首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of 75 vibracores from the backbarrier region of Kiawah Island, South Carolina reveals a complex association of three distinct stratigraphic sequences. Beach ridge progradation and orientation-controlled backbarrier development during the evolution of Kiawah Island, and resulted in deposition of: (1) a mud-rich central backbarrier sequence consisting of low marsh overlying fine-grained, tidal flat/lagoonal mud; (2) a sandy beach-ridge swale sequence consisting of high and low marsh overlying tidal creek channel and point bar sand, and foreshore/shoreface; and (3) a regressive sequence of sandy, mixed, and muddy tidal flats capped by salt marsh that occurs on the updrift end of the island. Central backbarrier deposits formed as a result of the development of the initial beach ridge on Kiawah Island. Formation of this beach ridge created a backbarrier lagoon in which fine-grained estuarine and tidal flat mud accumulated. Washovers, oyster mounds, and tidal creek deposits form isolated sand and/or shell-rich lenses in the lagoon. Spartina alterniflora low marsh prograded into the lagoon as the tidal flats aggraded. Barrier progradation and sediment bar-bypassing at Stono Inlet created digitate beach ridges on the northeast end of Kiawah Island. Within the beach-ridge swales, tidal flats were disconformably deposited on shoreface and foreshore sand of the older beach ridges. Tidal creek drainage systems evolved to drain the swales. These rapidly migrating creeks reworked the tidal flat, foreshore, and shoreface sediments while redepositing a fining-upward sequence of channel lag and point bar deposits, which served as a substrate for salt marsh colonization. This resultant regressive sedimentary package marks the culmination of barrier island development and estuary infilling. Given enough time and sedimentation, the backbarrier sequence will ultimately prograde over the barrier island, reworking dune, beach, and foreshore sediments to form the upper sand-rich bounding surface of the barrier lithosome. Preservation of the regressive sequence is dependent upon sediment supply and the relative rate of sea-level rise, but the reworking of barrier islands by tidal inlets and migrating tidal creeks greatly alter and complicate the stratigraphic sequence.  相似文献   

2.
ABSTRACT Mixed‐sand‐and‐gravel beaches are a distinctive type of coarse‐clastic beach. Ground‐penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed‐beach deposits at Aldeburgh in Suffolk, south‐east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward‐dipping bounding surfaces that are gently onlapped by seaward‐dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach‐profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm‐wave activity. Beach‐ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm‐ridge, overtop and overwash deposits. Relict berm‐ridge deposits, separated by seaward‐dipping bounding surfaces, form the main depositional element beneath the beach‐ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm‐ridge deposits. Consequently, beach‐ridge development in this progradational, mixed‐beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.  相似文献   

3.
Clastic, depositional strandplain systems have the potential to record changes in the primary drivers of coastal evolution: climate, sea‐level, and the frequency of major meteorological and oceanographic events. This study seeks to use one such record from a southern Brazilian strandplain to highlight the potentially‐complex nature of coastal sedimentological response to small changes in these drivers. Following a 2 to 4 m highstand at ca 5·8 ka in southern Brazil, falling sea‐level reworked shelf sediment onshore, forcing coastal progradation, smoothing the irregular coastline and forming the 5 km wide Pinheira Strandplain, composed of ca 500 successive beach and dune ridges. Sediment cores, grab samples and >11 km of ground‐penetrating radar profiles reveal that the strandplain sequence is composed of well‐sorted, fine to very‐fine quartz sand. Since the mid‐Holocene highstand, the shoreline prograded at a rate of ca 1 to 2 m yr?1 through the deposition of a 4 to 6 m thick shoreface unit; a 1 to 3 m thick foreshore unit containing ubiquitous ridge and runnel facies; and an uppermost beach and foredune unit. However, the discovery of a linear, 100 m wide barrier ridge with associated washover units, a 3 to 4 m deep lagoon and 250 m wide tidal inlet within the strandplain sequence reveals a period of shoreline transgression at 3·3 to 2·8 ka during the otherwise regressive developmental history of the plain. The protected nature of Pinheira largely buffered it from changes in precipitation patterns, wave energy and fluvial sediment supply during the time of its formation. However, multiple lines of evidence indicate that a change in the rate of relative sea‐level fall, probably due to either steric or ice‐volume effects, may have affected this coastline. Thus, whereas these other potential drivers cannot be fully discounted, this study provides insights into the complexity of decadal‐scale to millennial‐scale coastal response to likely variability in sea‐level change rates.  相似文献   

