首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文通过综述近年西特提斯带主要缝合带的研究进展及所代表洋盆的发育特征,提出了古特提斯缝合带可能的位置和俯冲消亡方式。结合区域资料探讨了西特提斯带古生代末—中生代洋陆构造格局,认为东、西古特提斯洋完全可以类比,自晚古生代末西特提斯带主要受古特提斯大洋双向俯冲制约,在俯冲带后缘以二叠纪裂谷带为基础逐渐发展成中生代多岛弧盆系的新特提斯构造格局,西特提斯造山系主要表现为弧后洋盆消减造山作用。  相似文献   

2.
中国中央造山系是由亲劳亚的北方陆块群、亲冈瓦纳的南方陆块群及其间大量过渡性微陆块历经复杂拼合而成的复合型造山带,是中国大陆完成主体拼合的构造结合带。中央造山系自西而东包括昆仑造山带、祁连造山带和秦岭- 大别造山带,保存了古生代—早中生代时期华北、华南、柴达木、塔里木、羌塘等众多大小陆块造山过程的丰富信息,是研究东特提斯构造域原、古特提斯洋构造演化的重要窗口。本文综述了中央造山系地质、地球化学和高精度年代学等多学科研究成果,得到以下主要认识:① 550 Ma之前,众多大小陆块孤立散布于原特提斯洋;② 541~485 Ma,原特提斯洋各分支开始俯冲;③ 485~444 Ma,原特提斯洋持续俯冲,导致秦岭二郎坪弧后盆地、昆仑祁漫塔格弧后盆地打开;④ 444~420 Ma,原特提斯北祁连洋、南祁连洋和商丹洋闭合,昆仑祁漫塔格弧后盆地关闭;⑤ 420~300 Ma,昆仑地区古特提斯洋继承原特提斯洋,古特提斯勉略洋逐步扩张;⑥ 300~250 Ma,昆仑洋自阿其克库勒湖- 昆中缝合带向木孜塔格- 布青山- 阿尼玛卿缝合带发生俯冲后撤;⑦ 250~200 Ma,原- 古特提斯昆仑洋、古特提斯勉略洋关闭;⑧ 200 Ma以来,中央造山系转入陆内造山阶段。  相似文献   

3.
全球早古生代造山带(Ⅳ):板块重建与Carolina超大陆   总被引:2,自引:0,他引:2  
古元古代与显生宙的板块构造特征和旋回演化过程具有明显区别,反映出地质记录为两种不同的板块构造体制。早古生代为这两个时期的过渡阶段,其构造过程研究与板块重建是地球板块构造旋回机制和周期分析的关键。本文采用综合集成的方法,在总结对比罗迪尼亚超大陆裂解以来全球早古生代主要碰撞造山带的地质事件基础上,分析早古生代碰撞造山带的演化特征,总结出与冈瓦纳大陆拼合、劳俄大陆拼合、古中华陆块群增生相关的7期碰撞-增生造山事件群:Brasiliano、东非、Kuunga、东亚与原特提斯洋和古亚洲洋演化相关的的加里东期造山事件、经典加里东造山、中欧加里东造山、Appalachian造山。再在这7期造山事件群基础上,结合古地磁、古生物、古地理等资料,重建了新元古代-早古生代末全球板块的拼合过程:罗迪尼亚超大陆从新元古代的~950 Ma开始经历了3个阶段裂解,此时存在泛大洋、莫桑比克洋和古太平洋3个大洋,随后615~560 Ma Iapetus洋打开,~560 Ma波罗的陆块与西冈瓦纳裂离导致狭窄的Ran洋打开;~540 Ma南半球Brasiliano、东非和Kuunga造山运动导致冈瓦纳大陆分阶段最终完成拼贴;~500 Ma冈瓦纳大陆北缘西段的微陆块群局部向北裂离,导致Rheic洋和Tornquist洋打开,并于~420 Ma随经典加里东造山带和中欧缝合带形成导致Iapetus洋闭合,此时斯瓦尔巴特和英国可能位于格陵兰地盾东南缘,同时冈瓦纳大陆北缘东段华北为代表的微陆块基本拼合在冈瓦纳大陆北缘;此外,虽然425 Ma西伯利亚板块有远离聚合了的劳俄大陆的趋势,但晚奥陶世-早泥盆世南美和北美板块靠近,北美板块与环冈瓦纳北缘西段的地体拼合碰撞。在大约400 Ma时,南、北美洲的混合生物群和古地理重建显示两者非常接近,因此,推测此时存在一个初始的逐步稳定的超大陆的可能,本文称为Carolina超大陆,因为Carolina造山带是这个超大陆最终拼合的地带。并据此判断超大陆旋回为7亿年。  相似文献   

