首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
安婷  董增川  程琳 《水文》2007,27(2):63-67,53
本文具体介绍了一种结合DEM和实际数字河网确定流域排水结构的方法。该方法引入了链表的概念,在利用流域实际数字河网从流域的出口向上游搜索的过程中,对于湖泊水库等宽度大于一个栅格的河网地区建立链表,通过图的遍历来确定有河网流过的栅格的水流方向。并对无河网地区进行相应处理,保证无河网地区流向的合理性。这样提取的河网可以保证是连续的,提取的模拟河网与实际河网的吻合显示出了高度的一致,并在一定程度上解决了实际洼地和伪洼地的判别。经过黄河流域的算例验证,表明该法简单可行。  相似文献   

2.
基于ArcGIS的DEM流域划分   总被引:2,自引:0,他引:2  
程峥  李永胜  高微微 《地下水》2011,(6):128-130
从数字高程模型DEM(Digit Elevation Models)直接提取河网及流域信息,是分布式水文模型开发与应用的基础.本文利用ArcGIS中的水文分析工具从DEM中提取了流域水文特征.主要包括:DEM的预处理、水流方向的确定、水流累积量提取、河网的提取、集水区的提取和流域的划分.本文探讨了两种不同划分流域的方法...  相似文献   

3.
毛玉娜  叶爱中  徐静 《水文》2014,34(2):19-24
针对分布式水文模型的尺度问题,在辽河流域,采用SWAT模型,研究不同DEM分辨率及不同子流域大小导致模拟结果的不确定性。研究结果表明:①DEM分辨率对流域平均高程、流域面积和子流域数量影响较小,而对流域平均坡度有显著的影响,因此径流模拟时需要进行坡度订正。对于河网提取,DEM分辨率为500m时提取的河网与基准河网吻合程度较高。②子流域面积过大,数量过少时,模拟结果与基准结果偏差较大,而在划分一定阈值波动范围内径流对子流域数量敏感性较低。  相似文献   

4.
数字高程模型在流域水系拓扑结构计算中的应用   总被引:56,自引:4,他引:52       下载免费PDF全文
简要回顾了利用数字高程模型自动提取流域水系的方法,着重介绍了Martz和Garbrecht开发的数字高程流域水系模型(DEDNM)的基本原理、模型结构、计算流程,包括数字高程模型中凹陷区域的识别和消除、平坦部位水流流向设定、流域分水线勾划、河网生成、河网与子流域编码及河网结构拓扑关系的建立,并将其应用于淮河史灌河流域--全球能量与水分循环亚洲季风试验强化观测区。结果表明该模型能够很好地自动生成流域水系,从而为分布式水文模型的开发研制提供了坚实的基础。  相似文献   

5.
数字高程模型预处理方法的研究进展   总被引:3,自引:0,他引:3  
数字高程模型(Digital Elevation Model,简称DEM)是地形表面形态属性的数字化表达,被广泛应用于流域水文模拟中河网水系的提取.从DEM直接提取的河网水系及相关的流域地理空间信息,是分布式水文模拟的地理信息平台.由于DEM中洼地和平坦区的存在会影响水流方向的确定和数字河网的正确提取.因此在河网自动提取过程中必须首先对DEM数据进行预处理.本文对国内外各种DEM预处理方法进行了归纳总结.将DEM数据预处理方法分为两大类:分步处理法,以及一体化处理法.分步处理法按处理对象又可分为洼地处理方法和平坦区处理方法两部分;而一体化处理法则采用迭代算法同时对洼地和平地进行处理.  相似文献   

6.
数字高程模型在流域水文模型应用中的若干问题   总被引:8,自引:1,他引:8  
孔凡哲  芮孝芳 《水文》2002,22(5):1-4
数字高程模型(DEM)在流域水文模型中得到了广泛应用,主要是因为DEM能够自动提取流域水文模型所需要的确定流域排水结构的水文信息。回顾并讨论了DEM在流域水文模型应用中的几个问题,主要包括河网自动提取的方法、DEM中排水方向的确定以及封闭洼地的处理,同时还包括在流域水文模型中应用时DEM的结构类型及尺度问题。由于由DEM生成的模拟河网与流域实际河网间存在一定的差别,最后还讨论了如何对模拟河网进行矫正的问题。  相似文献   

7.
数字地形分析技术在分布式水文建模中的应用   总被引:18,自引:0,他引:18  
论述了在栅格数字高程模型(DEM)的基础上,利用数字地形分析技术来完成地形评价、河网指示、流域分割、子流域参数化等项工作的理论与方法。并结合江西潋水河流域的实际工作进行了详细的说明。研究结果表明,通过数字地形分析的方法,利用栅格DEM实现流域离散化并从中提取分布式水文模型所需要的输入参数是一种行之有效的手段。  相似文献   

