首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Abrud–Arieş river system, western Romania, is subject to ongoing mining activity associated with Cu, Pb and Zn ore extraction. The catchment contains what is believed to be Europe's largest unutilized Au deposit at Roşia Montană that is planned to be exploited by open-cast mining techniques. The magnitude and environmental significance of metal (Cd, Cu, Pb, and Zn) concentrations in surface water and river channel sediment have been investigated along a 140 km reach of the Rivers Abrud and Arieş and 9 tributaries affected by mining. The speciation of sediment-bound metals was established using a 4-stage sequential extraction procedure (SEP) that identified four chemical phases: (1) exchangeable, (2) Fe/Mn oxides, (3) organic matter/sulphides and (4) residual. Peak solute and sediment-bound metal concentrations were found to occur in the River Abrud downstream of the EM Bucium mine and in mining-affected tributaries, with up to 71% of sites containing sediment metal concentrations in excess of Dutch intervention values. The River Arieş was found to be much less polluted than the River Abrud, with only Cu showing concentrations above guideline values, as a consequence of porphyry Cu mineralization in the catchment. The magnitude and spatial extent of metal pollution is influenced by local physico-chemical conditions and hydrological linkages between mining and local river systems. Sediment-bound Cd and Zn were found to be predominantly associated with the exchangeable phase of the sediment (9–74% and 6–65%, respectively), whilst Fe/Mn oxides (5–76%) and organic matter/sulphides (1–45%) generally accounted for a majority of Pb and Cu partitioning, respectively. Sites of environmentally significant sediment-metal pollution were identified in the Rivers Abrud and Arieş where exchangeable metal concentrations exceeded Dutch intervention values. The implications of metal contamination in the Arieş river basin to the proposed mining development at Roşia Montana are discussed in relation to other contaminated Romanian catchments and with the EU Water Framework Directive.  相似文献   

2.
《Applied Geochemistry》2003,18(2):241-257
In January and March 2000 two tailings dam failures in Maramureş County, northwest Romania, resulted in the release of 200,000 m3 of contaminated water and 40,000 tonnes of tailings into tributaries of the Tisa River, a major tributary of the Danube. The high concentrations of cyanide and contaminant metals released by these dam failures resulted in pollution and fish deaths not only in Romania, but also downstream in the Tisa and Danube rivers within Hungary, Serbia and Bulgaria. Following these accidents, a research programme was initiated in northwest Romania to establish metal levels in rivers affected by the tailings dam failures and to compare these to metal values in river systems contaminated by historic mining and industrial activity. In July 2000, 65 surface water, 65 river sediment and 45 floodplain sediment samples were collected from trunk streams and principal tributaries of the Lapuş/Someş rivers (affected by the January 2000 spill) and the Vişeu/Tisa rivers (affected by the March 2000 Novat spill) down to the Hungarian and Ukrainian borders, respectively. Sample analyses for Pb, Zn Cu and Cd show that metal contamination in surface water and river sediment decreases rapidly downstream away from presently active mines and tailings ponds. Concentrations of heavy metals in water and sediment leaving Romania, and entering Hungary and the Ukraine, generally fall below EC imperative and Dutch intervention values, respectively. However, Zn, Cu and Cd concentrations in river sediments approach or exceed intervention values at the Romanian border. The results of this survey are compared with earlier surveys to ascertain the long-term fate and environmental significance of contaminant metals released by mine tailings dam failures in Maramureş County.  相似文献   

3.
Lead isotope signatures (207Pb/206Pb, 208Pb/206Pb, 208Pb/204Pb, 206Pb/204Pb), determined by magnetic sector ICP-MS in river channel sediment, metal ores and mine waste, have been used as geochemical tracers to quantify the delivery and dispersal of sediment-associated metals in the lower Danube River catchment. Due to a diverse geology and range of ore-body ages, Pb isotope signatures in ore-bodies within the lower Danube River catchment show considerable variation, even within individual metallogenic zones. It is also possible to discriminate between the Pb isotopic signatures in mine waste and river sediment within river systems draining individual ore bodies. Lead isotopic data, along with multi-element data; were used to establish the provenance of river sediments and quantify sedimentary contributions to mining-affected tributaries and to the Danube River. Data indicate that mining-affected tributaries in Serbia and Bulgaria contribute up to 30% of the river channel sediment load of the lower Danube River. Quantifying relative sediment contributions from mining-affected tributaries enables spatial patterns in sediment-associated metal and As concentrations to be interpreted in terms of key contaminant sources. Combining geochemical survey data with that regarding the provenance of contaminated sediments can therefore be used to identify foci for remediation and environmental management strategies.  相似文献   