4.
Beach ridges in macrotidal environments experience strong multi‐annual to multi‐decennial fluctuations of tidal inundation. The duration of tide flooding directly controls the duration of sediment reworking by waves, and thus the ridge dynamics. Flume modelling was used to investigate the impact of low‐frequency tidal cycles on beach ridge evolution and internal architecture. The experiment was performed using natural bioclastic sediment, constant wave parameters and low‐frequency variations of the mean water level. The morphological response of the beach ridge to water level fluctuations and the preservation of sedimentary structures were monitored by using side‐view and plan‐view photographs. Results were compared with the internal architecture of modern bioclastic beach ridges in a macrotidal chenier plain (Mont St. Michel Bay, France) surveyed with ground‐penetrating radar. The experimentally obtained morphologies and internal structures matched those observed in the field, and the three ridge development stages identified in ground‐penetrating radar profiles (early transgressive, late transgressive and progradational) were modelled successfully. Flume experiments indicate that flat bioclastic shapes play a key role in sediment sorting in the breaker zone, and in sediment layering in the beach and washover fans. Water level controls washover geometry, beach ridge evolution and internal structure. Low water levels allow beach ridge stabilization and sediment accumulation lower on tidal flats. During subsequent water level rise, accumulated sediment becomes available for deposition of new washover units and for bayward extension of the beach ridges. In the field, low‐frequency water level fluctuations are related to the 4·4 year and 18·6 year tidal cycles. Experimental results suggest that these cycles may represent the underlying factor in the evolution of the macrotidal chenier coast at the multi‐decadal to centennial time scale.  相似文献   

5.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

6.
The internal architecture of raised beach ridge and associated swale deposits on Anholt records an ancient sea level. The Holocene beach ridges form part of a progradational beach ridge plain, which has been interpreted to have formed during an isostatic uplift and a relative fall in the sea level over the past 7700 years. The ridges are covered by pebbles and cobbles and commonly show evidence of deflation. Material presumably removed from the beach ridges and adjacent swales form the present dune forms on Anholt. Ground-penetrating radar (GPR) reflection lines have been collected with 250 MHz shielded antennae across the fossil ridge and swale structures. The signals penetrate the subsurface to a maximum depth of ~ 10 m below the fossil features. The GPR data resolve the internal architecture of the beach ridges and swales with a vertical resolution of about 0.1 m. GPR mapping indicates that the Holocene beach ridges are composed of seaward-dipping beachface deposits as well as minor amounts of inland dipping deposits of wash-over origin. The beachface deposits downlap on underlying shoreface deposits, and we use these surfaces as markers of a relative palaeo-sea level. The new data indicate that the highest relative sea level at about 8.5 m was reached 6500 years ago; 700 years later the relative sea level had dropped 0.7 m indicating a change in the relative sea level around 1 mm/year. This fall in the relative sea level most likely records the influence of an isostatic rebound causing younger beach ridge deposits to indicate lower sea levels.  相似文献   