4.
位于羌塘中部龙木错-双湖缝合带中的果干加年山早古生代堆晶岩,主要由辉石橄榄岩、堆晶辉石岩、堆晶辉长岩、斜长岩等岩石类型组成.对堆晶辉长岩中锆石的矿物学与年代学研究表明.堆晶辉长岩中发育3种内部结构特征的锆石晶体,锆石Th、U含量和Th/U值揭示了同一岩浆系统中结晶形成的岩浆锆石.获得堆晶辉长岩SHRIMP锆石U-Pb谐和年龄461Ma±7Ma(MSWD=1.3)、431.7Ma±6.9Ma(MSWD=0.54),分别代表了青藏高原中部地区原一古特提斯洋扩张过程中早期(中奥陶世Darriwilian阶晚期)、晚期(早志留世Telychian阶中期)的岩浆作用事件.果干加年山早古生代堆晶岩具有MORB.的特征,代表了龙木错-双湖缝合带中残存的早古生代蛇绿岩,也是青藏高原中南部地区目前为止认知时代最早的原一古特提斯洋壳的残迹.羌塘中部早古生代蛇绿岩的确定及其年代学的约束,使得龙木错-双湖特提斯洋盆的形成时代至少可以追溯到中奥陶世-早志留世,并推论龙木错-双湖缝合带、南羌塘古生代增生楔及其中生代盆地和班公湖-怒江缝合带共同构成了青藏高原特提斯大洋最终消亡的巨型缝合带,晚古生代原-古特提斯洋向南的俯冲消减导致了冈底斯带石炭纪-二叠纪岛孤型火山岩、二叠纪花岗闪长岩和大洋俯冲型榴辉岩的形成.  相似文献   

5.
位于羌塘中部龙木错-双湖缝合带中的果干加年山早古生代堆晶岩,主要由辉石橄榄岩、堆晶辉石岩、堆晶辉长岩和斜长岩等岩石类型组成。通过对堆晶辉长岩锆石的矿物学与年代学研究,堆晶辉长岩中发育3种内部结构特征的锆石晶体,锆石Th、U含量和Th/U值揭示同一岩浆系统中结晶形成的岩浆锆石。获得堆晶辉长岩SHRIMP锆石U-Pb谐和年龄461±7Ma(MSWD=1.3)、431.7±6.9Ma(MSWD=0.54),分别代表了青藏高原中部地区原-古特提斯洋扩张过程中早期(中奥陶世Darriwilian阶晚期)、晚期(早志留世Telychian阶中期)的岩浆作用事件。果干加年山早古生代堆晶岩具有MORB特征,代表了龙木错-双湖缝合带中残存的早古生代蛇绿岩,也是青藏高原中南部地区目前为止认知时代最早的原-古特提斯洋壳残迹。羌塘中部早古生代蛇绿岩的确定及其年代学约束,使得龙木错-双湖特提斯洋盆的形成时代至少可以追索到中奥陶世-早志留世,并推论龙木错-双湖缝合带、南羌塘古生代增生楔及其中生代盆地和班公湖-怒江缝合带,共同构成了青藏高原特提斯大洋最终消亡的巨型缝合带,晚古生代原-古特提斯洋向南的俯冲消减导致了冈底斯带石炭-二叠纪岛弧型火山岩、二叠纪花岗闪长岩和大洋俯冲型榴辉岩的形成。  相似文献   

