首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南黄海辐射沙洲趋势性演变的动力机制分析   总被引:4,自引:0,他引:4       下载免费PDF全文
南黄海辐射沙洲区水道及其之间的沙洲普遍存在逐渐向南偏移的趋势,对这种趋势性演变机理及驱动力的认识成为辐射沙洲区海岸开发过程中亟待解决的问题。在恢复黄河北归以来苏北黄河三角洲海岸不同发育阶段的岸线位置和水下地形的基础之上,通过所建立的潮波数学模型,研究了在苏北黄河三角洲不同演变阶段南黄海潮波系统的特征及其变化。研究表明,随着岸线后退和水下三角洲的夷平,辐射沙洲地区潮差不断增大;水动力不断加强,而且加强的区域逐渐向南偏移,这种大范围区域性水动力主轴的向南偏移有可能是导致辐射沙洲整体南移的主导因素之一。  相似文献   

2.
刘诚  梁燕  王其松  彭石 《水科学进展》2017,28(5):770-779
磨刀门已由"径流型"向"径流-波浪型"河口转变,波浪已是该河口主要动力之一,但波浪对河口洪季水流及泄洪的影响缺少研究。在2-D潮流数学模型中添加随潮位实时变化的波浪辐射应力,建立波浪潮流耦合数学模型;波浪求解采用缓坡方程,背景水深由潮流模型实时提供,可通过比较考虑和未考虑波浪影响的河口流场来分析波浪对泄洪的影响。在年均常浪作用下,磨刀门河口洪季涨落潮阶段均有明显的波生环流结构。由于波浪作用方向向陆,波生流减弱了浅滩区的向海余流,增大了浅滩向陆余流;受浅滩向海余流减弱影响,河口动力自调整后形成归槽水流,促使深槽内向海余流增大。波浪有顶托河口泄洪之势,可改变滩槽泄洪分配比例;年均常浪的波高较小,其对潮流及泄洪的影响区域限制在浅水区,故对泄洪的负面影响有限。  相似文献   

3.
We describe the tidal circulation of a coastal plain estuary across a flood tide delta located at its entrance. The area connects the downstream portion of the main estuary extending 30–40 km inland to the more complex delta reach that consists of a shallow main channel and a series of smaller side channels. The delta acts as a frictionally dominated zone that modifies the tidal wave from a simple sinusoid to one with ebb currents that accelerate to maximum early in the tidal cycle and last more than one-half of the tidal cycle. Along smaller side channels, the tidal currents favor stronger flood or ebb currents, depending upon the local surrounding morphology. The phase difference between ebb currents in the small channels relative to those in the main channel cause some of the salt to be retained thus reducing the tendency of freshwater discharge to flush salt out of the system. This mechanism of retention differs from the selective withdrawal mechanism described for this estuary in Blanton et al. (2000).  相似文献   

4.
The flooding-drying process over the intertidal zone of the Satilla River estuary of Georgia was examined using a three-dimensional (3-D) primitive equations numerical model with Mellor and Yamada's (1982) level 2.5 turbulent closure scheme. The model was forced by the semi-diurnal M2, S2, and N2 tides and freshwater discharge at the upstream end of the estuary. The intertidal salt marsh was treated using a 3-D wet-dry point treatment technique that was developed for the σ-coordinate transformation estuary model. Good agreement was found between model-data comparison at anchor monitoring sites and also along the estuary that suggested that the model provided a reasonable simulation of the temporal and spatial distribution of the 3-D tidal current and salinity in the Satilla River estuary. Numerical experiments have shown that the flooding-drying process plays a key role in the simulation of tidal currents in the main river channel and in water transport over the estuarine-salt marsh complex. Ignoring this process could lead to a 50% under-estimation of the amplitude of tidal currents. The model results also revealed a complex spatial structure of the residual flow in the main channel of the river, with characteristics of multiple eddy-like cell circulations. These complicated residual currents are formed due to tidal rectification over variable topography with superimposition of inertial effects, asymmetry of tidal currents, and baroclinic pressure gradients. Water exchanges over the estuary-intertidal salt marsh complex are asymmetric across the estuary, and tend to vary periodically on the northern side while quickly washing out of the marsh zone on the southern side. Strong Stokes’ drifting velocity was predicted in the estuary, so that the Lagrangian trajectories of particles were characterized by strong nonlinear processes that differ significantly from those estimated by the Eulerian residual currents.  相似文献   

