首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
管缝式锚杆防治软岩巷道底臌的试验研究   总被引:6,自引:0,他引:6  
钟新谷  徐虎 《岩土力学》1996,17(1):16-21
根据对巷道围岩移动趋势的分析,充分考虑到锚杆在垂直于锚杆轴向方向上与围岩的相互作用.将其用于软岩巷道底臌的防治,简化了软岩巷道施工工艺。矿井的实际应用表明支护效果是明显的。  相似文献   

2.
深部急倾斜煤层由于受特殊的地质结构和高地应力影响,煤层巷道开挖后易出现地层错动、垮塌的特点,施工中冒顶、底臌现象异常突出,巷道支护极其困难。通过对新集三矿-700 m煤探巷道进行现场勘查与试验,针对该急倾斜软岩巷道变形非对称性,底臌严重、地层错动的破坏特点,提出了可缩性U型钢全断面封闭支护和非对称性预应力锚杆(索)支护的全新支护方案,通过大型有限元软件ABAQUS建立数值分析模型,与原支护方案进行了对比分析。研究表明,采用改进支护方案巷道底臌位移量减小了66%,最大拉应力从0.58 MPa减小到0.38 MPa,塑性区较原方案更小,支护结构受力更加均匀。其结果可为同类地质条件的巷道支护设计提供一定参考。  相似文献   

3.
高地应力破碎软岩巷道底臌特性及综合控制对策研究   总被引:1,自引:0,他引:1  
刘泉声  肖虎  卢兴利  崔文泰 《岩土力学》2012,33(6):1703-1710
高地应力破碎软岩巷道底臌问题,由于其地质条件的复杂性,是煤矿开采的技术难题之一。通过总结分析高地应力破碎软岩巷道底臌的变形破坏特性,研究了底臌治理对策。研究结果表明,底板围岩呈现出挤压剪切流变特性,在支护对策上应将支护体系视为完整体系,在加强修复固结、应力转移和扩大承载圈的同时强调调动帮、顶部的间接控制作用。提出了以底板超挖、高强度预应力锚索、深孔注浆、底脚、拱角锚杆和回填为技术支撑的综合治理对策,通过FLAC3D建立的三维数值分析模型,分析了在综合治理对策下围岩位移场及塑性区的变化,验证了该方法的有效性。将综合治理对策应用到淮南潘二煤矿东二采区主要大巷,取得了良好的支护效果。  相似文献   

4.
针对急倾斜软硬互层巷道围岩大变形控制难题,采用现场试验、理论分析和数值仿真等多种手段,研究急倾斜巷道围岩变形破坏机制,研究结果表明:急倾斜软硬互层巷道的变形与破坏具有非对称性,偏压作用明显,呈现顶板下滑,底板臌起的相互错动变形特征,底臌严重且易片帮冒顶。巷道断面与岩层倾斜方向的钝角部位受侧向约束小,因而剪切滑移变形较大,是产生非对称变形破坏的关键部位;下帮围岩变形破坏较上帮更为严重。基于急倾斜巷道的变形破坏特点,提出在锚- 网-索耦合支护的基础上利用锚索、底角锚杆等对产生差异变形破坏的关键部位进行加强支护的方法,巷道大变形得到了有效控制。  相似文献   

5.
高晓旭 《地质与勘探》2020,56(5):1087-1095
软岩巷道底鼓是软岩巷道底板支护的重要问题之一,长期以来一直制约煤矿安全高效生产。对此,以榆神矿区某矿30112回风顺槽为研究对象,通过理论分析、数值模拟确定巷道底鼓类型属“应力型”,巷道在重复采动影响下帮角、底角、底板出现明显塑性破坏。针对底鼓产生原因,提出“帮脚锚杆+底角锚杆+混凝土”复合支护技术。实测结果表明,优化支护参数后巷道底板底鼓量最大不超过16mm,底鼓最大变化量不超过2mm/天,取得了良好的现场应用效果。  相似文献   