4.
The Mike Horse Mine tailings dam in western Montana was partially breached in 1975 due to heavy rainfall and a failed drainage bypass. Approximately 90,000 tons of metal and arsenic-enriched tailings flowed into Beartrap Creek and the Blackfoot River. The spatial distribution of trace elements As, Cd, Cu, Mn, Pb, and Zn in floodplain alluvium of the upper Blackfoot River were examined along 20 transects in the upper 105 river kilometers downstream from the tailings dam. Trace element concentrations decrease with distance from the failed dam, with As reaching background concentrations 15 km from the Mike Horse dam, Cd and Pb at 21 km, Cu at 31 km, and Mn and Zn at 37 km. Distance from the Mike Horse tailings dam and mine area is the dominating factor in explaining trace element levels, with R 2 values ranging from 0.67 to 0.89. Maximum floodplain trace element concentrations in the upper basin exceed US. EPA ecological screening levels for plants, birds and other mammals, and reflect adverse hazard quotients for exposure to As and Mn for ATV/motorcycle use. Trace element concentrations in channel bank and bed alluvium are similar to concentrations in floodplain alluvium, indicating active transport of trace elements through the river and deposition on the floodplain. The fine fraction (<2 mm) of floodplain alluvium is dominated by sand-sized particles (2.0–0.05 mm), with Cu and Mn significantly correlated with silt-sized (0.05–0.002 mm) alluvium. Ongoing remediation in the headwaters area will not address metal contamination stored downstream in the channel banks and on the floodplain. Additionally, some trace elements (Cu, Mn and Zn) were conveyed farther downstream than were others (As, Cd, Pb).  相似文献   

5.
《Applied Geochemistry》2003,18(2):221-239
The Aznalcóllar tailings dam at Boliden Apirsa's Aznalcóllar/Los Frailes Ag–Cu–Pb–Zn mine 45 km west of Seville, Spain, was breached on 25 April 1998, flooding approximately 4600 hectares of land along the Rı́os Agrio and Guadiamar with approximately 5.5 million m3 of acidic water and 1.3×106 m3 of heavy metal-bearing tailings. Most of the deposited tailings and approximately 4.7×106 m3 of contaminated soils were removed to the Aznalcóllar open pit during clean-up work undertaken immediately after the spill until January 1999. Detailed geomorphological and geochemical surveys of the post-clean-up channel, floodplain and valley floor, and sediment and water sampling, were carried out in January and May 1999 at 6 reaches representative of the types of river channel and floodplain environments in the Rı́o Guadiamar catchment affected by the spill. The collected data show that the clean-up operations removed enough spill-deposited sediment to achieve pre-spill metal (Ag, As, Cd, Cu, Pb, Sb, Tl, Zn) concentrations in surface sediment. These concentrations, however, are still elevated above pre-mining concentrations, and emphasise that mining continues to contaminate the Agrio-Guadiamar river system. Dilution by relatively uncontaminated sediment appears to reduce metal concentrations downstream but increases in metal and As concentrations occur downstream, presumably as a result of factors such as sewage and agriculture. River water samples collected in May 1999 have significantly greater dissolved concentrations of metals and As than those from January 1999, probably due to greater sulphide oxidation from residual tailings with concomitant release of metals in the warmer early summer months. These concentrations are reduced downstream, probably by a combination of dilution and removal of metals by mineral precipitation. Single chemical extractions (de-ionised water, CaCl2 0.01 mol l−1, CH3COONH4 1 M, CH3COONa 1 M and ammonium oxalate 0.2 M) on alluvial samples from reaches 1 and 6, the tailings, pre-spill alluvium and marl have shown that the order of sediment-borne contaminant mobility is generally Zn>Cd>Cu>Pb>As. Pb and As are relatively immobile except possibly under reducing conditions. Much of the highly contaminated sediment remaining in the floodplain and channel still contains a large proportion of tailings-related sulphide minerals which are potentially reactive and may continue to release contaminants to the Agrio–Guadiamar river system. Our work emphasises the need for pre-mining geomorphological and geochemical data, and an assessment of potential contributions of contaminants to river systems from other, non-mining sources.  相似文献   