5.
Residual Exchange Flows in Subtropical Estuaries   总被引:1,自引:0,他引:1  
Observations of residual exchange flows at the entrance to four subtropical estuaries, two of them semiarid, indicate that these flows are mainly tidally driven, as they compare favorably with theoretical patterns of tidal residual flows. In every estuary examined, the tidal behavior was that of a standing or near-standing wave, i.e., tidal elevation and tidal currents were nearly in quadrature. The pattern of exchange flow that persisted at every estuary exhibited inflow in the channel and outflow over the shoals. Curiously, but also fortuitously, this pattern coincides with the exchange pattern driven by density gradients in other estuaries. The tidal stresses and the residual elevation slopes should be the dominant mechanisms that drive such tidal residual pattern because the Stokes transport mechanism is negligible for standing or near-standing waves. Time series measurements from the semiarid estuaries showed fortnightly modulation of the residual flow by tidal forcing in such a way that the strongest net exchange flows developed with the largest tidal distortions, i.e., during spring tides. This modulation is opposite to the modulation that typically results in temperate estuaries, where the strongest net exchange flows tend to develop during neap tides. The fortnightly modulation on tidal residual currents could be inferred from previous theoretical results because residual currents arise from tidal distortions but is made explicit in this study. The findings advanced herein should allow the drawing of generalities about exchange flow patterns in subtropical estuaries where residual flows are mainly driven by tides.  相似文献   

6.
In the mesotidal (tidal range 3·5–4·9 m) Westerschelde estuary (The Netherlands) the intertidal part of a sandbank was the subject of systematic observations of: (1) hydrographic properties, (2) the distribution and response pattern of various types of bedforms, and (3) the sedimentary structures produced. Ebb and flood usually differ considerably in strength, giving rise to a clear dominance of one over the other, which may change over the neap-spring tide period. Parallel, long-crested sand-waves and irregular, short-crested dunes have a different response to the neap-spring variation in current velocity. Because one tide (usually the flood in our area) predominated over the other, the internal structure largely consists of unidirectional cross-bedding, separated into a succession of tidal bundles, each formed during one tide. The tidal bundles are arranged in a lateral sequence reflecting neap-spring tide periods and differing in character with location. Within the tidal bundle, reactivation, full vortex and slackening structures reflect acceleration, full stage and deceleration of flow respectively in the dominant tide. The full vortex structures tend to be well developed around spring tide but disappear towards neap tide. The subordinate tide carves ‘pause planes’ which enclose the tidal bundles. These pause planes are either erosional or depositional (mud).  相似文献   

7.
Transports of nitrate and suspended solids were measured six times from January 1984 until January 1985 in a small freshwater tidal bayou in south-central Louisiana. The bayou and adjacent marshes are influenced by Atchafalaya River discharges, tides, and coastal weather patterns. Large net ebb-directed water transports occurred in winter, spring, and summer, coincident with high river discharges, indicating riverine dominance. A very small net flood-directed water transport occurred in fall, indicating tidally dominated hydrology. Nitrate and suspended solids transports were net ebb-directed in all seasons, but were two orders of magnitude higher during high river flow. Exports changed as hydrology switched from river dominated to tidally dominated, and as concentrations of materials changed. Comparison of suspended solids and nitrate concentrations in the river and bayou shows that these materials were usually lower in the bayou, indicating retention by the marsh/aquatic system.  相似文献   

8.
《China Geology》2019,2(3):325-332
Based on the 39 surface sediment samples collected in the flood season and the dry season in 2012 respectively and the measured hydrological data in October 2012, the sediment grain size characteristics has been analyzed and the response mechanism of surface sediments to estuarine hydrodynamics was revealed by calculating the range of waves and tidal currents. The results show that: (1) The grain size of the surface sediment samples decreased gradually from land to sea in the flood season. The fine sediment was redistributed under marine hydrodynamics in the dry season and the sediments showed coarser tendency ingeneral; (2) tidal current stirring sediment was very obvious in Dagu River estuary area, and wave stirring sediments mainly occurred in the tidal flat area and estuary sand bar area; (3) in the flood season, surface sediment sat the estuary were transported towards south and southeast. In the dry season, surface sediments were transported towards southwest at the north area of Jiaozhou Bay Bridge, and sediments were transported towards northeast area at the south of Jiaozhou Bay Bridge.  相似文献   