8.
基于GIS和DEM的流域地表水文模拟可为分布式水文模型提供下垫面数据输入.本文采用内嵌于ArcGIS的地表水文分析工具Arc Hydro Tools,结合ArcGIS及其扩展模块Spatial Analyst,以贵州省内乌江流域为例,进行了流域水文模拟分析.运用Arc Hydro Tools进行地表水文模拟分析,主要包括以下4个流程DEM的预处理、水流方向的确定、汇流栅格图的生成、自动提取河网和子流域边界.试验结果表明,提取河网的空间分布接近实际分布情况,数字流域界线的确定与水文部门基本相符.  相似文献   

9.
以陕西富县为例,探讨在GIS环境下从数字高程模型(DEM)中提取流域特征并进行中等流域的划分的详细过程,包括DEM的预处理、流水方向的确定、汇流累积量分析、河网的提取和子流域的划分,通过设定不同的汇流累积量的阈值,通过实验,富县地区的阈值设为20 000,得到中等流域的划分结果较为合理。  相似文献   

10.
CNT-Ⅰ(ChannelNetworkTool-Ⅰ)是基于复合信息(数字高程模型和栅格化主干河网)自动提取流域地表水文特征的专用软件包。它利用主干河网的位置信息指导D8法单元网格水流模式的提取,弥补了现有工具软件使用的数据源单一带来的问题和不足,在平原区和洼地的处理上有了很大改善。CNT-Ⅰ专门针对配置一般的计算机设计,支持千万格点以上的各种分辨率的栅格数据,并内嵌了分辨率为30″的中国大陆DEM和相应的Ⅰ、Ⅱ级主干河网,且能以30″的整数倍输出任意区域的河网、流域边界、准三维渲染图,以及栅格的流向、坡度、汇流路径等数据,并能根据用户的要求度身定制,具有很强的实用性。介绍了该软件的原理和功能,并与同类型的商业软件进行了比较。  相似文献   

11.
王光生  程琳  刘汉臣 《水文》2012,(1):55-59
分布式流域水文模型从DEM数据中提取河流,由于地图数据的比例尺、DEM网格的分辨率等原因,生成的河流可能与真实的河流不重合,流域内的径流可能汇集不到出口断面,必须对DEM数据进行处理。目前GIS软件中常用的处理方式是将河流经过的网格高程普遍降低,这种方法还不够理想。理想的DEM数据处理方法应满足以下原则:修改后生成的河流与真实的河流重合,流域内的径流能够汇入河道到达流域出口断面;DEM数据中网格的高程来自实测地图,最能代表网格的高程,只是由于对网格高程的插值滤掉了一些地形细节,因此高程修改的网格数目应达到最小。基于这个原则,提出DEM数据修改方法,平滑掉河流经过的凸起网格并且填充流域内的洼地,修改最少的网格高程,使由DEM数据生成的河流能够与真实的河流重合,达到模拟真实的径流流动路径的目的。  相似文献   

12.
An evaluation of morphometric parameters of two drainage networks derived from different sources was done to determine the influence of sub-basins to flooding on the main channel in the Havran River basin (Balıkesir-Turkey). Drainage networks for the sub-basins were derived from both topographic maps scaled 1:25.000 and a 10-m resolution digital elevation model (DEM) using geographic information systems (GIS). Blue lines, representing fluvial channels on the topographic maps were accepted as a drainage network, which does not depict all exterior links in the basin. The second drainage network was extracted from the DEM using minimum accumulation area threshold to include all exterior links. Morphometric parameters were applied to the two types of drainage networks at sub-basin levels. These parameters were used to assess the influence of the sub-basins on the main channel with respect to flooding. The results show that the drainage network of sub-basin 4—where a dam was constructed on its outlet to mitigate potential floods—has a lower influence morphometrically to produce probable floods on the main channel than that of sub-basins 1, 3, and 5. The construction of the dam will help reduce flooding on the main channel from sub-basin 4 but it will not prevent potential flooding from sub-basin 1, 3 and 5, which join the main channel downstream of sub-basin 4. Therefore, flood mitigation efforts should be considered in order to protect the settlement and agricultural lands on the floodplain downstream of the dam. In order to increase our understanding of flood hazards, and to determine appropriate mitigation solutions, drainage morphometry research should be included as an essential component to hydrologic studies.  相似文献   