6.
The Río Pilcomayo rises on the Cerro Rico de Potosí precious metal-polymetallic tin deposits of Bolivia, and flows in a southeasterly direction for ca. 600 km to Bolivia's southern border with Argentina. Mining of the Potosí deposits has occurred continuously since 1545, generating large quantities of waste materials in the headwater of the basin. In addition, a tailings dam breach at the Porco mine in 1996 released an estimated 235 000 m3 of tailings and fluid into the upper reaches of the Río Pilaya, the largest tributary to the Pilcomayo.Concentrations of As, Sb, Cd, Cu, Pb, Hg, Ag, Tl and Zn in contemporary channel sediments upstream of the Pilaya confluence are significantly elevated above background values. Elevated levels appear to be associated with pyrite- and other sulphide mineral-bearing tailings materials transported more than 200 km downstream of the Potosí mines. Significant downstream declines in elemental concentrations occur within 15 km, and again between 150 and 200 km, from the mines. The initial decrease in concentrations is due to the rapid dilution of nearly pure tailings effluent released to the river from milling facilities near Potosí. The latter decrease results from a combination of geomorphic processes including the storage of sediment-borne metals within the channel bed and the influx of ‘clean’ sediment from several large tributaries. Downstream of the Pilaya confluence, concentrations of Cu, Pb, Hg and Zn are only slightly elevated above background values, and Ag, Cd, Sb and Tl cannot be distinguished from background levels. These data suggest that while the Porco tailings spill may have had a significant short-term impact on sediment and water quality along the lower reaches of the Río Pilcomayo, its longer-term impacts were limited. Metals stored and eroded from alluvial deposits of historical age in upstream reaches appear to be an important source of metals to the river today. An additional, and perhaps more significant source, is the release of tailings effluent to the river from modern milling operations. The transport of these contaminants downstream of Icla (203 km from Potosí) appears to be restricted by aggradational processes occurring in the vicinity of Puente Sucre. In addition, downstream of the confluence of the Río Pilaya, inputs of large amounts of ‘clean’ sediment have caused dilution of the metal contaminants. Data from other studies where similar geomorphic processes have occurred suggest that the metals in the upper Pilcomayo may eventually be moved downvalley as the aggradational processes are reversed and channel stabilisation occurs. Thus, the most significant impacts of metal contamination may not be realised in downstream areas for decades.  相似文献   

7.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

8.
Discharge of wastewater from the retaining pond of a Pb ore-flotation plant since 1967 and breaching of the retaining pond in April 1998 contaminated 17540 cbm of river bank sediment with 833 ton Pb, nearly 19 km along the Khli Ti Creek. High blood Pb concentration was detected in many inhabitants. Prohibition of water and aquatic biota consumption has caused difficulties for rural people to make their ends meet. The governmental agency closed the ore-floatation plant and built 2 rock check dams downstream. The dam was designed to slow down water velocity and precipitate particulate matter. Contaminated sediments that have been trapped in front of the dam were planned to be dredged and disposed in landfill. Until now, no dredging is performed because some experts claim that dredging will resuspend the contaminated sediment into the water column, and fresh sediment deposited during periods of high flow will cover the contaminated sediment. The aim of this study was to evaluate the ability of the rock check dam to prevent the transportation of Pb-contaminated sediment in the Khli Ti Creek. Sediment located before and after the rock check dam and 2 km downstream were collected in September 2003 and May 2005. During September 2003, Pb concentrations in sediment deposited before and after the rock check dam and 2 km downstream were 48840, 53741 and 36020 mg/kg, respectively. These results showed that Pb-contaminated sediment was transported over the first rock check dam but still remained after the rock check dam. Result of May 2005 sampling also showed the same trend, although with different ranges due to seasonal variation, types of collected sediment, sample preparation and analytical techniques. Pb concentrations in sediment were 209684, 306775 and 33760 mg/kg, respectively.  相似文献   