9.
This research investigates the dynamics of the axial tidal flow and residual circulation at the lower Guadiana Estuary, south Portugal, a narrow mesotidal estuary with low freshwater inputs. Current data were collected near the deepest part of the channel for 21 months and across the channel during two (spring and neap) tidal cycles. Results indicate that at the deep channel, depth-averaged currents are stronger and longer during the ebb at spring and during the flood at neap, resulting in opposite water transport directions at a fortnightly time scale. The net water transport across the entire channel is up-estuary at spring and down-estuary at neap, i.e., opposite to the one at the deep channel. At spring tide, when the estuary is considered to be well mixed, the observed pattern of circulation (outflow in the deep channel, inflow over the shoals) results from the combination of the Stokes transport and compensating return flow, which varies laterally with the bathymetry. At neap tide (in particular for those of lowest amplitude each month), inflows at the deep channel are consistently associated with the development of gravitational circulation. Comparisons with previous studies suggest that the baroclinic pressure gradient (rather than internal tidal asymmetries) is the main driver of the residual water transport. Our observations also indicate that the flushing out of the water accumulated up-estuary (at spring) may also produce strong unidirectional barotropic outflow across the entire channel around neap tide.  相似文献   

10.
为适应伶仃洋茅洲河口治理开发条件,以保证行洪顺畅为泄洪纳潮的首要原则,同时顺应水沙运动和河势发展规律,对河口进行治导线比选和优化。该河口治导线方案分单、双通道,两类通道不同扩宽率下设计有围填、围填加开挖2种方案,开展水动力泥沙数学模拟计算和物理模型试验。结果表明:河口治导线各方案对伶仃洋涨、落潮流速的影响范围主要集中在交椅湾及其附近海域;方案实施后,周边海区冲淤变化较小,未对河势造成不利影响;根据对水动力、河口泄洪、河势稳定影响的综合分析,单双通道相比较而言,对洪水位、纳潮量、高低潮位、流速、河床冲淤的影响规律具有较好的一致性,相同扩宽率下各方案的影响程度均在同量级。  相似文献   

11.
A three-dimensional (3-D) suspended sediment model was coupled with a 3-D hydrodynamic numerical model and used to examine the spatial and temporal distribution of suspended sediments in the Satilla River estuary of Georgia. The hydrodynamic model was a modified ECOM-si model with inclusion of the flooding-drying cycle over intertidal salt marshes. The suspended sediment model consisted of a simple passive tracer equation with inclusion of sinking, resuspension, and sedimentation processes. The coupled model was driven by tidal forcing at the open boundary over the inner shelf of the South Atlantic Bight and real-time river discharge at the upstream end of the estuary, with a uniform initial distribution of total suspended sediment (TSS). The initial conditions for salinity were specified using observations taken along the estuary. The coupled model provided a reasonable simulation of both the spatial and temporal distributions of observed TSS concentration. Model-predicted TSS concentrations varied over a tidal cycle; they were highest at maximum flood and ebb tidal phases and lowest at slack tides. Model-guided process studies suggest that the spatial distribution of TSS concentration in the Satilla River estuary is controlled by a complex nonlinear physical process associated with the convergence and divergence of residual flow, a non-uniform along-estuary distribution of bottom stress, and the inertial effects of a curved shoreline.  相似文献   

12.
The long-term response of circulation processes to external forcing has been quantified for the Columbia River estuary using in situ data from an existing coastal observatory. Circulation patterns were determined from four Acoustic Doppler Profilers (ADP) and several conductivity–temperature sensors placed in the two main channels. Because of the very strong river discharge, baroclinic processes play a crucial role in the circulation dynamics, and the interaction of the tidal and subtidal baroclinic pressure gradients plays a major role in structuring the velocity field. The input of river flow and the resulting low-frequency flow dynamics in the two channels are quite distinct. Current and salinity data were analyzed on two time scales—subtidal (or residual) and tidal (both diurnal and semidiurnal components). The residual currents in both channels usually showed a classical two-layer baroclinic circulation system with inflow at the bottom and outflow near the surface. However, this two-layer system is transient and breaks down under strong discharge and tidal conditions because of enhanced vertical mixing. Influence of shelf winds on estuarine processes was also observed via the interactions with upwelling and downwelling processes and coastal plume transport. The transient nature of residual inflow affects the long-term transport characteristics of the estuary. Effects of vertical mixing could also be seen at the tidal time scale. Tidal velocities were separated into their diurnal and semidiurnal components using continuous wavelet transforms to account for the nonstationary nature of velocity amplitudes. The vertical structure of velocity amplitudes were considerably altered by baroclinic gradients. This was particularly true for the diurnal components, where tidal asymmetry led to stronger tidal velocities near the bottom.  相似文献   

