首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rangan area is part of Cenozoic magmatic belt of central Iran. Eocene volcanic flows and pyroclastic rocks are intruded by a Neogene rhyolitic dome along the major Qom–Zefreh fault. The dome is pervasively hydrothermally altered. The main mineral assemblage is jarosite+barite+pyrite+quartz+sericite. This assemblage indicates acid sulphate or advanced argillic alteration. Sulfur and oxygen isotope data (δ34S & δ18O (SO4)) obtained from jarosite and barite indicate a mixing episode during the evolution of hydrothermal system and reflect the overlapping of two distinct sources of acid sulphate alteration in Rangan, i.e., a magmatic–hydrothermal fluid reacting with steam-heated meteoric water. Considering the position of brittle–ductile transition and major fault movements, jarosite and barite seemingly precipitated from rapid injection of magmatic–hydrothermal fluids into the upper portions of a steam-heated environment.  相似文献   

2.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

3.
40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval.Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles.The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.  相似文献   

4.
ABSTRACT

Stable isotopes combined with pre-existing 40Ar/39Ar thermochronology at the Gavilan Hills and Orocopia Mountains in southeastern California record two stages of fluid–rock interaction: (1) Stage 1 is related to prograde metamorphism as Orocopia Schist was accreted to the base of the crust during late Cretaceous–early Cenozoic Laramide flat subduction. (2) Stage 2 affected the Orocopia Schist and is related to middle Cenozoic exhumation along detachment faults. There is no local evidence that schist-derived fluids infiltrated structurally overlying continental rocks. Mineral δ18O values from Orocopia Schist in the lower plate of the Chocolate Mountains fault and Gatuna normal fault in the Gavilan Hills are in equilibrium at 490–580°C with metamorphic water (δ18O = 7–11‰). Phengite and biotite δD values from the Orocopia Schist and upper plate suggest metamorphic fluids (δD ~ –40‰). In contrast, final exhumation of the schist along the Orocopia Mountains detachment fault (OMDF) in the Orocopia Mountains was associated with alteration of prograde biotite and amphibole to chlorite (T ~ 350–400°C) and the influx of meteoric-hydrothermal fluids at 24–20 Ma. Phengites from a thin mylonite zone at the top of the Orocopia Schist and alteration chlorites have the lowest fluid δD values, suggesting that these faults were an enhanced zone of meteoric fluid (δD < –70‰) circulation. Variable δD values in Orocopia Schist from structurally lower chlorite and biotite zones indicate a lesser degree of interaction with meteoric-hydrothermal fluids. High fluid δ18O values (6–12‰) indicate low water–rock ratios for the OMDF. A steep thermal gradient developed across the OMDF at the onset of middle Cenozoic slip likely drove a more vigorous hydrothermal system within the Orocopia Mountains relative to the equivalent age Gatuna fault in the Gavilan Hills.  相似文献   

5.
Guanzhong Basin is a typical medium-low temperature geothermal field mainly controlled by geo-pressure in the west of China.The characteristics of hydrogen and oxygen isotopes were used to analyze the flow and storage modes of geothermal resources in the basin.In this paper,the basin was divided into six geotectonic units,where a total of 121 samples were collected from geothermal wells and surface water bodies for the analysis of hydrogen-oxygen isotopes.Analytical results show that the isotopic signatures of hydrogen and oxygen throughout Guanzhong Basin reveal a trend of gradual increase from the basin edge areas to the basin center.In terms of recharge systems,the area in the south edge belongs to the geothermal system of Qinling Mountain piedmont,while to the north of Weihe fault is the geothermal system of North mountain piedmont,where the atmospheric temperature is about 0.2℃-1.8℃in the recharge areas.The main factors that affect the geothermal waterδ18O drifting include the depth of geothermal reservoir and temperature of geothermal reservoir,lithological characteristics,water-rock interaction,geothermal reservoir environment and residence time.Theδ18O-δD relation shows that the main source is the meteoric water,together with some sedimentary water,but there are no deep magmatic water and mantle water which recharge the geothermal water in the basin.Through examining the distribution pattern of hydrogen-oxygen isotopic signatures,the groundwater circulation model of this basin can be divided into open circulation type,semi-open type,closed type and sedimentary type.This provides some important information for rational exploitation of the geothermal resources.  相似文献   

