首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wastes from offshore oil drilling activities are often discharged to the marine environment. Solid wastes that settle onto the bottom sediment may pose a health threat to marine organisms and eventually to man through the food chain. We need to understand their fate in order to predict the chemical concentration levels and life-times in the sediment and adjoining aquatic boundary layer. A laboratory simulation of selected in-bed processes that addresses contaminant leaching from the sediment is proposed. The process chosen for simulation in this study is the coupled desorption-diffusion of contaminants from the bed to the water column. A simple mathematical model of the process is also proposed. Preliminary results using organic chemicals for both the simulation and the model are presented. The results suggest that the experimental procedure represents a good way of estimating the diffusive leaching rates of hydrophobic compounds from contaminated sediments.  相似文献   

2.
The total number of synthetic organic chemicals introduced to the environment by humans has never been quantified, but it is not lower than thousands. A fraction of these chemicals have toxic effects to coastal organisms and presumably affect ecosystems structure and function. During the last decades, some of the processes affecting the transport, degradation, and fate of a limited number of chemicals have been studied, and the rising concern for environmental risk of organic chemical has lead to the regulation of a few of them by national and international organisms. However, the environmental inventory of organic pollutants is far from being quantified, and current methodologies used in most toxicological tests only allow to determine effects of individual chemicals to organisms. There are major limitations on appropriate methodologies to assess the effects of organic pollutants at population and ecosystem levels and the effects induced by complex mixtures of organic pollutants present in natural environments. The modification of the composition of the biosphere by a myriad of organic pollutants at ultra-trace levels is not yet regarded as another vector of environmental change which is irreversible due to the persistent character of many of these chemicals and due to its global coverage. Here, we claim that the modification of the atmosphere, water, sediments, and biota composition is a factor to be taken into account in coastal ecosystems, and that its pressure on the environment has been exponentially increasing during the last six decades of the anthropocene.  相似文献   

3.
增强的UV-B对湖泊生态系统的影响研究   总被引:2,自引:1,他引:2  
近20多年来,由于平流层臭氧层减薄引起紫外辐射(UV-B)增强而导致严重的生态学后果,已受到各国广泛的重视,并对此进行了深入研究,尤其集中在海洋浮游植物初级生产者及淡水食物网上。综述了国外在UV-B对湖泊生态系统影响的研究现状与动态,增强的UV-B在湖泊中呈指数衰减,不同湖泊衰减系数变化很大;光衰减系数与溶解性有机碳(DOC)、有色可溶性有机物(CDOM)一般呈显著性正相关;增强的UV-B对浮游植物、浮游细菌、浮游动物及鱼类均有不同程度的影响;由于不同生物具有不同适应UV-B伤害的机制,湖泊生态系统的结构和功能也势必会发生变化。最后提出了未来在太湖等富营养化湖泊UV-B的研究设想。  相似文献   

4.
Over the last 50 a there has been mounting unease about the risk of synthetic chemicals to human health. Publication of Rachel Carson’s Silent Spring in 1962 catalyzed public concern about chemicals. There is now a vast range of synthetic substances in the environment and their potential cocktail as well as the effects of chronic exposure is of concern. Concerns about pollution are not restricted to toxic chemicals, with radioactivity being an issue that continues to be emotive, and exposure to substances such as particulates has been seen to cause health problems. Improved understanding of chemical risks to the environment and human health suggest that a precautionary approach is adopted, with new approaches demonstrating how nature uses thousands of sustainable, non-toxic processes, which can be copied by industry. Policy has evolved from the prevention of local pollution to the holistic management of environmental quality. Regulation is now increasingly underpinned by risk assessment and responsibility for understanding and managing chemical risk is being transferred progressively to manufacturers and users. There is now an increased emphasis on individual responsibilities which requires a debate about the risks and benefits of chemicals in which all members of society can participate.  相似文献   