6.
特提斯地球动力学   总被引:19,自引:9,他引:10  
吴福元  万博  赵亮  肖文交  朱日祥 《岩石学报》2020,36(6):1627-1674
特提斯是地球显生宙期间位于北方劳亚大陆和南方冈瓦纳大陆之间的巨型海洋,它在新生代期间的闭合形成现今东西向展布的欧洲阿尔卑斯山、土耳其-伊朗高原、喜马拉雅山和青藏高原。根据演化历史,特提斯可划分为原特提斯、古特提斯和新特提斯三个阶段,分别代表早古生代、晚古生代和中生代期间的大洋。大约在500Ma左右,冈瓦纳大陆北缘发生张裂,裂解的块体向北漂移,并使其与塔里木-华北之间的原特提斯洋在420~440Ma左右关闭,产生原特提斯造山作用,与北美-西欧地区Avalonia地体与劳伦大陆之间的阿巴拉契亚-加里东造山作用基本相当。原特提斯造山带之南、早古生代即已存在的龙木错-双湖-昌宁-孟连古特提斯洋在380Ma向北俯冲,使早期闭合的康西瓦-阿尼玛卿洋重新张开,并由于弧后扩张形成金沙江-哀牢山洋。330~360Ma左右,特提斯西部大洋由于南侧非洲板块和北侧欧洲板块的碰撞而关闭,形成欧洲华力西造山带。而特提斯东段的上述三条古特提斯洋在250Ma左右基本同时关闭,华北、华南、印支等块体聚合形成华夏大陆。该大陆与冈瓦纳大陆、劳亚大陆和华力西造山带一起围限形成封闭的古特提斯残留洋,并一直到晚三叠世-早侏罗世海水才全部退出。此后,南侧冈瓦纳大陆在三叠纪晚期重新裂解形成新特提斯洋,该洋盆在新生代初期由于印度和亚洲的碰撞而关闭。原、古、新特提斯三次造山作用基本代表了中国大陆显生宙期间的地质演化历史,并在此过程中形成了特色的特提斯域金属成矿作用。广布的被动陆缘和赤道附近的古地理位置,以及后期的造山作用同时也成就了特提斯域内巨量油气资源的形成;塑就的地貌与海陆分布格局,也对当时的古气候与古环境产生了重要影响。特别是,与原、古、新特提斯洋消亡相关的三次弧岩浆活动与显生宙地球历史上三次温室地球向冰室地球的转变,在时间上高度吻合。上述演化历史同时还表明,特提斯地质演化以南侧冈瓦纳大陆不断裂解、块体向北漂移并与劳亚大陆持续聚合为特征,其动力机制主要来自俯冲板片的拖拽力,而地幔柱是否对大陆的裂解与漂移有所贡献,则有待进一步评价。  相似文献   