6.
Mixing is a dominant hydrogeological process in the hydrothermal spring system in the Cappadocia region of Turkey. All springs emerge along faults, which have the potential to transmit waters rapidly from great depths. However, mixing with shallow meteoric waters within the flow system results in uncertainty in the interpretation of geochemical results. The chemical compositions of cold and warm springs and geothermal waters are varied, but overall there is a trend from Ca–HCO3 dominated to Na–Cl dominated. There is little difference in the seasonal ionic compositions of the hot springs, suggesting the waters are sourced from a well-mixed reservoir. Based on δ18O and δ2H concentrations, all waters are of meteoric origin with evidence of temperature equilibration with carbonate rocks and evaporation. Seasonal isotopic variability indicates that only a small proportion of late spring and summer precipitation forms recharge and that fresh meteoric waters move rapidly into the flow system and mix with thermal waters at depth. 3H and percent modern carbon (pmC) values reflect progressively longer groundwater pathways from cold to geothermal waters; however, mixing processes and the very high dissolved inorganic carbon (DIC) of the water samples preclude the use of either isotope to gain any insight on actual groundwater ages.  相似文献   

7.
Analyses of 230 Franciscan rock and mineral samples, including the San Luis Obispo ophiolite, show that metamorphism produces no change in the δ18O of the graywackes (+11 to +14), but that igneous rocks become enriched in 18O by 2–6% and the cherts depleted by 5–10%. The shales are of two types, a high-18O type (+16 to +20) associated with chert and a low-18O type isotopically and mineralogically similar to the graywackes. The vein quartz (δ = + 15 to + 20) is invariably richer in 18O than the host rock quartz and in most of the rocks the δ18O of the clastic quartz is similar to the δ18O of the whole rock. Mineral assemblages are typically not in isotopic equilibrium. Although the δ18O values are very uniform (+13 to +16). the δ13C of vein aragonite and calcite is widely variable (0 to ? 14), implying that a major source of the carbon is oxidized organic material. The δD values of 83 igneous and sedimentary rocks are -45 to -80, exceptions are the Fe-rich minerals howieite and deerite, which have δD = ?100. All of these samples could have equilibrated with H2O having δD ≈ +10 to ?20 and δ18O ≈ ?3 to +8. assuming temperatures of 100–300°C. However, the serpentines (δD ≈ ?85 to ?110) and the vein minerals (δD = ?23 to ?55) are exceptions. The vein minerals are 10–20%, richer in deuterium than the adjacent wall rocks; they formed from a relatively D-rich metamorphic water, typically at lower temperatures than did their host rocks. The isotopic compositions of the other Franciscan rocks were affected by three distinct events: (1) hydrothermal alteration of the ophiolite complexes and volcanic rocks as a result of submarine igneous activity at a spreading center or in an island-arc environment; (2) low-temperature, high-pressure regional metamorphism and diagenesis; and (3) a late-stage, very low temperature (<100°C) alteration of the ultramafic bodies by meteoric ground waters, producing lizardite-chrysotile serpentine. In the first two cases, the pore fluid involved in the alteration of the Franciscan rocks was sea water. However, this water became somewhat depleted in D and enriched in 18O during blueschist metamorphism, evolving to values of δD ≈ ? 20 and δ18O ≈ + 6 to + 8 at the highest grades. Except for one graywacke sample, the meteoric waters that affected the serpentinites did not significantly change the DH ratios of the OH-bearing minerals in any other Franciscan rock.The δ18O values of orogenic andesites are too low for such magmas to have formed by direct partial melting of Franciscan-type materials in a subduction zone. Andesites either form in some other fashion, or the melts must undergo thorough isotopic exchange with the upper mantle. The great Cordilleran granodiorite-tonalite batholiths, however, are much richer in 18O and may well have formed by large-scale melting or assimilation of Franciscan-type rocks. The range of δD values of Franciscantype rocks is identical to the ?50 to ?80 range shown by most igneous rocks. This suggests that ‘primary magmatic H2O’ throughout the world may be derived mainly by partial melting of Franciscantype materials, or by dehydration of such rocks in the deeper parts of a Benioff zone.  相似文献   