13.
由于满足人类生产生活的需求,人类对河道的开发利用使得河道水系变得纵横交错,在平原区的很多河道高程不断的变化,甚至河流流向变成了与原来相反;因此采用常规方法在利用DEM提取数字水系时就会产生断开或者假水系的情况.针对以上情况,本文建立了采用强可视化算法等方法进行DEM的处理及河系提取,具体为:首先在流域实际水系的基础上,提炼出可反映实际水系主要特征和过程的概化水系,其次对断开或不舍理处的DEM采用本文建立的强可视化算法进行分析,并采用缓冲区算法和双线性插值算法进行修改,最后对得到的DEM进行河系提取.运用以上方法,本文以天津市为倒进行了应用,并与传统算法和高程增量遮加方法提取的DEM水系相比较,结果表明该方法更适合平原区数字水系的提取,并能得到与实际情况吻合的水系.  相似文献   

14.
为使河网中河段的直接定位和拓扑关系更加直观,提出直接对矢量河网进行继承式编码的思想,首先通过基于节点大小平衡二叉树的最小代价路径搜索算法完成对DEM数据的填洼处理,并将修正后的矢量河网与DEM进行叠置分析;然后基于Horton-Strahler分级和Shreve-Smart分级方法设计河网拓扑继承式编码算法,解决多河道汇集,河道分叉及汇流分叉等复杂河段难以编码的问题,并通过MapGIS二次开发实现对河网拓扑关系的自动编码与参数统计。通过对实验区的矢量河网进行编码测试,从而验证了算法的可行性以及编码的合理性。  相似文献   

15.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

16.
Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.  相似文献   

17.
A channel account approach is proposed to estimate longitudinal changes in runoff along large river systems. This new method provides a quantitative basis for describing the fluvial transport of suspended particulate material and dissolved substances. This method includes an evaluation of basic elements of water balance in separate sections of the river network and subsequent correction of channel accounting equations for the entire system using a maximum likelihood principle. To calculate water discharges of tributaries that have no hydrological information, structural analysis of river network is performed. This approach provides less error in comparison with traditional methods of estimating lateral inflow. The method is used to trace water discharge with increasing distance along the Lena river basin and to evaluate the contribution of geologically and lithologically uneven sub-basins in water discharge formation during a summer low water period.  相似文献   

18.
本文利用DEM数据,运用基岩河道侵蚀模型提取九龙江北溪流域的河流下凹程度、陡峭指数和蜿蜒度等地貌指数研究北溪流域地质构造活动特点。通过对流域地貌参数的分析发现九龙江北溪流域陡峭指数存在自NW向SE递减的规律,陡峭指数和蜿蜒度有很好的对应关系.排除气候因素和基岩性质等影响因子,认为河道陡峭指数的分布特征揭示了九龙江北溪流域的地壳抬升速率自西北向东南递减的分布特征,此认识与前人采用精密水准资料计算地壳垂直运动速率结果相一致。  相似文献   

19.
Digital elevation model (DEM) is one of the input data derived from different satellite sensors for hydrologic and hydraulic modelings. Two prime questions could be answered before using these DEMs. First, the acceptability of datasets for our use and second appropriate resolution of the dataset. Three widely used DEMs SRTM 30m, ASTER 30m and SRTM 90m are analyzed to evaluate their suitability to delineate river network and basin boundary area. The hydrology tool of spatial analyst extension inbuilt in ArcGIS 10.2 (which uses the D8 method for calculation of flow direction) has been used for the delineation of both river networks and basin boundary. The assessment of river network alignment and boundary delineation is carried out in the seven sub-catchments of Gandak river basin having different morphological characteristics. The automatically delineated boundary area for all the three DEMs reflects a significant difference when compared with the digitized basin area from the Ganga flood control commission (GFCC) map. The maximum boundary area delineation error is 39137.20 km2 forASTER 30m, and minimum delineation error of 13239.28 km2 for SRTM 90m. In the stream network, delineation accuracy is good for SRTM 90m while, except Gandak trunk, ASTER 30m DEM shows better delineation accuracy indicated by mean absolute error (MAE) and standard deviation (SD).  相似文献   

20.
施炜 《第四纪研究》2008,28(2):288-298
晋陕峡谷以南北走向穿越鄂尔多斯高原东缘,形成黄土高原上独特的峡谷地貌。本文基于数字高程模型,结合野外调查,提取了峡谷区的一系列相关流域地貌特征参数,详细分析了晋陕峡谷内流域特征。研究结果表明峡谷流域内水系和亚盆地表现出显著的东西分异特征,峡谷西侧水系和亚盆地的发育相对于其东侧较为成熟。其成因分析反映晚新生代以来,鄂尔多斯高原东缘可能存在多期强烈构造差异隆升事件,吕梁山相对于鄂尔多斯高原发生多期快速隆升,三门古湖消亡,导致峡谷内黄河强烈的不均匀下切,水系和亚盆地发育发生东西分异。晋陕峡谷的形成主要是晚新生代以来青藏高原发生多期向东快速构造挤出,导致鄂尔多斯高原东缘发生差异构造隆升的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号