7.
中央造山带早古生代地体构架与高压/超高压变质带的形成   总被引:57,自引:2,他引:57  
许志琴  杨经绥  李海兵  姚建新 《地质学报》2006,80(12):1793-1806
位于北中国板块群与南中国板块群之间的中央造山带是中国大陆一条十分醒目而又极其重要的巨型(长达5000km)构造带。中央造山带是经历了大致600Ma的活动历史,和泥盆纪、三叠纪的两次主要碰撞造山以及白垩纪以来的陆内造山过程而构筑成的典型的“复合造山带”。特别是巨型中央超高压变质带及其两期超高压变质作用的发现,揭示了中央造山带的形成还经历了板块会聚边界洋壳/陆壳深俯冲的两次壮观地质事件。位于中央造山带北部的“北中央早古生代造山带”具有“多地体、多岛弧”的地体构架和“多俯冲和多碰撞造山”的动力学作用。研究认为北中央早古生代多地体/岛弧群是冈瓦纳超大陆西侧(或西北侧)陆块/岛弧群的组成部分,其主要的证据是:1北中央寒武系—志留系的过渡性动物群性质反映早古生代古生物区系与始特提斯洋盆海水相通的古地理环境;2北中央诸多蛇绿岩带形成时代>500~540Ma(新元古代-奥陶纪)可作为始特提斯洋盆扩张时限的印证;3多岛弧带为北中央早古生代地体的陆缘增生带,形成于540~450Ma,岛弧带形成自南(外)而北(里)渐新的趋势表明与始特提斯洋盆相连接的弧前小洋盆逐级俯冲的特征;4北中央早古生代多地体/岛弧群的“弧/陆碰撞”及早古生代造山带的形成是中晚泥盆世(420Ma)冈瓦纳超大陆边部古特提斯洋盆初始扩张的产物。研究表明在500~440Ma形成的柴北缘-南阿尔金超高压变质带与始特提斯弧前小洋盆的俯冲继而地体陆壳的深俯冲有关。  相似文献   

8.
柴达木盆地东缘早古生代弯山构造   总被引:1,自引:1,他引:0  
位于中国中央造山带内部的柴达木盆地周缘出露有代表原特提斯洋盆的蛇绿岩带、指示大洋俯冲与大陆深俯冲的高压-超高压变质带以及不同性质的早古生代花岗岩带。根据这些构造单元的空间展布形态及其综合地质年龄分布,表现为一条环绕柴达木盆地东缘的连续而弯曲的加里东期造山带。造山带内发育一系列右行走滑断裂和韧性剪切带,与古地磁资料所揭示的柴达木地块在早古生代的相对逆时针旋转息息相关。本文提出,柴达木盆地周缘造山带为一弯山构造。它是在原特提斯洋向南斜向俯冲闭合过程中,诱发的大型走滑断裂和柴达木地块逆时针旋转牵引造山带发生弯曲所致。  相似文献   

9.
祁连山蛇绿岩带和原特提斯洋演化   总被引:2,自引:1,他引:1  
位于阿拉善地块和柴达木地块之间的祁连造山带记录原特提斯洋扩张、俯冲、闭合、大陆边缘增生和碰撞造山的完整过程。从南向北,祁连造山带发育有三条平行排列、不同类型的蛇绿岩带:(1)南部南祁连洋底高原-洋中脊-弧后蛇绿岩混杂带;(2)中部托勒山洋中脊型蛇绿岩带;(3)北部走廊南山SSZ型蛇绿岩带。南部南祁连蛇绿混杂岩带以拉脊山-永靖蛇绿岩为代表,为典型的洋底高原型蛇绿岩,是大洋板内地幔柱活动的产物,形成年龄为525~500Ma;中部托勒山蛇绿岩带沿熬油沟-玉石沟-冰沟-永登一线分布,为大洋中脊型蛇绿岩,蛇绿岩形成年龄为550~495Ma;北部蛇绿岩带包括弧前和弧后两种类型,弧前蛇绿岩以大岔大阪蛇绿岩为代表,形成时代为517~487Ma,反映初始俯冲/弧前扩张到弧后盆地的过程;弧后蛇绿岩以九个泉-老虎山蛇绿岩为代表,为典型的SSZ型蛇绿岩,是弧后扩张的产物,形成时代为奥陶纪(490~445Ma)。三个蛇绿岩带分别代表了新元古代-早古生代祁连洋演化历史不同环境的产物,对了解秦祁昆构造带原特提斯洋的构造演化过程有重要意义。蛇绿岩及弧火山岩的时空分布特征限定了原特提斯洋的俯冲极性为向北消减俯冲。  相似文献   