7.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

8.
This paper investigates a series of small-scale, short-lived fluctuations of sea level registered in a prograding barrier spit that grew during the MIS 5e. This interglacial includes three highstands (Zazo et al., 2003) and we focus on the second highstand, of assumed duration ~10 ± 2 ka, given that U–Th ages do not provide more accurate data. Geometry and 3D architecture of beach facies, and thin-section petrography were used to investigate eight exposed offlapping subunits separated by seven conspicuous erosion surfaces, all interpreted as the result of repeated small-scale fluctuations of sea level.Each subunit records a relatively rapid rise of sea level that generated a gravelly shoreface with algal bioherms and a sandy uppermost shoreface and foreshore where most sand accumulated. A second range of still smaller-scaled oscillations of sea level has been deduced in this phase of sea-level fluctuation from lateral and vertical shifts of the foreshore-plunge-step-uppermost shoreface facies.Eventually, progradation with gently falling sea level took place and foreshore deposits underwent successive vadose cementation and subaerial dissolution, owing to relatively prolonged exposure. Later recovery of sea level re-established the highstand with sea level at approximately the same elevation, and there began deposition of a new subunit. The minimum sea-level variation (fall and subsequent rise) required to generate the observed features is 4 m. The time span available for the whole succession of events, and comparison with the Holocene prograding beach ridge complex in the nearby Roquetas (Almería) were used to calculate the periodicity of events. A millennial-suborbital time scale is suggested for fluctuations separating subunits and a decadal scale for the minor oscillations inside each subunit.  相似文献   

9.
Shoreface sandstone deposits within the Early Carnian part of the Snadd Formation of the Norwegian Barents Sea can be traced for hundreds of kilometres in the depositional strike direction and for tens of kilometres in the depositional‐dip direction. This study uses three‐dimensional seismic attribute mapping and two‐dimensional regional seismic profiles to visualize the seismic facies of these shoreface deposits and to map their internal stratigraphic architecture at a regional scale. The shoreface deposits are generally elongate but show variable width from north‐east to south‐west, which corresponds to a sediment source in the northern part of the basin and a southward decrease in longshore sediment transport. The Snadd Formation presents an example of how large‐scale progradational shoreface deposits develop. The linear nature of its shoreface deposits contrasts with more irregular, cuspate wave‐dominated deltaic shorelines that contain river outlets, and instead implies longshore drift as the main sediment source. In map view, discrete sets of linear features bounded by truncation surfaces scale directly to beach ridge sets in modern counterparts. The shoreface deposits studied here are characteristic in terms of scale and basin‐wide continuity, and offer insight into the contrast between shallow marine deposition under stable Triassic Greenhouse and fluctuating Holocene Icehouse climates. Findings presented herein are also important for hydrocarbon exploration in the Barents Sea, because they describe a hitherto poorly understood reservoir play in the Triassic interval, wherein the most prominent reservoir plays have so far been considered to be found in channelized deposits in net‐progradational delta‐plain strata that form the topsets to shelf‐edge clinoforms. The documented presence of widespread wave‐dominated shoreface deposits also has implications for how the relative importance of different sedimentary processes is considered within the basin during this period.  相似文献   

10.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

11.
This study documents lowering of the surf zone (i.e. the upper shoreface) leading to intra-shoreface erosion, following two rapid relative sea-level falls along a tectonically uplifted coast during the Holocene, and the characteristics of the resultant prograding shoreface deposits. These findings are based on high-resolution analysis and radiocarbon dating of three new drill cores obtained from the Kujukuri strand plain, Pacific coast of eastern Japan, combined with previously published borehole data and information on modern shoreline profile adjustments. A shallowing-upward sandy succession composed of lower and upper shoreface facies, foreshore and backshore facies was recognized in the drill cores. Two rapid falls in relative sea-level at 2·3 to 2·6 and 1·8 to 2·0 ka are recorded by downstepping of the base of the foreshore facies, and farther seawards by the lowering of an erosional boundary between the upper and lower shoreface facies. Superimposed bed profiles of an adjacent modern beach define an envelope, the base of which reflects shore-normal migration of longshore bars and troughs. The base of the envelope represents an erosional surface that divides the surface mobile layer above from preserved deposits beneath. The surface is concave upwards and steeper than the mean beach profile, and exhibits a flat platform approximately at the lower limit of the upper shoreface equating to the storm surf zone. The seaward transition of this surface, rather than the mean equilibrium profile, controls the metre-scale to decimetre-scale internal structure of the Kujukuri shoreface deposits. Depositional models for sea-level fall based on an exponential equilibrium profile do not adequately account for the presence and migration of longshore bars and troughs.  相似文献   