13.
On different time scales of suspended matter dynamics in the Weser estuary   总被引:1,自引:0,他引:1  
Long-term observations in the Weser estuary (Germany) between 1983 and 1997 provide insight into the response of the estuarine turbidity maximum (ETM) under a wide range of conditions. In this estuary the turbidity zone is closely tied to the mixing zone, and the positions of the ETM and the mixing zone vary with runoff. The intratidal suspended particulate matter (SPM) concentrations vary due to deposition during slack water periods, subsequent resubsequent and depletion of temporarily-formed and spatially-limited deposits during the following ebb or flood, and subsequent transport by tidal currents. The corresponding time history of SPM concentrations is remarkably constant over the years. Spring tide SPM concentrations can be twice the neap tide concentrations or even larger. A hysteresis in SPM levels between the falling and rising spring-neap cycle is attributed to enhanced resuspension by the stronger spring tidal currents. There is evidence that the ETM is pushed up-estuary during times of higher mean water levels due to storms. During river floods the ETM is flushed towards the outer estuary. If river floods and their decreasing parts occur during times of relatively high mean water levels, the ETM seems to be maintained in the outer estuary. If river floods and their decreasing parts occur during times of relatively low mean water levels, the ETM seems to loose inventory and may need up to half a year of non-event conditions to gain its former magnitude. During this time seasonal effects may be involved. Analyses of storm events and river floods have revealed that the conditions in the seaward boundary region play an equally important role for the SPM dynamics as those arising from the river.  相似文献   

14.
The Odiel-Tinto estuary is one of the most significant estuarine systems along the mesotidal Huelva Coast. The dynamics of this coastal sector are controlled by the interaction of ebb-tidal currents and the prevailing southwesterly waves. The main sediment supply is provided by an intensive west-to-east longshore current, transporting sand from Portuguese cliffs and discharge from the River Guadiana. The tidal range is mesotidal (2.0 m) and the mean significant wave height is 0.6 m with an average period of 3.6 s. This estuary mouth comprises three different barriers separated by the main estuary channel, and another marginal one that drains a significant part of the system. Saltés Island can be found between these two channels, which is composed of sandy barriers separated by muddy salt marshes that form a protected natural park. East of the main channel is Mazagón Beach, one of the most important tourist resorts on this coast. Recent papers have demonstrated that Saltés Island evolved as a chenier plain over the last 3000 years. The cause of this evolution was a special wave refraction scheme caused by two ebb-tidal delta systems located at the end of the two tidal channels. Three important harbour infrastructures have been constructed at the estuary mouth: a) a jetty at the end of Saltés Island, finished in 1977; b) a second and shorter jetty bordering the marginal channel constructed in 1984, and; c) a dock for sailing activities built on Mazagón Beach. These three structures have modified the natural dynamic scheme. The first consequence was to inhibit the functioning of the chenier plain, affecting the natural environment; the second was to intensively erode Mazagón Beach, endangering this tourist site.This paper analyses the causal relationships that exist between the harbour infrastructures and the resultant modifications.  相似文献   

15.
在进行庵东潮坪水文要素定点测量的基础上,对地貌特征,沉积粒度,沉积构造及重向剖面作了全面分析与研究。结果表明,滩地位于杭州湾进、退潮流的交会点,控制其发育的主动力为潮汐作用,具明显的不规则半日潮特性,涨潮流强度远大于落潮流,造就了宽达十余公里的潮滩地貌。滩地水动力深受湾内水流影响,高潮期服从其总体潮流流向,导致潮坪上发育众多与杭州湾深槽系统相连的潮沟,破坏了沉积物正常分布规律,高潮坪存在一定向平行岸线的大型潮沟,受强劲水流影响,沉积粒度粗化,并因快冲快淤而产生变形构造;中潮坪接受退潮期潮沟漫岸物质,粒度相对较小,分选性变差,沉积构造以直脊流水波痕及板状交错层理为主;低潮坪潮流作用大、沉积粒度粗,分选性最佳,发育小型流水波痕,内部构造以槽状交错层理,“青鱼刺”层理及再作用构造为特征。潮坪近岸处潮沟迁移层序及浪成波痕层理的发现反映水动力异常强大,威胁人工海塘的安全,建议停止进一步围垦滩涂,采取促淤方法,抑制潮沟的发育,以维持滩地稳定。  相似文献   