10.
宗务隆构造带夹于中央造山带原特提斯构造域内,发育与古特提斯洋演化相关的天峻南山蛇绿岩,是研究原特提斯向古特提斯转换的关键地质体。该蛇绿岩由超基性岩(蛇纹岩)、辉绿岩、玄武岩和硅质岩组成。蛇纹岩中尖晶石具高Mg~#(58.6~64.5)和低Cr~#(38.9~43.9)的特征。玄武岩和辉绿岩属于拉斑玄武岩系列,轻稀土元素左倾和重稀土元素平坦,富集Th而亏损Ti,总体上与弧后扩张脊熔岩具有一致的球粒陨石标准化稀土元素以及N-MORB标准化微量元素配分模式,同时这些基性岩具较高的Th/Yb值和ε_(Nd)(t)值(+7.5~+9.6),显示岩浆来自受洋壳沉积物混染的亏损地幔源区。这些特征均与弧后盆地蛇绿岩类似。最新LA-ICP-MS锆石U-Pb测年结果显示辉绿岩形成于509±4Ma。结合野外接触关系表明,部分天峻南山蛇绿岩形成于寒武纪,早于不整合其上的石炭纪复理石和晚奥陶世花岗岩脉(444.9±4.7Ma)。天峻南山寒武纪蛇绿岩作为早古生代残余洋盆被石炭纪复理石不整合覆盖,并在三叠纪洋盆闭合过程中通过构造方式就位于上覆石炭纪地层中。上述结果表明宗务隆构造带并非一个晚古生代-早中生代构造带,而是原特提斯洋和古特提斯洋相继闭合形成的早古生代-早中生代复合构造带。  相似文献   

11.
The Paleo‐Tethys Ocean was a Paleozoic ocean located between the Gondwana and Laurasia supercontinents. It was usually consider to opening in the early Paleozoic with the rifting of the Hun superterrane from Gondwana following the subduction of the Rheic Ocean/proto‐Tethys Ocean. However, the opening time and detailed evolutionary history of the Paleo‐Tethys Ocean are still unclear. The Paleozoic ophiolites have recently been documented in the middle of the Qiangtang terrane, northern Tibetan Plateau, and they mainly occur in the Gangma Co area. These ophiolites are composed of serpentinite, pyroxenite, isotropic and cumulate gabbros, basalt, hornblendite and plagiogranite. Whole‐rock geochemical data suggest that all mafic rocks were formed in an oceanic‐ridge setting. Furthermore, positive whole‐rock εNd(t) and zircon εHf(t) values suggest that these rocks were derived from a long‐term depleted mantle source. The data allow us to conform that these rocks represent an ophiolite suite. Zircon U‐Pb dating of gabbros and plagiogranites yielded weighted mean ages of 437‐501 Ma. The occurrence of the ophiolite suite suggests that a Paleozoic Ocean basin (Paleo‐Tethys) existed in middle of the Qiangtang terrane. We hypothesize that the ophiolite in the middle of the Qiangtang terrane represents the western extension of the Sanjiang Paleo‐Tethys ophiolite in the east margin of the Tibetan Plateau, and they mark the main Paleo‐Tethys Ocean. This is the oldest ophiolite from the Paleo‐Tethyan suture zones and the Paleo‐Tethys Ocean basin probably opened in the Middle Cambrian, and continued to grow throughout the Paleozoic. The ocean was finally closed in the Middle to Late Triassic as inferred from the metamorphic ages of eclogite and blueschist that occur nearby. The Paleo‐Tethys Ocean was probably formed by the breakup of the northern margin of Gondwana, with southward subduction of the proto‐Tethys oceanic lithosphere along the northern margin of the supercontinent.  相似文献   