8.
Major and trace elements, noble gases, and stable (δD, δ18O) and cosmogenic (3H, 14C) isotopes were measured from geothermal fluids in two adjacent geothermal areas in NW-Mexico, Las Tres Vírgenes (LTV) and Cerro Prieto (CP). The goal is to trace the origin of reservoir fluids and to place paleoclimate and structural-volcanic constraints in the region. Measured 3He/4He (R) ratios normalized to the atmospheric value (Ra = 1.386 × 10−6) vary between 2.73 and 4.77 and are compatible with mixing between a mantle component varying between 42 and 77% of mantle helium and a crustal, radiogenic He component with contributions varying between 23% and 58%. Apparent U–Th/4He ages for CP fluids (0.7–7 Ma) suggest the presence of a sustained 4He flux from a granitic basement or from mixing with connate brines, deposited during the Colorado River delta formation (1.5–3 Ma). Radiogenic in situ 4He production age modeling at LTV, combined with the presence of radiogenic carbon (1.89 ± 0.11 pmC – 35.61 ± 0.28 pmC) and the absence of tritium strongly suggest the Quaternary infiltration of meteoric water into the LTV geothermal reservoir, ranging between 4 and 31 ka BP. The present geochemical heterogeneity of LTV fluids can be reconstructed by mixing Late Pleistocene – Early Holocene meteoric water (58–75%) with a fossil seawater component (25–42%), as evidenced by Br/Cl and stable isotope trends. CP geothermal water is composed of infiltrated Colorado River water with a minor impact by halite dissolution, whereas a vapor-dominated sample is composed of Colorado River water and vapor from deeper levels. δD values for the LTV meteoric end-member, which are 20‰–44‰ depleted with respect to present-day precipitation, as well as calculated annual paleotemperatures 6.9–13.6 °C lower than present average temperatures in Baja California point to the presence of humid and cooler climatic conditions in the Baja California peninsula during the final stage of the Last Glacial Pluvial period. Quaternary recharge of the LTV geothermal reservoir is related to elevated precipitation rates during cooler-humid climate intervals in the Late Pleistocene and Early Holocene. The probable replacement of connate water or pore fluids by infiltrating surface water might have been triggered by enhanced fracture and fault permeability through contemporaneous tectonic–volcanic activity in the Las Tres Vírgenes region. Fast hydrothermal alteration processes caused a secondary, positive δ18O-shift from 4‰ to 6‰ for LTV and from 2‰ to 4‰ for CP geothermal fluids since the Late Glacial infiltration.  相似文献   