6.
巷道要经历开挖前稳定、开挖扰动、支护稳定或再破坏的演化过程,巷道稳定状态受原岩应力场-开挖扰动应力场-支护应力场相互作用的影响。采用FLAC^(3D)分析了不同预紧力与间排距条件下锚杆、锚索产生的围岩支护应力场的分布特征,定义了围岩应力扩大系数k来表征围岩应力的扩散效果,揭示了锚杆、锚索预紧力耦合支护效应。针对朱集西矿深部巷道特征与地质条件,提出了锚网索喷+U型钢支架+注浆+底板锚注分步联合支护技术方案,开展了三维相似材料模型试验,验证了该支护技术方案的合理性与可行性,揭示了深部高应力软岩巷道围岩变形破坏与支护结构受力演化规律,并成功应用于工程实践,解决了深部高应力软岩巷道支护难题。监测结果表明,该联合支护方案有效地控制了深部高应力软岩巷道围岩大变形与底臌,保证了巷道围岩与支护结构的长期稳定及安全。  相似文献   

7.
巷道要经历开挖前稳定、开挖扰动、支护稳定或再破坏的演化过程,巷道稳定状态受原岩应力场-开挖扰动应力场-支护应力场相互作用的影响。采用FLAC~(3D)分析了不同预紧力与间排距条件下锚杆、锚索产生的围岩支护应力场的分布特征,定义了围岩应力扩大系数k来表征围岩应力的扩散效果,揭示了锚杆、锚索预紧力耦合支护效应。针对朱集西矿深部巷道特征与地质条件,提出了锚网索喷+U型钢支架+注浆+底板锚注分步联合支护技术方案,开展了三维相似材料模型试验,验证了该支护技术方案的合理性与可行性,揭示了深部高应力软岩巷道围岩变形破坏与支护结构受力演化规律,并成功应用于工程实践,解决了深部高应力软岩巷道支护难题。监测结果表明,该联合支护方案有效地控制了深部高应力软岩巷道围岩大变形与底臌,保证了巷道围岩与支护结构的长期稳定及安全。  相似文献   

8.
泥化弱胶结软岩地层中矩形巷道的变形破坏过程分析   总被引:2,自引:0,他引:2  
李廷春  卢振  刘建章 《岩土力学》2014,35(4):1077-1083
在西部地区,一定数量的矿区处于泥化弱胶结软岩地层,此类软岩胶结性差、强度低、遇水泥化。矩形是采区巷道的常用型式,但其断面受力不均、稳定性差。在上述软岩地层中的矩形巷道承载力低、变形量大、变形持续时间长,给煤矿的安全生产带来极大困难。以内蒙古新上海一号煤矿皮带顺槽矩形巷道为背景,运用FLAC3D软件中的Cvisc黏弹塑性模型,对矩形巷道的变形破坏进行了数值模拟,并将模拟结果与现场监测结果对比分析。结果表明:巷道开挖支护后,受断面形状影响,矩形巷道四角出现压应力集中和顶板受拉区,巷道顶板下沉量大,底板底臌严重,两帮向巷道挤出;受围岩岩性影响,围岩进入塑性的时间快短、范围大,塑性区超出了支护体的作用范围,造成锚杆(索)的锚固效果难以完全发挥,围岩出现整体滑动的现象;巷道变形呈现出流变变形的特性,变形量随时间持续增加,持续的蠕变变形超出了支护体的可控范围,最终引起巷道的失稳破坏。  相似文献   

9.
综放沿空巷道底板受力变形分析及底鼓力学原理   总被引:9,自引:1,他引:9  
在分析了综放沿空巷道底板力学环境的基础上,建立了底板力学模型,计算了巷道,窄煤桩,高支承压力区底板岩层的相对位移,提出综放沿空巷道底鼓成因主要有以下3个方面:一是巷道底板一定深度的岩层在等效载荷的作用下产生拉应变而破坏;二是由于巷道底板岩层的破坏降低了高支承压力区底板岩体围压,导致这部分岩体在基形变热能释放过程中破坏而产生的巷道内的塑性流动三是实煤体帮的下沉,并简要分析了煤柱宽度对底鼓的影响。  相似文献   