12.
初步探讨了中国大陆地壳“块带镶嵌多层叠覆”的结构特征和多阶段的构造演化过程。中国大陆地壳新元古代中期以来的一级构造单元有中朝、塔里木、扬子、敦煌4个陆块和中央、西北、东北、西南、东南5个造山区(带)。中朝陆块的形成源于古元古代期间发生的古大陆裂解;扬子、塔里木和敦煌陆块的形成源于新元古代早期发生的古大陆裂解。西北造山区的形成源于古生代晚期洋盆关闭、大陆碰撞并叠加新生代陆内再造山;东北造山带的形成过程包括古生代碰撞造山及中生代增生、碰撞造山;中央造山带至三叠纪大陆碰撞才最后形成并叠加有新生代再造山;东南造山带的形成经历了古生代至新生代的多次造山作用;西南造山带主要是中—新生代造山作用的产物。这些单元都具有“块带镶嵌多层叠覆”的结构特征和多阶段构造演化的特点。中国大陆地壳的形成与演化可以划分为太古宙—古元古代、中元古代—新元古代早期、新元古代中期—古新世和始新世以来4个构造阶段,每个阶段都对应不同的超大陆裂解-聚合旋回。其中新元古代中期以来的地壳形成演化与全球洋陆格局中的古亚洲洋、古特提斯洋、古太平洋、特提斯洋和太平洋5个动力学体制有关,相应地可以归结为古亚洲、古特提斯、古太平洋、特提斯和太平洋5个造山域。正是这些多阶段的超大  相似文献   

13.
新生代阿尔卑斯是非洲和欧洲之间的陆陆碰撞造山带。强烈的造山作用使大量前中生代基底出露地表,尽管这些基底被强烈逆冲推覆和走滑叠置,但是仍保留较丰富的前中生代基底演化信息。结合近几年对东阿尔卑斯原-古特提斯的研究,本文梳理和重建了阿尔卑斯前中生代基底的构造格局,认为前阿尔卑斯基底受原特提斯、南华力西洋、古特提斯洋构造体系影响而经历了多期造山过程。新元古代-早古生代的原阿尔卑斯作为环冈瓦纳地块群的组成部分,受原特提斯洋俯冲的制约,是新元古-早古生代环冈瓦纳活动陆缘的组成部分,其中,海尔微-彭尼内基底组成外缘增生系统,包括卡多米期地壳碎片在内的陆缘弧/岛弧以及大量增生楔组成内缘增生系统。早奥陶世瑞亚克洋打开,随后原阿尔卑斯从冈瓦纳陆缘裂离,在泥盆纪-石炭纪受南华力西洋控制,海尔微-彭尼内-中、下奥地利阿尔卑斯从冈瓦纳分离。在早石炭世(维宪期)南阿尔卑斯(或与之相当的冈瓦纳源地块)与北部阿莫里卡地块群拼贴增生于古欧洲大陆南缘,共同组成华力西造山带(广义),华力西期缝合带保留在绍山-科尔山南侧。晚石炭世-早二叠世,阿尔卑斯受古特提斯洋的俯冲影响,在华力西造山带南侧形成安第斯山型活动大陆边缘,古特提斯洋在阿尔卑斯的演化至少持续到早三叠世,消亡遗迹保留在中奥地利阿尔卑斯基底的Plankogel杂岩中。  相似文献   

14.
祁连山东南段呈北西-南东向展布着加里东期中祁连造山带和拉脊山造山带, 其基底为前加里东变质岩系, 在该变质结晶基底岩系中发育着菱形网格状韧性剪切带, 共轭韧性剪切带面对缩短方向的夹角为104°~114°, 其最大主应力方位为SW210°左右.在中祁连地块金沙峡和化隆地块科却两处韧性剪切带中的糜棱岩化岩石, 获取变质矿物白云母40Ar-39Ar坪年龄分别为(405.1±2.4) Ma和(418.3±2.8) Ma.这一年代学结果不仅确定了加里东基底变质岩系中韧性剪切带是加里东造山作用过程中形成, 更重要的是通过对基底韧性剪切带中变质变形岩石的年代学研究, 精确地限定了祁连山东南段的早古生代火山盆地(或岛弧盆地)、拉脊山小洋盆关闭的构造年代.这为造山带构造演化过程中盆地关闭时间的确定开辟了新的途径.   相似文献   