9.
Macquarie Harbour in southwest Tasmania, Australia, has been affected severely by the establishment of mines in nearby Queenstown in the 1890s. As well as heavy metal-laden acid rock drainage from the Mount Lyell mine area, over 100 Mt of mine tailings and slag were discharged into the Queen and Ring Rivers, with an estimated 10 Mt of mine tailings building a delta of ca. 2.5 km2 and ca. 10 Mt of fine tailings in the harbour beyond the delta. Coring of sediments throughout Macquarie Harbour indicated that mine tailings accreted most rapidly close to the King River delta source with a significant reduction in thickness of tailings and heavy metal contamination with increasing distance from the King River source. Close to the King River delta the mine tailings are readily discriminated from the background estuarine sediments on the basis of visual logging of the core (laminations, colour), sediment grain size, sediment magnetic susceptibility and elemental geochemistry, especially concentrations of the heavy metals Cu, Zn and Pb. The high heavy metal concentrations are demonstrated by the very high contamination factors (CF > 6) for Cu and Zn, with CF values mostly >50 for Cu for the mine-impacted sediments. Although the addition of mine waste into the King River catchment has ceased, the catchment continues to be a source of these heavy metals due to acid rock drainage and remobilisation of mine waste in storage in the river banks, river bed and delta. The addition of heavy metals to the harbour sourced from the Mount Lyell mines preceded the advent of direct tailings disposal into the Queen River in 1915 with the metals probably provided by acid rock drainage from the Mount Lyell mining area.  相似文献   

10.
陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价   总被引:3,自引:1,他引:2  
徐友宁  张江华 《地质通报》2008,27(8):1263-1671
通过对潼关金矿区太峪河和太峪水库底泥中重金属元素总量的调查,探讨了金矿开发活动中重金属元素对河流底泥的污染程度。研究结果表明,除As外,河流底泥中重金属元素的含量与尾矿渣中重金属元素的含量变化一致,表明其主要来源于尾矿渣,但又明显高于尾矿渣。在同一地点河流底泥中重金属元素的含量平均高出河水中的1048.61~666030.08倍,呈显著富集。以邻近地区不受工矿活动影响的河流底泥重金属元素的含量均值作为评价参比值,太峪河底泥受到了Hg、Pb、Cd、Cu、Zn元素的极度污染,单项污染超标倍数及综合污染指数法评价结果表明,Hg、Pb、Cd平均污染超标倍数达366.90、217.42和149.97,是底泥中最主要的污染元素。河流底泥重金属元素的综合污染指数高达278.97,表明河流的复合污染亦呈极度状态。太峪河底泥受重金属元素极度污染的现实提示,矿区的环境防治工作已刻不容缓。  相似文献   

11.
Molybdenum mining in the Knabena—Kvina drainage basin (1918–1973) left more than eight million tons of tailings in two small lakes in the headwater area of the Knabena river. The piles, that reach above the water surface, were freely eroded until a dam was built to reduce the dispersion in 1976. Sampling of tailings and fluvial sediments took place almost 20 years later. Sampling media were natural sediment sources, 1-cm-thick slices of overbank sediments of various depths, material from the tailings pond, sandbars, stream sediments, fjord sediments, and integrated samples of floodplain surfaces (0–25 cm). In total 734 samples were collected. Chemical analysis (ICP-AES after aqua regia or HNO3 extraction) showed that overbank sediments at a certain depth represent the pre-industrial trace metal concentrations within the drainage basin. The tailings and recent fluvial sediments were enriched in approximately the same element suite. The highest enrichment factors were obtained for Cu (8–53) and Mo (22–57). Fluvial processes in the tailings pond have probably selectively eroded fine-grained, low-density particles. Thus, coarse chalcopyrite may have been left behind, while molybdate associated with fine-grained particles may have been selectively entrained causing dilution of Cu and enrichment of Mo in the downstream fluvial sediments. In the sandbars, the highest Cu and Mo concentrations were found in fine-grained sediments downstream of a low-gradient reach that act as a bedload trap. On the floodplains, it is seen that the first areas to be inundated in a flood situation (proximal to the river and in depressions) have the highest metal concentrations. For regional geochemical mapping it is suggested that overbank sediment profiles along river reaches with a laterally stable or slowly migrating channel, should be sampled. In such floodplains, pre-industrial overbank sediments are usually preserved at depth. In case of laterally unstable reaches upstream of the sampling point, polluted and unpolluted sediments may be interlayered or mixed. Therefore, samples should be collected from various depths or sedimentary units in such profiles. A similar sampling strategy should probably be adopted to detect vertical migration of elements especially in areas with acid rain and low bedrock buffer capacity. To obtain high contrasts between polluted and unpolluted drainage basins, the overbank sediment profiles should be within the proximal part of the floodplain.  相似文献   