10.
针对淮南矿区顾北煤矿-648 m水平绞车房硐室底板突出严重,容易发生拉剪破坏的特点,首先采用FLAC3D对绞车房硐室支护前的围岩变形和应力分布特征进行了模拟分析:变截面处和底角应力集中明显,在高应力作用下底角剪切滑移和底板折断隆起是造成底臌的根本原因。基于分步联合支护理论,对绞车房硐室底板支护方案进行了优化,并对绞车房硐室表面与深部位移、锚索受力和基础内部应力进行了全方位监测,结果表明:原支护方案下巷道底板变形较大,巷道底角发生剪切滑移诱使巷道断面圆形化,注浆花管和底角地梁可以较好地抵抗底角处的剪切滑移;巷道底板变形量受地应力方位影响较大,采用新的底板联合支护方式不仅可以很好地满足绞车房硐室对底板变形的要求,还能加强两帮稳定性,同时保证了绞车房基础稳定。  相似文献   

11.
采空侧巷道底鼓形成机制与防治技术研究   总被引:2,自引:1,他引:1  
初明祥  王清标  夏均民 《岩土力学》2011,32(Z2):413-417
煤矿深部采空侧巷道底鼓现象日趋普遍和严重,严重影响巷道的运输和正常使用,其底鼓防治技术研究已成为目前煤矿岩石力学问题研究的重点。通过理论分析、数值模拟、现场试验等研究方法,对采空侧巷道底鼓的特征、形成原因、形成机制及其防治技术进行了详细研究,得到以下结论:(1)采空侧巷道底鼓与底板岩性和底板岩层的应力重新分布有关;(2)底板在严重挤压变形的情况下发生断裂,底板隆起,墙角发生外移是造成底鼓的主要原因;(3)底鼓始于巷道底角与底板中部;(4)采用中空锚杆注浆与高强锚杆锚注联合支护技术能有效治理采空侧巷道的底鼓  相似文献   

12.
古汉山矿软岩巷道地质因素分析   总被引:1,自引:1,他引:0  
针对古汉山矿软岩巷道围岩变形破坏和严重底膨问题, 通过对巷道围岩进行地应力测量、物理力学性质分析测试、矿物成份分析和节理裂隙调查, 确定了底膨巷道的软岩类型, 这为解决软岩巷道的支护问题提供了基础。   相似文献   

13.
回采巷道煤柱与底板稳定性分析   总被引:2,自引:0,他引:2  
将老顶和老底视为加载系统,分析了回采巷道煤柱和底板岩层的相互作用及稳定性,并提出了底板岩层产生滑移的条件。认为回采巷道底鼓一般不是底板岩层在垂直应力作用下向巷道内滑移所致。  相似文献   

14.
针对煤矿巷道底板锚固施工布孔密集、钻机搬移频繁等问题,为提高巷道底板锚固孔的施工效率,研制的ZDY750L底锚钻机采用分体履带式结构,宽度窄,施工机动性强;采用摇臂式偏转机构,使钻机实现一次停车完成两个底板锚固孔的施工作业。以新元矿3号煤南区集中胶带大巷工业性试验为例,ZDY750L底锚钻机操作简单,移动灵活,定位精确,对底鼓巷道适应性强,降低了工人劳动强度,改善了工作面作业环境,实现了高效施工底板锚固孔作业的功能,为同类煤矿巷道底板治理提供借鉴及指导。   相似文献   

15.
谢桥矿东风井采用综合注浆法自地面打钻注浆堵水时,引起井下巷道发生声响、掉碴、底鼓、支架扭曲等巷道变形现象。分析认为巷道变形与注浆压力、注浆段距巷道的垂距、注浆段的岩溶裂隙发育程度、总注入量、巷道围岩的岩石力学性质、围岩松动圈大小等有关;并提出了减少巷道变形程度的措施。   相似文献   

16.
高明仕  赵一超  李明  曹志安  张健 《岩土力学》2014,35(8):2307-2313
软弱岩体的阶段性、持续性流变,导致软岩巷道围岩深度破坏和支护失效。软岩巷道顶、帮、底三者在围岩系统稳定过程中所起的作用不同,软岩巷道围岩稳定性控制应做到整体性和协调性支护。在分析巷道顶、帮、底相互作用效应基础上,针对软岩巷道强流变四周均表现出大变形的破坏特征,提出了全断面、全支全让O型封闭控制的支护原理。该原理强调,开挖初期就应对软岩巷道顶、帮、底全断面进行强力支护,同时全断面又适时让压,在高阻支护力作用下又能适当释放围岩应力,达到对软岩巷道的整体性和协调性控制。通过力学模型对软岩巷道围岩塑性区范围和表面位移与支护力的作用关系进行了分析计算,得出巷道围岩变形破坏与支护力呈负相关关系。工程实践表明,采用该支护原理有效控制了深部软岩巷道的大变形。研究成果对类似工程实践具有一定的参考借鉴价值。  相似文献   