5.
Urban geochemistry is a unique discipline that is distinguished from general geochemistry by the complex infrastructure and intense human activities associated with concentrated population centers. As stated by Thornton (1991) “This subject is concerned with the complex interactions and relationships between chemical elements and their compounds in the urban environment, the influence of past and present human and industrial activities on these, and the impacts or effects of geochemical parameters in urban areas on plant, animal and human health.” Urban areas present special challenges to geochemists attempting to understand geochemical states and fluxes. On the 5–6 of August, 2014, the first meeting of the reorganized Urban Geochemistry Working Group of the International Association of GeoChemistry (IAGC) was held in Columbus, Ohio, United States. Two goals of the meeting were to develop the overall scope, and a general definition of urban geochemistry. Five grand themes were developed: 1) recognizing the urban geochemical signature; 2) recognizing the legacy of altered hydrologic and geochemical cycles in urban environments; 3) measuring the urban geochemical signature; 4) understanding the urban influence on geochemical cycles from the continuous development and erosion of physical infrastructure and episodic perturbations; and 5) relating urban geochemistry to human and environmental health and policy. After synthesizing the discussion of these themes we offer the following perspective on the science of urban geochemistry building on the work of Thornton (1991): Urban geochemistry as a scientific discipline provides valuable information on the chemical composition of environments that support large populations and are critical to human health and well-being. Research into urban geochemistry seeks to 1) elucidate and quantify the sources, transport, transformations, and fate of chemicals in the urban environment, 2) recognize the spatial and temporal (including legacies) variability in these processes, and 3) integrate urban studies into global perspectives on climate change, biogeochemical cycles, and human and ecosystem health. We hope that this discussion will encourage other geochemists to engage in challenges unique to urban systems, as well as provide a framework for the future of urban geochemistry research.  相似文献   

6.
A complex of analytical methods (atomic absorption spectroscopy AAS, synchrotron radiation X-ray fluorescence SR-XRF, and instrumental neutron activation analysis INAA) were used for analyses of 40 trace elements. In compliance with the conventional biogeochemical methods, enrichment factors EF were calculated for plankton relative to the average concentrations of elements in continental clay (shale) preliminarily normalized to Sc. In order to understand the concentration specifics of trace elements in living organisms inhabiting aquatic ecosystems of variable salt composition and geochemical characteristics, chemical speciation of elements was calculated for the brines of salt lakes by the WATEQ4F and Selektor-S computer programs. The enrichment of plankton in Hg in Lake Bol’shoe Yarovoe is caused not only by the chemistry of the mineralized brine (bittern), as follows from the Hg speciation in it, but also by anthropogenic contamination (Hg-bearing wastes from the Altaikhimprom chemical plants in the town of Yarovoe).  相似文献   

7.
The intertidal marsh community comprises both benthic and natant faunal components. The benthic components are primarily small invertebrates residing within or on the soft sediments of the vegetated marsh surface. The natant components include larger, fully aquatic organisms (e.g., fish and shrimp) that inhabit the shallow waters adjacent to the marsh at low tide but interact with the benthic components of the community when the marsh is tidally inundated. In this structurally complex and often expansive intertidal environment, patterns of invertebrate distribution and abundance are not apparent to the casual observer. Benthic core samples taken along an intertidal marsh transect on Sapelo Island, Georgia, USA show that many of the inconspicuous infaunal organisms, which numerically dominate the macrofaunal elements of this soft-substrate community, exhibit zonal distribution patterns along a tidal gradient. Patterns of invertebrate distribution in the intertidal salt marsh are often attributed to the activities of aquatic predators. The results of most predator exclusion experiments have left little doubt that predation/disturbance can be an important determinant of invertebrate abundance in soft-substrate communities; but a growing number of experiments, in both freshwater and marine environments, have produced results that apparently conflict with this, general tenet. Dismissed by some as “failed” experiments, these investigations have exposed our lack of knowledge about the effects of specific predators and the importance of complex interactions which involve more than two trophic levels. Although the importance of predation has been stressed in many recent experimental investigations, there are many other factors that, alone or in combination, may also influence the structure of salt marsh invertebrate assemblages. Included among these are: (1) various density-dependent processes (e.g., adult-larval interactions, agonistic behavior, interspecific competition), (2) selective larval settlement or mortality, (3) the influence of physical factors expressed through habitat preferences, and (4) unpredictable or cyclic physical disturbances. Many questions concerning the spatial and temporal patterns of invertebrate distribution and abundance in the salt marsh are unresolved and remain as challenges to our understanding of soft-substrate community dynamics.  相似文献   