12.
Recent LiDAR surveys have revealed that on postglacially uplifting coasts of Estonia rhythmic coastal landforms (beach ridge sequences and foredune plains) occur to a considerable extent. We studied four of them to reveal age and periodicity in these multiple ridge systems and discussed their genesis in the Subatlantic (semi‐continental) conditions of the Baltic Sea area. Using recent models of Fennoscandian uplift due to glacial isostatic adjustment (GIA), we constructed Holocene apparent sea level curves for the study sites at Õngu, Mänspe, Haldi and Keibu; converted distance–height shore profiles into time series (including corrections on shore profile non‐linearity and variations in GIA‐eustasy balance); and analysed the patterns using spectral analysis. It was suggested that due to non‐tidal conditions, relatively low‐energy hydrodynamic forcing and small aeolian contribution, the ridges mark ancient shorelines. They are relatively modest in height (mostly 0.2–1 m), form regular and extensive (up to 150 ridges) patterns, and date back to ~9000 years before present. We studied <5‐ka‐old sections. The mean ridge spacing varied, depending also on coastal slope, between 21 and 39 m. Both simple counting and spectral analysis involved some specific limitations, yet the estimates for typical spacing were alike, at 32 (±5) years. The regular nature of the low‐ridge patterns originated from relative sea level lowering and gradual sediment accretion/erosion. However, the progradation was rather uplift‐ than accretion‐driven and the stepwise process in ridge formation was probably not autocyclic. It was governed or modulated by quasi‐periodic 25–40 year cyclicity in local wave forcing, relative sea level variations and wind conditions. Being most likely connected to the North Atlantic Oscillation, the quasi‐regular, decadal‐scale, similarly phased variations may magnify each other's effect on the westerly exposed coasts of Estonia. Additionally, some other (e.g. event‐driven) mechanisms may also be present.  相似文献   

13.
Abstract Physical stratigraphy within shoreface‐shelf parasequences contains a detailed, but virtually unstudied, record of shallow‐marine processes over a range of historical and geological timescales. Using high‐quality outcrop data sets, it is possible to reconstruct ancient shoreface‐shelf morphology from clinoform surfaces, and to track the evolving morphology of the ancient shoreface‐shelf. Our results suggest that shoreface‐shelf morphology varied considerably in response to processes that operate over a range of timescales. (1) Individual clinoform surfaces form as a result of enhanced wave scour and/or sediment starvation, which may be driven by minor fluctuations in relative sea level, sediment supply and/or wave climate over short timescales (101?103 years). These external controls cannot be distinguished in vertical facies successions, but may potentially be differentiated by the resulting clinoform geometries. (2) Clinoform geometry and distribution changes systematically within a single parasequence, reflecting the cycle in sea level and/or sediment supply that produced the parasequence (102?105 years). These changes record steepening of the shoreface‐shelf profile during early progradation and maintenance of a relatively uniform profile during late progradation. Modern shorefaces are not representative of this stratigraphic variability. (3) Clinoform geometries vary greatly between different parasequences as a result of variations in parasequence stacking pattern and relict shelf morphology during shoreface progradation (105?108 years). These controls determine the external dimensions of the parasequence.  相似文献   