15.
刘飞  杨经绥  连东洋  李观龙 《岩石学报》2020,36(10):2913-2945
西藏雅鲁藏布江缝合带(YZSZ)和班公湖-怒江缝合带(BNSZ)蛇绿岩代表了新特提斯洋壳和岩石圈地幔残余,是我国铬铁矿和蛇绿岩型金刚石的重要原产地,目前这两条蛇绿岩带的成因和相互关系还存在着争论。本文总结了YZSZ、BNSZ、狮泉河-纳木错蛇绿混杂岩带(SNMZ)和松多缝合带蛇绿岩的时空分布、组成和构造背景,归纳了拉萨地块晚古生以来的岩浆岩分布,获得以下主要认识:(1)Panjal地幔柱活动可能促使怒江洋和雅江西洋在早二叠世空谷期(283~272Ma)打开;(2)雅江东洋由于松多洋的南向俯冲在晚三叠世打开,与雅江西洋以萨嘎-措勤为界,并形成冈底斯东部245~200Ma岩浆热事件;(3)~140Ma班怒洋闭合以及南羌塘与北拉萨地块碰撞,导致雅江洋扩张速率加快而引发了北向拉萨地块的平板俯冲,进而导致班怒洋的再次裂解形成133~104Ma"红海型"小洋盆;(4)YZSZ缝合带西段南带蛇绿岩为北带的逆冲推覆体;(5)BNSZ和SNMZ蛇绿岩隶属于一个洋盆,后者代表了班怒洋成熟洋盆扩张脊的残余。  相似文献   

16.
三江昌宁-孟连带原-古特提斯构造演化   总被引:4,自引:0,他引:4  
昌宁-孟连特提斯洋的构造演化及其原特提斯与古特提斯的转换方式一直是青藏高原及邻区基础地质研究中最热门的科学问题之一.根据新的地质调查资料、研究成果并结合分析数据,系统总结了三江造山系不同构造单元地质特征,讨论了昌宁-孟连特提斯洋早古生代-晚古生代的构造演化历史.通过对不同构造单元时空结构的剖析和对相关岩浆、沉积及变质作用记录的分析,认为昌宁-孟连结合带内共存原特提斯与古特提斯洋壳残余,临沧-勐海一带发育一条早古生代岩浆弧带,前人所划基底岩系"澜沧岩群"应为昌宁-孟连特提斯洋东向俯冲消减形成的早古生代构造增生杂岩,滇西地区榴辉岩带很可能代表了俯冲增生杂岩带发生了深俯冲,由于弧-陆碰撞而迅速折返就位,这一系列新资料及新认识表明昌宁-孟连结合带所代表的特提斯洋在早古生代至晚古生代很可能是一个连续演化的大洋.在此基础上,结合区域地质资料,构建了三江造山系特提斯洋演化的时空格架及演化历史,认为其经历了早古生代原特提斯大洋扩张、早古生代中晚期-晚古生代特提斯俯冲消减与岛弧带形成、晚二叠世末-早三叠世主碰撞汇聚、晚三叠世晚碰撞造山与盆山转换等阶段.   相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987111001113   总被引:1,自引:0,他引:1  
The Rheic Ocean was one of the most important oceans of the Paleozoic Era.It lay between Laurentia and Gondwana from the Early Ordovician and closed to produce the vast Ouachita-Alleghanian -Variscan orogen during the assembly of Pangea.Rifting began in the Cambrian as a continuation of Neoproterozoic orogenic activity and the ocean opened in the Early Ordovician with the separation of several Neoproterozoic arc terranes from the continental margin of northern Gondwana along the line of a former suture.The rapid rate of ocean opening suggests it was driven by slab pull in the outboard lapetus Ocean.The ocean reached its greatest width with the closure of lapetus and the accretion of the periGondwanan arc terranes to Laurentia in the Silurian.Ocean closure began in the Devonian and continued through the Mississippian as Gondwana sutured to Laurussia to form Pangea.The ocean consequently plays a dominant role in the Appalachian-Ouachita orogeny of North America,in the basement geology of southern Europe,and in the Paleozoic sedimentary,structural and tectonothermal record from Middle America to the Middle East.Its closure brought the Paleozoic Era to an end.  相似文献   

