thickest crust is found near the island of Hopen, and in a NNW trending narrow crustal root located between 19°E and 20°E, the latter is interpreted as a relic of westward dipping Caledonian continental collision or major thrusting. There is also a basement high on this trend. Across this zone, there is an eastward increase in the VP, VP/VS ratio, and density, indicating a change towards a more mafic average crustal composition. The northward basement/Moho trend projects onto the Billefjorden Fault Zone (BFZ) on Spitsbergen. The eastern side of the BFZ correlates closely with coincident linear positive gravity and magnetic anomalies on western Ny Friesland, apparently originating from an antiform with high-grade metamorphic Caledonian terrane. A double linear magnetic anomaly appears on the BFZ trend south of Spitsbergen, sub-parallel to and located 10–50 km west of the crustal root. Based on this correlation, it is proposed that the suture or major thrust zone seen south of Svalbard correlates to the BFZ. The preservation of the relationship between the crustal suture, the crustal root, and upper mantle reflectivity, challenges the large-offset, post-collision sinistral transcurrent movement on the BFZ and other trends proposed in the literature. In particular, neither the wide-angle seismic data, nor conventional deep seismic reflection data south of Svalbard show clear signs of major lateral offsets, as seen in similar data around the British Isles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号