12.
The fate of the arsenic (As) under neutral hydrogeochemical conditions in the mining ecosystem has attracted increasing concern, as the ecological restoration of As provides a possibility for safe use of mine water. However, successful cases are still inadequately reported worldwide. Therefore, to investigate the As-behavior in the mine tailings ecosystem, a study of the Wanniangou tailings pond (regional largest V-Ti-Fe mine tailings pond, Sichuan province, China) and the downstream (Rehe River) was conducted. It involves hydro-geochemistry, mineralogy, biogeochemistry, and the Geographically Weighted Regression model (GWR). The results reveal that: (1) the pH range of the mine water is 6.32 to 7.21. The chemical weathering of tailings resulted in an abnormal As concentration in water (e.g., transport pipe wastewater 76.5 μg L−1, the outlet of tailings pond 28.4 μg L−1), and it declines to the national water quality guideline (<10 μg L−1) after 2.59 km from the pond outlet. (2) Although sulfide oxidation boosts As migration in the tailings, As ecological refixation is promoted by tailings particle percolation, river sediment absorption, and aquatic plant uptake. The As refixation behaviors vary spatially, corresponding with the diversity of precipitation and absorption. Besides, Manganese (oxides or/and hydroxides) is conducive to As coprecipitation in the neutral hydrogeochemical environment. (3) The site selection of the V-Ti-Fe mine tailings pond with a downstream longer than 3 km creates a toxic metals self-restoration buffer zone, which could relieve the contamination probability and make the mining wastewater re-utilization feasible.  相似文献   

13.
The Caldas Uranium Mine (CUM), located on the Poços de Caldas Plateau in the southeastern region of Brazil, is presently undergoing a decommissioning process. The aim of the present investigation is to identify and characterize the effects of acid mine drainage (AMD) originating from the CUM on surface water quality. To achieve these aims, sampling stations were located at two AMD sources: the retention pond at the foot of waste rock pile#4 (WRP#4) and the settling pond that receives effluents from the tailings dam (TD). Ten additional sampling stations were located along watercourses in the vicinity, both downstream and upstream of the mine. Sampling was performed during the rainy and dry seasons in 2010 and 2011. The water analysis detected significant changes in pH, electrical conductivity, F?, Cd, U, Zn, Al, Mn, As, Ca, SO4 2?, Pb, 238U, 226Ra, 210Pb, 232Th, 228Ra, and Mo in waters downstream of both pond discharge sites. It was demonstrated that the disequilibrium between 226Ra and 238U can be used to trace the extent of AMD impacts in nearby streams. Variations in 18O and 2H enabled the flow of mining-impacted water to be traced from the ponds to nearby streams. Multivariate analysis yielded a three-factor model: Factor 1 was interpreted as being associated with AMD (from WRP#4) and Factor 2 with a Ca–Mo relationship associated with the chemical constitution of the ore and with the treatment of tailings wastes in the area (from TD); Factor 3 was interpreted as being associated with the natural influence of geogenic processes on water quality in the area. The results of this study provide a scientific basis for recommending appropriate remedial actions during mine decommissioning.  相似文献   