16.
利用长系列的水文泥沙、水下地形和遥感影像等数据,通过数字地形高程模型和水动力数学模型等方法,探讨了伶仃洋茅洲河口的动力地貌演变过程及主要原因。结果表明:伶仃洋中滩海区近年冲刷态势明显,拦江沙与矾石浅滩呈现逐渐分离并有发育形成"新中槽"的演变趋势;茅洲河口门深槽的形成发育以落潮流动力作用为主,交椅湾深槽具有涨潮沟的性质,交椅沙形成发育对于稳定周边海区滩槽格局具有重要作用;大规模围涂造地和海床采砂等人类开发活动显著改变了伶仃洋的地形边界条件,进而影响河口水沙输移和滩槽格局,亟需加强监控。  相似文献   

17.
河口湾中的砂体是有利的油气储集层,但复杂的水动力变化导致古代河口湾识别困难。通过对现代钱塘江河口湾的研究表明,河口湾潮坪环境潮汐水道可以成为识别古河口湾的一种辅助标志。基于野外实地观测,结合卫星地图对潮坪环境潮汐水道的发育特征进行了详细的描述,并探讨了它的地质意义。结果表明:1)泥坪潮汐水道横截面形态主要有“V”型及宽缓的透镜状,平面上由海向陆可划分为曲折的A段、平直的B段和树状分叉的C段;2)砂坪潮汐水道横截面形态主要有“U”型和阶梯型,平面上由海向陆可划分为曲折或平直的A'段和树状分叉的B'段,A'段的平直与曲折主要受控于砂坪潮道规模的大小;3)在砂质潮坪中常见炭屑层、包卷层理、液化流痕、垮塌构造、波痕等特殊的沉积构造;不同形态和规模的潮坪潮道主要受控于潮坪坡度、沉积物粒度、河口湾形态及相对海平面高低的影响,高坡度、低海平面有利于完整序列潮道的发育;4)不同类型河口湾潮坪潮道的特征及其伴生的特殊沉积构造可以为确定地质历史时期的古河口湾及其演化提供参考。  相似文献   

18.
We describe the tidal circulation and salinity regime of a coastal plain estuary that connects to the ocean through a flood tide delta. The delta acts as a sill, and we examine the mechanisms through which the sill affects exchange of estuarine water with the ocean. Given enough buoyancy, the dynamics of tidal intrusion fronts across the sill and selective withdrawal (aspiration) in the deeper channel landward appear to control the exchange of seawater with estuarine water. Comparison of currents on the sill and stratification in the channel reveals aspiration depths smaller than channel depth during neap tide. During neap tide and strong vertical stratification, seawater plunges beneath the less dense estuarine water somewhere on the sill. Turbulence in the intruding bottom layer on the sill promotes entrainment of fluid from the surface layer, and the seawater along the sill bottom is diluted with estuarine water. During ebb flow, salt is effectively trapped landward of the sill in a stagnant zone between the aspiration depth and the bottom where it can be advected farther upstream by flood currents. During spring tide, the plunge point moves landward and off the sill, stratification is weakened in the deep channel, and aspiration during ebb extends to the bottom. This prevents the formation of stagnant water near the bottom, and the estuary is flooded with high salinity water far inland. The neapspring cycle of tidal intrusion fronts on flood coupled with aspiration during ebb interacts with the sill to play an important role in the transport and retention of salt within the estuary.  相似文献   

19.
潮控河口湾是厄瓜多尔Oriente盆地北部上白垩统Napo组的主力储层,当前对其识别标志、岩相及沉积分布规律认识不清,建立可靠的潮控河口湾的沉积模式,对于预测油气储层有重要意义。通过研究区LU碎屑岩段岩芯、粒度、测井、薄片以及地化资料的综合分析发现:1)综合岩相类型、地化、垂向序列特征认为其发育潮控河口湾和陆棚;2)研究区潮控河口湾主要发育中河口湾亚相及外河口湾亚相,中河口湾亚相发育潮汐河道、潮坪、高流态沙坪等微相,在测井曲线上呈钟形;外河口湾轴部发育潮汐沙坝、高流态沙坪微相,测井曲线上为箱型;外河口湾两侧为泥质潮坪微相,测井曲线上呈指形;浪基面之下发育泥质陆棚沉积和风暴形成的海绿石席状砂;3)研究区倾向西南,中河口湾的潮汐河道边滩沉积发育在东北部;向西南河道逐渐拓宽,外河口湾轴部潮汐沙坝南北向展布,向两翼泥质含量增高,发育泥质潮坪,呈席状展布。  相似文献   

20.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号