14.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   

15.
Submarine geomorphology is one of the main tools for understanding past fluctuations of tidewater glaciers. In this study we investigate the glacial history of Mohnbukta, on the east coast of Spitsbergen, Svalbard, by combining multibeam‐bathymetric data, marine sediment cores and remote sensing data. Presently, three tidewater glaciers, Heuglinbreen, Königsbergbreen and Hayesbreen calve into Mohnbukta. Hayesbreen surged at the end of the Little Ice Age, between 1901 and 1910. The submarine landform assemblage in Mohnbukta contains two large transverse ridges, interpreted as terminal moraines, with debrisflow lobes on their distal slopes and sets of well‐preserved geometric networks of ridges, interpreted as crevasse‐squeeze ridges inshore of the moraines. The arrangement of crevasse‐squeeze ridges suggests that both landform sets were produced during surge‐type advances. The terminus position of the 1901–1910 Hayesbreen surge correlates with the inner (R.2) terminal moraine ridge suggesting that the R.1 ridge formed prior to 1901. Marine sediment cores display 14C ages between 5700–7700 cal. a BP derived from benthic foraminifera, from a clast‐rich mud unit. This unit represents pre‐surge unconsolidated Holocene sediments pushed in front of the glacier terminus and mixed up during the 1901 surge. An absence of retreat moraines in the deeper part of the inner basin and the observation of tabular icebergs calving off the glacier front during retreat suggest that the front of Hayesbreen was close to flotation, at least in the deeper parts of the basin. As the MOH15‐01 core does not penetrate into a subglacial till and the foraminifera in the samples were well preserved, the R.1 ridge is suggested to have formed prior to the deposition of the foraminifera. Based on these data we propose that a surge‐type advance occurred in Mohnbukta in the early Holocene, prior to 7700 cal. a BP, which in turn indicates that glaciers can switch to and from surge mode.  相似文献   

16.
The Kaskapau and Cardium Formations span Late Cenomanian to Early Coniacian time and were deposited on a low‐gradient foredeep ramp. The studied portion of the Kaskapau Formation spans ca 3·5 Myr and forms a mudstone‐dominated wedge thinning from 700 to <50 m from SW to NE over ca 300 km. In contrast, the Cardium Formation spans about 2·1 Myr, is about 100 m thick, sandstone‐rich and broadly tabular. The Kaskapau and Cardium Formations are divided, respectively, into 28 and nine allomembers, each bounded by marine flooding surfaces. Kaskapau allomembers 1 to 7 show about 200 km of offlap from the forebulge, accompanied by progradation of thin sandstones from the eroded forebulge crest. In contrast, Kaskapau allomembers 8 to 28 and Cardium allomembers C1 to C9 show overall onlap onto the forebulge of about 350 km, and contain no forebulge‐derived sandstones. This broad pattern is interpreted as recording a latest Cenomanian pulse of tectonic loading which led to shoreline back‐step in the proximal foredeep and coeval uplift of the forebulge, leading to erosion. The advance of the sediment wedge after Kaskapau allomember 7 is attributed primarily to the isostatic effect of a distributed sediment load; the advance of the orogenic wedge had a subordinate effect on subsidence of the forebulge. For Kaskapau allomembers 1 to 6, isopachs trend north to south, suggesting a load directly to the west; allomembers 7 to 28 show an abrupt rotation of isopachs to NW–SE, suggesting that the load shifted several hundred kilometres to the south. This re‐orientation might be related to a change from an approximately orthogonal to a dextral transpressive stress regime. Within the longer‐term offlap–onlap cycle recorded by the Kaskapau and Cardium Formations, individual allomembers are grouped into packages reflecting higher‐frequency onlap–offlap cycles, each spanning ca 0·5 to 0·7 Myr. Offlap from the forebulge tends to be accompanied by more pronounced transgression in the foredeep, whereas onlap onto the forebulge is accompanied by progradation of tongues of shoreface sandstone. This relationship suggests that changes in deformation rate in the orogenic wedge modulated proximal subsidence rate, enhancing or suppressing shoreline progradation, and also causing subtle uplift or subsidence of the forebulge region. Wedge‐shaped allomembers in the Kaskapau Formation contain shoreface sandstone and conglomerate that prograded, respectively, <40 and <25 km from the preserved basin margin; progradation of coarse clastics was limited by rapid flexural subsidence. Tabular allomembers of the Cardium Formation imply a low flexural subsidence rate and contain sandy and conglomeratic shoreface deposits that prograded up to ca 180 km from the preserved basin margin. This relationship suggests that low rates of flexural subsidence promoted steeper alluvial gradients, more vigorous gravel transport and more extensive shoreface progradation. Overall, observed stratal geometry and facies distribution is explained readily in terms of current elastic flexural models. Most shoreface sandstones in the proximal foredeep show evidence of forced regression. Eustasy provides the most plausible explanation for relative sea‐level rise–fall cycles on the 125 kyr allomember timescale. Geometric relationships suggest eustatic oscillations of about 10 m. Forced regressive shoreface development was suppressed during Kaskapau allomembers 1 to 10 when the rate of flexural subsidence was at its highest.  相似文献   