8.
河流潜流带是地表-地下水连通和交换的主要区域, 地表-地下水过程不仅促进了生源物质的迁移转化过程, 还能涵养水源、稳定区域生境, 为水生生物提供良好的栖息环境。因此掌握水生生物活动与地表-地下水交换关系是深刻认知和科学保护水生生态系统的关键。本文综述了前人有关水生生物活动反馈于地表-地下水交换过程的研究, 例如, 底栖微生物形成的生物膜可以吸收或滞留生源物质, 改变迁移的时间和路径; 水生动物的行为可能通过改变河床渗透系数和孔隙率等物理参数影响各类物质的地表-地下水交换通量; 水生植物对水流的阻滞和扰动也会作用于地表-地下水交换过程。基于目前研究, 本文提出了该领域的3个未来研究方向: 潜流交换和水生生物互馈理论, 水生生态功能与地表-地下水相互作用关系, 河流潜流带生物-地球-化学耦合过程。  相似文献   

9.
Nutrient over-enrichment and cultural eutrophication are significant problems in the Danish marine environment. Symptoms of eutrophication include periods of hypoxia and anoxia in bottom waters, death of benthic-dwelling organisms during anoxia, long-term reductions in the depth distribution of macrophyte communities, changes in the species composition of macrophyte communities, and increases in reports of harmful algal blooms. In 1987 the Action Plan on the Aquatic Environment was adopted to combat nutrient pollution of the aquatic environment with the overall goal of reducing nitrogen loads by 50% and point source phosphorus loads by 80%. The Danish Aquatic Nation-wide Monitoring Program was begun in 1988 in order to describe the status of point sources (industry, sewage treatment plants, stormwater outfalls, scattered dwellings, and fish farms), ground water, springs, agricultural watersheds, streams, lakes, atmospheric deposition, and the marine environment. Another important aspect of the program was to document the effects on the aquatic environment of the measures and investments taken for nutrient reduction as outlined in the Action Plan. The monitoring program should determine if reductions in nutrients are achieved by the measures taken and should help decision makers choose appropriate additional measures to fulfill the objectives. Coordination with international programs and commissions is an important component of the monitoring program to meet internationally agreed upon reductions in nutrient inputs. The future and direction of the Danish National Aquatic Monitoring and Assessment Program will be to a large extent shaped by both the Water Framework Directive and Habitat Directive adopted by the European Union.  相似文献   

10.
Polyaromatic Hydrocarbons (PAHs) have been determined in soil samples for many years. PAHs can arise in the environment from natural sources, oil and petroleum products and combustion processes. Although oil spills influence PAHS concentrations in local areas, the major sources of PAHS are anthropogenic and derived from land based combustion sources. PAHs are globally distributed and the highest concentrations generally occur close to urban centres. Monitoring is essential during the assessment and remediation. It makes further demands on the analytical methods used, since the transformation products are often present in lower concentrations than the parent PAHs and they may be difficult to identify in the complex mixtures found in these samples. It is therefore essential to use powerful analytical tools to fractionate, separate and identify the analyses in the samples. In this paper we review those aspects relating to the analysis and monitoring of PAHs in soils. The aim is to provide an overview of current knowledge, so as to assess the need for future monitoring of PAHs and the present capability for their analysis. Further monitoring of PAHs is justified because of their ubiquity in the environment, their persistence and bioaccumulative properties and their potential for toxicity both to aquatic organisms and human consumers.  相似文献   