14.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

15.
In the mining district of Plombières-La Calamine (East Belgium), extensive Pb–Zn mining activities resulted in an important contamination of overbank sediments along the Geul river. Moreover, a huge amount of heavy metals is stored in a dredged mine pond tailing, which is located along the river. In the dredged mine pond tailing sediments, Pb–Zn minerals control the solubility of Zn, Pb and Cd. Although Pb, Zn and Cd display a lower solubility in overbank sediments compared to the mine tailing pond sediments, elevated concentrations of Pb, Zn and Cd are still found in the porewater of the overbank sediments. The considerable ‘actual’ and ‘potential’ mobility of Zn, Pb and Cd indicates that the mine pond tailing sediments and the overbank sediments downstream from the mine pond tailing represent a considerable threat for the environment. Besides the chemical remobilisation of metals from the sediments, the erosion of overbank sediments and the reworking of riverbed sediments act as a secondary source of pollution.  相似文献   

16.
Fresh flood deposits were sampled in the flood-plains of two river systems, the River Meuse, with a catchment area of 33,000 km2 and the River Geul, with a catchment area of 3,000 km2. As a result of industrial and mining activities, both rivers have a history of severe metal pollution, especially with zinc, lead, and cadmium. The flood deposits of both rivers are heterogeneous mixtures of contaminated bottom sediments (with relatively long residence times in the river) and clean sediments derived from soil erosion on agricultural cropland (with very short residence times). An additional source of sediment is formed by erosion of older, locally highly contaminated streambank deposits. These older sediments are polluted as a result of solid waste disposal containing metalliferous ore and tailings in the sand fraction. This is especially the case in the River Geul, which drains an old zinc and lead mining area. The metal content of the Meuse sediments, however, originates largely from liquid industrial wastes and occurs mainly in the clay fraction. For this reason, the positive correlation between textural composition, organic matter content, and heavy metal concentration, which is often reported, was not observed, and normalization of the metal content was not possible. Nevertheless, a clear decrease of contamination was noticed along the River Geul; this trend was absent along the River Meuse. An attempt has been made to model the longitudinal decay pattern for each of the investigated havey metals.  相似文献   

17.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   

18.
The geochemical and mineralogical study of the Quiulacocha tailings impoundment has shown that the hydrological connection of the three studied mine-waste systems at Cerro de Pasco (Pyrite-rich waste-rock dump Excelsior, old tailings impoundment Quiulacocha, and the active tailings impoundment Ocroyoc) is a critical concern for effective acid mine drainage (AMD) control and mine-waste management. The Quiulacocha tailings covered 114 ha, comprising 79 Mt of tailings, which contained  50 wt.% pyrite, and are located at 4340 m altitude in a tropical puna climate with about 1025 mm/a rainfall and 988 mm/a of evaporation. The tailings were partially overlain by the Excelsior waste-rock dump, which contains about 26,400,000 m3 of waste rocks that cover 94 ha and contained  60 wt.% of pyrite, which origin from a massive pyrite-quartz replacement body. Therefore, these two mine-waste deposits had a direct hydrological connection, resulting in the export of AMD produced at Excelsior towards Quiulacocha. In the Quiulacocha impoundment there are two different types of tailings recognized, that interact with the AMD from Excelsior: 1) Zn–Pb-rich tailings and 2) Cu–As-rich tailings. During the sampling, the Zn–Pb-rich part of Quiulacocha was not producing important excesses of AMD from the oxidation zone, since the pH increased to near neutral values at 1 m depth. The underlying tailings were still able to neutralize the acidity produced in the oxidation zone through sulfide oxidation by the carbonates (mainly dolomite and siderite) contained in the Zn–Pb mineral assemblage. The main source of AMD in this mine-waste system is the Excelsior waste-rock dump. Its acid seepage infiltrates into Quiulacocha forming a Fe–Zn–Pb plume with a pH 5.5–6.1 and containing up to 7440 mg/L Fe, 627 mg/L Zn, and 1.22 mg/L Pb. The plume was detected at 10–13 m depth in the stratigraphy of Quiulacocha tailings. Additionally, the AMD seepage outcropping at the base of the Excelsior waste-rock dump was channeled on the tailings surface into the Quiulacocha pond (pH 2.3), which covered the Cu–As-rich tailings. Infiltration of this Fe(III)-rich AMD increased tailings oxidation in the southwestern part of the impoundment, and subsequently liberated arsenic by enargite oxidation. Additionally, the AMD collected in the Quiulacocha pond was pumped into the active Ocroyoc tailings impoundment, where sulfide oxidation was strongly enhanced by the input of dissolved Fe(III). Therefore, the AMD management and a hydrological separation of the different mine-waste systems could be a first step to prevent further extension of the AMD problem in order to prevent increased sulfide oxidation by Fe(III)-rich solutions.  相似文献   