17.
A sedimentary model for hooked spit depositional systems based on ground‐penetrating radar and sedimentological data is presented. The recurved main spit of Sylt Island (southern North Sea) is dominated by migrating sand dunes; the investigated hooked spit exhibits a system of foredune ridges, oriented perpendicular to the dunes of the recurved spit. The development of the hooked spit is related closely to the presence of an adjacent tidal inlet, where strong tidal currents and a steep bathymetry prevent a further northward progradation of the main spit and trigger a deflection from northerly‐directed to easterly‐directed net sediment transport. Ground‐penetrating radar data and shallow sediment cores reveal the sedimentary architecture of the hooked spit in high resolution and allow the proposition of a genetic stratigraphic model. It is shown that the growth of the hooked spit is controlled by the interplay of alongshore migrating foreshore beach drifts under fair‐weather conditions and strong erosional events, interpreted as the result of rare severe storms. These storms may excavate scarps in the backshore, which play an important role in the development of foredune ridges. Accelerator mass spectrometry 14C ages indicate an absolute age of at least 1300 years for the hooked spit, which possibly correlates with strengthened erosion of the main spit. In contrast to the main spit, where the sediment budget is negative nowadays, growth of the hooked spit beach accelerated significantly during the last decades. This effect can probably be attributed to enhanced beach‐nourishments updrift along the main spit and makes the investigated hooked spit a natural laboratory to study the influence of increasing sediment supply into a system developing under the conditions of sea‐level rise. The study shows that the same external forces lead to distinct progradational processes along one barrier‐spit system.  相似文献   

18.
《Sedimentology》2018,65(4):1170-1212
Barrier‐island system evolution is controlled by internal and external forcing mechanisms, and temporal changes in these mechanisms may be recorded in the sedimentary architecture. However, the precise role of individual forcing mechanisms is rarely well understood due to limited chronological control. This study investigates the relative role of forcing conditions, such as antecedent topography, sea‐level rise, sediment supply, storms and climate changes, on the evolution of a Holocene wave‐dominated barrier‐island system. This article presents temporal reconstruction of the depositional history of the barrier‐island system of Rømø in the Wadden Sea in unprecedented detail, based on ground‐penetrating radar profiles, sediment cores, high‐resolution dating and palynological investigations, and shows that ca 8000 years ago the barrier island formed on a Pleistocene topographic high. During the initial phase of barrier evolution, the long‐term sea‐level rise was relatively rapid (ca 9 mm year−1) and the barrier was narrow and frequently overwashed. Sediment supply kept pace with sea‐level rise, and the barrier‐island system mainly aggraded through the deposition of a ca 7 m thick stack of overwash fans. Aggradation continued for ca 1700 years until sea‐level rise had decreased to <2 mm year−1. In the last ca 6000 years, the barrier prograded 4 to 5 km through deposition of a 10 to 15 m thick beach and shoreface unit, despite a long‐term sea‐level rise of 1 to 2 mm year−1. The long‐term progradation was, however, interrupted by a transgression between 4000 years and 1700 years ago. These results demonstrate that the large‐scale morphology of the Danish Wadden Sea shoreline influences the longshore sediment transport flux and the millennial‐scale dispersal of sediment along the shoreline. On decadal to centennial timescales, major storms induced intense beach and shoreface erosion followed by rapid recovery and progradation which resulted in a highly punctuated beach and shoreface record. Major storms contributed towards a positive sediment budget, and the sustained surplus of sediment was, and still is, instrumental in maintaining the aggradational–progradational state of the barrier island.  相似文献   