11.
The biotic ligand model (BLM) is a numerical approach that couples chemical speciation calculations with toxicological information to predict the toxicity of aquatic metals. This approach was proposed as an alternative to expensive toxicological testing, and the U.S. Environmental Protection Agency incorporated the BLM into the 2007 revised aquatic life ambient freshwater quality criteria for Cu. Research BLMs for Ag, Ni, Pb, and Zn are also available, and many other BLMs are under development. Current BLMs are limited to ‘one metal, one organism’ considerations. Although the BLM generally is an improvement over previous approaches to determining water quality criteria, there are several challenges in implementing the BLM, particularly at mined and mineralized sites. These challenges include: (1) historically incomplete datasets for BLM input parameters, especially dissolved organic carbon (DOC), (2) several concerns about DOC, such as DOC fractionation in Fe- and Al-rich systems and differences in DOC quality that result in variations in metal-binding affinities, (3) water-quality parameters and resulting metal-toxicity predictions that are temporally and spatially dependent, (4) additional influences on metal bioavailability, such as multiple metal toxicity, dietary metal toxicity, and competition among organisms or metals, (5) potential importance of metal interactions with solid or gas phases and/or kinetically controlled reactions, and (6) tolerance to metal toxicity observed for aquatic organisms living in areas with elevated metal concentrations.  相似文献   

12.
The fallout from environmental determinism of the early 20th century steered geography away from biological and evolutionary thought. Yet it also set in motion the diversification of how geographers conceive environment, how these environments shape and are shaped by humans, and how scaling negotiates the interpretation of this causality. I illustrate how this plurality of scalar perspectives and practices in geography is embedded in the organism–environment interaction recently articulated in the life sciences. I describe the new fields of epigenetics and niche construction to communicate how ideas about scale from human and physical geography come together in the life sciences. I argue that the two subdisciplinary modes or ‘moments’ of scalar thinking in geography are compatible, even necessary, through their embodiment in organisms. To procure predictability, organisms practice an epistemological scaling to rework the mental and material boundaries and scales in their environment. Yet organisms are also embedded in ontological flux. Boundaries and scales do not remain static because of the agency of other organisms to shape their own predictability. I formally define biological scaling as arising from the interplay of epistemological and ontological moments of scale. This third moment of scale creates local assemblages or topologies with a propensity for persistence. These ‘lumpy’ material outcomes of the new organism–environment interaction have analogues in posthuman and new materialist geographies. They also give formerly discredited Lamarckian modes of inheritance a renewed, but revised acceptance. This article argues for a biological view of scale and causality in geography.  相似文献   

13.
This study reported the first comprehensive research on identification of metal concentrations (Fe, Mg, Mn, Pb, Cd, Cr) in order to provide baseline data for future studies, identify possible sources, determine degree of pollution, and identify potential ecological risks of metals in surface sediments from Iran’s Choghakhor Wetland. The order of metal concentration was as follows: Fe > Mg > Mn > Pb > Cd > Cr, with mean concentrations of 6140.35, 1647.32, 289.03, 1.10, and 0.45 µg/g of dry weight, respectively. These results reveal that Choghakhor Wetland is not heavily polluted compared to other regions. The results of enrichment factor (EF) and geoaccumulation index (I geo) showed that Fe, Pb, Mg, Cr, and Mn presented low levels of contamination and probably originated from natural sources. On the other hand, the results of EF and I geo indices suggested that Cd concentrations in sediments of Choghakhor Wetland originated from anthropogenic sources. Based on the results of three sets of sediment quality guidelines, only Cd concentration in sediments of Choghakhor Wetland is a threat for aquatic organisms of Choghakhor Wetland. The results of multivariate analysis such as principal component analysis and cluster analysis showed that Fe–Mn, Cr–Mg, and Pb groups originated from natural sources, while Cd concentrations in sediments of Choghakhor Wetland originated from both natural and anthropogenic sources (mainly chemical fertilizers). To our knowledge, this is the first study about metal concentrations in sediments of Choghakhor Wetland, and because of low levels of these metals, these concentrations can be considered background levels for future investigation.  相似文献   