18.
P. Matte 《地学学报》2001,13(2):122-128
The Variscan belt of western Europe is part of a large Palaeozoic mountain system, 1000 km broad and 8000 km long, which extended from the Caucasus to the Appalachian and Ouachita mountains of northern America at the end of the Carboniferous. This system, built between 480 and 250 Ma, resulted from the diachronic collision of two continents: Laurentia–Baltica to the NW and Gondwana to the SE. Between these two continents, small, intermediate continental plates separated by oceanic sutures mainly have been defined (based on palaeomagnetism) as Avalonia and Armorica. They are generally assumed to have been detached from Gondwana during the early Ordovician and docked to Laurentia and Baltica before the Carboniferous collision between Gondwana and Laurentia–Baltica. Palaeomagnetic and palaeobiostratigraphic methods allow two main oceanic basins to be distinguished: the Iapetus ocean between Avalonia and Laurentia and between Laurentia and Baltica, with a lateral branch (Tornquist ocean) between Avalonia and Baltica, and the Rheic ocean between Avalonia and the so‐called Armorica microplate. Closure of the Iapetus ocean led to the Caledonian orogeny: a belt resulting from collision between Laurentia and Baltica, and from softer collisions between Avalonia and Laurentia and between Avalonia and Baltica. Closure of the Rheic ocean led to the Variscan orogeny by collision of Avalonia plus Armorica with Gondwana. A tectonic approach allows this scenario to be further refined. Another important oceanic suture is defined: the Galicia–Southern Brittany suture, running through France and Iberia and separating the Armorica microplate into North Armorica and South Armorica. Its closure by northward (or/and westward?) oceanic and then continental subduction led to early Variscan (430–370 Ma) tectonism and metamorphism in the internal parts of the Variscan belt. As no Palaeozoic suture can be detected south of South Armorica, this latter microplate should be considered as part of Gondwana since early Palaeozoic times and during its Palaeozoic north‐westward drift. Thus, the name Armorica should be restricted to the microplate included between the Rheic and the Galicia–Southern Brittany sutures.  相似文献   

19.
The paleogeographic position of the North Qiangtang Block, as well as the origin of the Central Qiangtang Metamorphic Belt (CQMB) have subjected to considerable debate that hampers the understanding of the early evolution of the Paleo-Tethys Ocean. This study reports a new radiolarian fauna of a Famennian age (Late Devonian) from the ophiolitic mélange south of Gangtang Co, northern Tibet, including Callela parvispinosa Won, Entactinia foveolata Nazarov, and Plenoentactinia pinguis Won. The discovery of Devonian radiolarians in the CQMB strongly supports the model that the Longmu Co–Shuanghu suture zone represents the main branch of the Paleo-Tethys Ocean. A correlation of the Late Devonian radiolarian in Tethys realm reveals that the Longmu Co–Shuanghu suture zone was connected to the Changning–Menglian suture zone in western Yunnan, the Chiang Mai–Inthanon and Chanthaburi suture zones in Thailand, and the Bentong–Raub suture zone in Malay Peninsula. The synchronous advent of Late Devonian radiolarians suggests that the Paleo-Tethys Ocean may have opened during that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号