17.
随着大量深埋地下工程的建设,尤其是大型矿山,与巷道围岩稳定有关的各种地质灾害问题突出,因此其一直备受关注。某铁矿巷道埋深450~800m,变形剧烈,局部持续大变形,呈条带状臌出。地应力实测结果表明,矿区地应力总体特征为σv≥σH〉σh,现今水平构造作用明显,最大水平主应力为13-21MPa,接近岩体自重。大变形洞段围岩为裂隙化岩体,强度低,蠕变性明显。有限元分析表明,巷道开挖后在边墙与顶拱和底板交界处产生约40MPa的高应力,造成了围岩变形破坏。后期围岩在高应力作用下产生大变形,其宏观变形破坏特征与软岩相似。另围岩加固与支护发现,普通的挂网喷锚支护已很难适应高应力条件下的岩体大变形。论文基于地应力实测结果,通过对巷道围岩大变形成因机制的探讨以及原加固支护效果的总结,为后期巷道围岩变形破坏的防治提供了参考。  相似文献   

18.
闫帅  柏建彪  卞卡  霍灵军  刘学勇 《岩土力学》2012,33(10):3081-3086
为解决高瓦斯工作面双U型巷道布置中煤柱损失大、相邻工作面复用回采巷道维护困难的难题,综合采用理论分析、数值计算和现场试验的方法,研究得到煤柱宽度对相邻两工作面之间煤柱内复用巷道围岩应力分布和变形特征的影响规律:随着巷道一侧煤柱宽度的增加,巷道围岩垂直应力峰值向一侧移动,并逐渐远离巷道;当巷道一侧煤柱较小时,巷道以窄煤柱帮变形和顶板下沉为主,随着煤柱宽度增加,底鼓增大并成为巷道主要变形。以煤柱内应力峰值比值为指标,分析煤柱宽度与巷道稳定性的关系,并将不同宽度煤柱进行了稳定性分区。研究成果成功应用于工程实践,为类似条件下巷道布置提供依据。  相似文献   

19.
黄庆享  郑超 《岩土力学》2016,37(5):1231-1236
基于软岩巷道围岩变形破坏的自稳平衡现象,通过数值模拟揭示了巷道顶板、两帮和底板之间的相互影响关系,得出了巷道围岩不稳定区是以巷道为中心的椭圆形。基于普氏理论,考虑“底板-两帮-顶板”相互影响,提出了巷道围岩自稳平衡圈理论,给出了自稳平衡圈的椭圆曲线方程,明确了巷道支护对象为自稳平衡圈内的岩体,支护的目的是控制自稳平衡圈岩体的稳定性。研究表明,“底板-两帮-顶板”共同构成巷道稳定性的整体系统,巷道顶板自稳平衡拱的大小随着两帮塑性区的增大而增大,两帮塑性区随底板变形而增大。加强底板和两帮的支护,将大大缩小顶板自稳平衡拱的高度。提出了“治顶先治帮,治帮先治底”的巷道支护理念,得到多年实践验证,为软岩巷道支护控制提供了新的依据。  相似文献   

20.
梁北矿-550m水平二1煤层属典型“三软”煤层,煤层透气性差,瓦斯含量高,瓦斯压力大,地应力大,具有较强的突出危险性。11采区煤巷埋深达610~750m,现场调查表明,巷道持续大变形,底鼓严重,支护难度大。本文对梁北矿-550m水平11采区二1煤层巷道工程地质特征进行了调研,总结了煤巷变形特征,运用FLAC数值试验方法对巷道大变形的原因进行了分析。指出该煤巷变形以显著底鼓为特征,其主要原因是煤层软弱、底板煤扰动、瓦斯防突钻孔效应和支护缺陷。认为高瓦斯特软煤层巷道的支护应兼顾瓦斯治理与支护两方面,宜把它们当成一个系统进行协同分析,这是有效解决此类煤巷稳定性控制难题的一种有效途径。在此基础上,提出了相应的防治对策。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号