19.
We developed a 238U–206Pb and 207Pb206Pb zircon dating method using a Cameca NanoSIMS NS50 ion microprobe. A 7-to 9-nA O primary beam was used to sputter a 15-μm crater, and secondary positive ions were extracted for mass analysis using the Mattauch–Herzog geometry. The multicollector system was modified to detect 90Zr+, 204Pb+, 206Pb+, 238U16O+, and 238U16O2+ ions simultaneously. A mass resolution of about 4000 at 10% peak height and with a flat peak top was attained, and the sensitivity of Pb was about 4 cps·nA− 1·ppm− 1. A multicrystal zircon standard (QGNG) from South Australia with a U–Pb age of 1842 Ma was used as a reference for Pb+/UO+–UO2+/UO+ calibration, and on the basis of the positive correlation between these ratios, we determined the sample 206Pb/238U ratios. 207Pb/206Pb ratios were measured by magnetic scanning in single-collector mode. The standard zircons 91500, from Canada, and SL13, from Sri Lanka, were analyzed against QGNG. Observed 238U–206Pb and 207Pb206Pb ages agreed well with published ages within experimental error. Then, 16 zircon grains in a metamorphic rock from Nagasaki, Japan, were analyzed. Observed ages were compatible with SHRIMP ages, suggesting that the NanoSIMS with a 15-μm probe diameter is suitable for ion microprobe U–Pb zircon dating.  相似文献   

20.
The River Nura in Central Kazakhstan has been heavily polluted by Hg originating from an acetaldehyde plant. A number of studies were undertaken to investigate the transport, fate and bioavailability of Hg in this river system. The sediments within a 20 km section of the river downstream of the effluent outfall canal are highly polluted and are acting as a strong source of surface water contamination. Mercury transport in the river is dominated by the remobilization of contaminated bed sediments and river bank erosion during the annual spring flood. Peak Hg concentrations in unfiltered surface water samples during a larger than usual flood event in 2004 were in the order of 1600–4300 ng L−1. The majority of the particulate-bound Hg appears to be sedimented in the shallow Intumak reservoir 75 km downstream of the source of the pollution, leading to a drop in aqueous Hg concentrations by an order of magnitude. Nevertheless, background concentrations of Hg in surface water are not reached until at least 200 km downstream, and during the flood period Hg is also detected in the terminal wetlands of the river.Mercury concentrations in sediment cores taken from the river bed in the most contaminated section of the Nura ranged from 9.95 to 306 mg kg−1. Methylmercury (MeHg) levels in shallow sediment cores were highest in surface sediments and ranged between 4.9 and 39 μg kg−1, but were generally less than 0.1% of total Hg (THg). A significant inverse relationship was found between THg concentrations and the percentage of MeHg formed in the sediments, irrespective of the sampling depth. The observed relationship was confirmed by comparison with results from a different river system, indicating that it may be true also for other highly contaminated aquatic systems. It is hypothesized that at high THg levels in severely contaminated sediments, the accumulation of MeHg may be limited by increasingly efficient demethylation processes, and that this underlying trend in sediments is the reason why MeHg levels in surface water are often found to be higher at less contaminated sites compared to upstream sites.Mercury concentrations in biota in the most contaminated section of the river were 15–20 times higher than background levels. Fish were found to be impacted for more than 125 km downstream from the source, indicating significant transport of dissolved MeHg to downstream areas and/or in-situ MeHg production in less contaminated downstream reaches. There were also indications that impoundments may increase the bioavailability of Hg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号