14.
The archaeological sites in the open-cast mine of Schöningen, Germany, represent outstanding archives for understanding Middle Pleistocene interglacial–glacial transitions and human adaption. Aquatic microfossil and pollen assemblages from the ‘Reinsdorf sequence’, likely correlated to Marine Isotope Stage 9, document environmental changes from a thermal maximum to succeeding glacial conditions recorded in two sequences of excavation sites 12 II and 13 II. Multi-proxy analyses enable detailed reconstruction of lake-shore and landscape developments despite variable microfossil preservation in changing carbonate- and organic-rich deposits. Rich aquatic vegetation with abundant charophytes suggests repeated phases with water depths of 0.5–2 m at site 13 II, while even greater temporary depths are deduced for 12 II DB. Mesorheophilic and mesotitanophilic ostracod species indicate stream inflows with medium–low calcium contents of >18 mg Ca L–1 originating from nearby springs. Diatoms point to meso-eutrophic conditions and an alkaline pH of the lake water. Interglacial conditions with thermophile forests but no aquatic microfossils preserved, suggesting a dry or only temporarily flooded site, mark the beginning of the sequence. Continuous presence of aquatic organisms and overall dominance of small tychoplanktonic diatoms during a subsequent cool steppe phase provide evidence for increased water depths and unstable habitats characterized by erosion and probably prolonged periods of lake ice cover. During the succeeding boreal forest-steppe phase, surface runoff into the productive, shallow lake decreased due to a more extensive vegetation cover. Concurrently, intensified groundwater input in contact with the nearby salt wall caused elevated salinities. Following a lake level drop, stream inflows and lake levels increased again towards the end of the Reinsdorf sequence and promoted development of a diverse fauna and flora at the lake shore; thereby maintaining an attractive living and hunting environment for early humans during a phase of generally cooler temperatures and landscape instability at the transition into a glacial period.  相似文献   

15.
笔者利用宏量组分、微量组分、痕量金属组分的化学总量、环境因子等测试资料,深入讨论了胶州湾不同介质痕量金属的生物地球化学总体特征及各介质痕量金属组分在平面上的分布,揭示了胶州湾水生系统对陆源物质输入的响应。整个水生系统从垂向上看,表层沉积物是所有痕量金属组分的富集带;该系统中的生物相对于其所处水环境具有显著的富集痕量金属组分作用,生物体中Cu、Hg和As生物浓缩系数依次为1385、93和725。从横向上看,痕量金属组分化学场的研究揭示了痕量金属组分总量在底层水和沉积物介质中的分布主要受控于河口,即高值区分布于胶州湾的各个主要河口区,特别是沉积物中金属组分浓度的高值区主要集中分布于胶州湾的东部。而孔隙水中Cu的高值主要分布于水交替较弱的海域,如红岛前缘。但生物体中的痕量金属组分化学场空间分布规律与上述各介质的化学场均不吻合,亦即生物体中痕量金属组分的浓度与其所处环境中的同名金属组分浓度无关。生物对痕量金属组分的富集并不简单地取决于它所处环境介质中同名金属组分的总量,而存在形态上的选择性。并且通过回归分析揭示了底层水对生物体中Cu、Hg和As的富集贡献较大。  相似文献   

16.
二次光化学氧化剂与气溶胶间的非均相过程   总被引:5,自引:0,他引:5  
光氧化剂和气溶胶颗粒物在大气环境中普遍存在,影响着大气氧化能力和气候,威胁着人类健康。而大气光氧化剂与气溶胶颗粒物间复杂的耦合相互作用能产生二次污染物,使得大气污染过程更为复杂,成为国际大气化学研究的前沿和热点课题。挥发性有机物(VOCs)和氮氧化物(NOx)等一次污染物在大气中经过复杂的光化学反应可形成以臭氧(O3)为主的二次光化学氧化剂,并以大气气溶胶为平台发生非均相反应,使大气污染更严重,引起人们普遍关注。二次光化学氧化剂和气溶胶颗粒物之间非均相过程的实验室研究是深入认识这两者间耦合相互作用的关键,实验室研究可以为分析和深入认识外场观测结果提供基础,还能为数值模式模拟研究提供基本参数。概括了大气二次光化学氧化剂的形成过程,总结了国际上近年来二次光化学氧化剂与大气气溶胶颗粒物非均相反应的实验室研究进展以及研究方法,最后提出了现有的一些主要科学问题,对未来这一重要领域的研究前景进行了展望。  相似文献   