19.
The internal structure of coastal foredunes from three sites along the north Norfolk coast has been investigated using ground‐penetrating radar (GPR), which provides a unique insight into the internal structure of these dunes that cannot be achieved by any other non‐destructive or geophysical technique. Combining geomorphological and geophysical investigations into the structure and morphology of these coastal foredunes has enabled a more accurate determination of their development and evolution. The radar profiles show the internal structures, which include foreslope accretion, trough cut and fill, roll‐over and beach deposits. Foredune ridges contain large sets of low‐angle cross‐stratification from dune foreslope accretion with trough‐shaped structures from cut and fill on the crest and rearslope. Foreslope accretion indicates sand supply from the beach to the foreslope, while troughs on the dune crest and rearslope are attributed to reworking by offshore winds. Bounding surfaces between dunes are clearly resolved and reveal the relative chronology of dune emplacement. Radar sequence boundaries within dunes have been traced below the water‐table passing into beach erosion surfaces. These are believed to result from storm activity, which erodes the upper beach and dunes. In one example, at Brancaster, a dune scarp and erosion surface may be correlated with erosion in the 1950s, possibly the 1953 storm. Results suggest that dune ridge development is intimately linked to changes in the shoreline, with dune development associated with coastal progradation while dunes are eroded during storms and, where beaches are eroding, a stable coast provides more time for dune development, resulting in higher foredune ridges. A model for coastal dune evolution is presented, which illustrates stages of dune development in response to beach evolution and sand supply. In contrast to many other coastal dune fields where the prevailing wind is onshore, on the north Norfolk coast, the prevailing wind is directed along the coast and offshore, which reduces the landward migration of sand dunes.  相似文献   

20.
The influence of relative sea level rise on shoreface deposition helps to elucidate changes in beach and nearshore geomorphology in response to different forcing factors. In this study, two sets of sediment samples, one from 1982 and one from 2004, from the Shuidong Bay of South China were analyzed to determine the changes in shoreface depositions. An EOF (Empirical orthogonal function) method was used to examine how these depositions changed based on the relative sea level rise. The results show that shoreface sediments of Shuidong Bay are mainly composed of sand. Fine-grained sediments are distributed in the lower shoreface/offshore area, and coarse-grained sediments are mainly found in the upper shoreface/nearshore area. Due to the altered hydrological forcing caused by relative sea level rise, the sand fraction in sediments increased from 84.7 % in 1982 to over 90 % in 2004, and the clay and silt fractions decreased from 11.8 % in 1982 to 5.6 % in 2004. Grain-size parameters in sediments in 2004 became coarser, slightly more well sorted, less skewed and had lower kurtosis than those in 1982. In addition, the shoreface deposition of Shuidong in 1982 and 2004 is distinctly different: a polarized mode was described by the first eigenfunctions, and a homogenized mode was described by the second eigenfunctions. The former means that the sediment components developed towards the two opposite poles, undergoing both coarsening and refining processes. The second mode indicates that the secondary variation in sediment components was mostly in the three intermediate-grained sand components. In the future, the Shuidong Bay shoreface may be subjected to even further erosion because of increases in the energy of the environment resulting from rapid relative sea level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号