17.
The heavy metal burden of Akkulam–Veli Lake, a shallow lake in southern part of India, is investigated through the analysis of surface sediments. The average concentrations of heavy metals such as lead, chromium, nickel, copper, zinc, cobalt, iron, and manganese were determined at selected stations. The degree of contamination of selected stations was evaluated using indices such as enrichment factor, contamination factor, and pollution load index and compared with sediment quality guidelines. Statistical analysis is carried out by correlation analysis and hierarchical clustering analysis to identify relatively homogeneous groups of cases. The results of this study indicate severe contamination at most of the stations selected. The degree of contamination of the lake could be rated as ‘moderate’ to ‘strong’. The average pollution load index shows progressive deterioration of sediment quality indicating ‘risk’ on the aquatic environment and ecosystems of the lake.  相似文献   

18.
鸡西盆地早白垩世烃源岩可溶有机质地球化学特征   总被引:3,自引:2,他引:1  
应用气相色谱、色谱-质谱等分析方法,对鸡西盆地早白垩世烃源岩生物标志化合物特征进行了讨论,揭示了生物标志化合物对该区有机质生物来源、成熟度及沉积环境的指示意义。有机质热演化已进入成熟阶段,且煤岩热演化程度略高于泥岩。泥岩有机质母质来源主要为水生生物,同时有高等生物的输入;煤岩以陆生高等植物输入为主,同时也有水生生物输入。煤岩沉积环境为弱氧化环境,经历过较强的降解作用过程;泥岩沉积环境为还原环境,沉积介质咸化程度较高,更有利于有机质的保存和转化。  相似文献   

19.
We identify and discuss ways to use existing information on the thermal ecology of freshwater fishes to assess the potential impact of climate change on wild populations of these organisms. Two primary questions are identified: (i) how do aquatic habitats change in response to atmospheric climate change? (ii) how do fish respond to habitat change at both the individual and population levels? In lakes, climate warming will lead to higher surface water temperatures, longer ice-free periods, and longer periods of thermal stratification. In rivers, climate warming will lead to higher groundwater temperatures with corresponding increases in both summer and winter temperatures, from headwaters to mouth. We describe several methods for predicting the biological effects of these changes in habitat. We examine the use of bioenergetic models to predict the impact of climate change on the growth of individual fish. We examine the use of thermal habitat models to assess the impact of climate change on population abundance. We examine the use of life cycle models to assess the impact of climate change on the zoogeographic distribution of species. Finally, we identify new research required to further develop these methods.  相似文献   

20.
水生生态系统中汞-硒相互作用研究进展   总被引:1,自引:1,他引:0       下载免费PDF全文
甲基汞是汞存在于水生生态系统(水体、沉积物和水生生物)毒性最强的形态,并通过食物链的传递对生物体产生危害,因此有效控制汞的甲基化过程是汞环境化学和毒理学研究的重要课题。生物体内硒对汞的甲基化过程有明显的抑制作用,明确汞和硒在水生生态系统的形态特征以及汞-硒相互作用机制,有助于解决汞污染问题。汞在生物体内的毒性与生物体内硒含量紧密相关,汞与硒相之间的相互作用主要表现在生成不溶的化合物促使汞去甲基化或受生物体内硒相关酶抑制被直接排除于生物体外,从而抑制了汞的毒害作用。本文评述了汞、硒在水生生态系统中的形态特征,指出在水体中合理添加硒化合物可抑制无机汞在生物体内甲基化过程,深入研究生物体内汞和硒相互作用机制及其生理效应是该领域未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号