9.
《Applied Geochemistry》2001,16(6):633-649
Water inflows in the Gotthard Highway Tunnel and in the Gotthard Exploration Tunnel are meteoric waters infiltrating at different elevations, on both sides of an important orographic divide. Limited interaction of meteoric waters with gneissic rocks produces Ca–HCO3 and Na–Ca–HCO3 waters, whereas prolonged interaction of meteoric waters with the same rocks generates Na–HCO3 to Na–SO4 waters. Waters circulating in Triassic carbonate-evaporite rocks have a Ca–SO4 composition. Calcium-Na–SO4 waters are also present. They can be produced through interaction of either Na–HCO3 waters with anhydrite or Ca–SO4 waters with a local gneissic rock, as suggested by reaction path modeling. An analogous simulation indicates that Na–HCO3 waters are generated through interaction of Ca–HCO3 waters with a local gneissic rock. The two main SO4-sources present in the Alps are leaching of upper Triassic sulfate minerals and oxidative dissolution of sulfide minerals of crystalline rocks. Values of δ34SSO4 < ∼+9‰ are due to oxidative dissolution of sulfide minerals, whereas δ34SSO4 >∼+9‰ are controlled either by bacterial SO4 reduction or leaching of upper Triassic sulfate minerals. Most waters have temperatures similar to the expected values for a geothermal gradient of 22°C/km and are close to thermal equilibrium with rocks. However relatively large, descending flows of cold waters and ascending flows of warm waters are present in both tunnels and determine substantial cooling and heating, respectively, of the interacting rocks. The most import upflow zone of warm, Na-rich waters is below Guspisbach, in the Gotthard Highway Tunnel, at 6.2–9.0 km from the southern portal. These warm waters have equilibrium temperatures of 65–75°C and therefore constitute an important low-enthalpy geothermal resource.  相似文献   

10.
Thermal waters of the Usak area have temperatures ranging from 33 to 63°C and different chemical compositions. These waters hosted by the Menderes Metamorphic rocks emerge along fault lineaments from two geothermal reservoirs in the area. The first reservoir consists of gneiss, schists, and marbles of the Menderes Metamorphic rocks. The recorded reservoir is Pliocene lacustrine limestone. Hydrogeochemical studies indicate that thermal waters were mixed with surface waters before and/or after heating at depth. The results of mineral equilibrium modeling indicate that all the thermal waters are undersaturated at discharge temperatures for gypsum, anhydrite, and magnesite minerals. Calcite, dolomite, aragonite, quartz, and chalcedony minerals are oversaturated in all of the thermal waters. Water from the reservoir temperatures of the Usak area can reach upto120°C. According to δ18O and δ2H values, all thermal and cold groundwater are of meteoric origin.  相似文献   

11.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

12.
通过矿床地质特征、流体包裹体及氧、氢稳定同位素的研究,认为马家窑金矿属再平衡岩浆热液矿床,金青顶和十里铺金矿属大气降水热液矿床。马家窑金矿石英的δD、δ18O值高,变化小,比较稳定;蚀变岩石的δ18O在磺向上由围岩向矿脉逐渐升高。金青顶和十里铺金矿石英的δD、δ18O值低、变化大;蚀变岩石的δ18O值由地表向深部逐渐降低。开展金矿的氮稳定同泣素研究,在国内尚数首次。马家窑金矿36Ar在温度300℃以下相对含量不到10%,金青顶和十里铺金矿36Ar则达90%以上,表明前者以岩浆成因40Ar为代表,后者则以大气氩36Ar为代表,进而表明马家窑金矿是再平衡岩浆热液成因,金青顶和十里辅金矿是大气降水热液成因。示踪结果与H、O同位素一致,表明氩同位素在示踪成矿热液、矿床成因研究方面是一种较为有效的手段。  相似文献   

13.
江西铜厂斑岩铜(钼金)矿床是德兴斑岩矿集区最大的矿床.文章根据铜厂矿床发育的钾硅酸盐化、绢英岩化、青磐岩化蚀变组合特征,和已厘定的铜厂矿床脉体类型,选取代表不同蚀变矿化阶段的石英、黑云母、绢云母及绿泥石等,进行单矿物的H、O同位素测试.石英和黑云母单矿物O同位素,与石英、黑云母平衡流体的δ 18O 值和δD值联合示踪结果显示,铜厂矿床早期A脉(不规则疙瘩状A1脉、石英-黑云母A2脉和石英-磁铁矿A4脉)和中期B脉(矿物组合为石英-黄铁矿+黄铜矿±辉钼矿±斑铜矿)形成时,成矿热液均为岩浆流体来源,但B脉可能混入了少量大气降水;晚期低温D脉和碳酸岩脉(180~200℃)的成矿热液全部为大气降水来源.斑晶黑云母平衡水的δ 18O和δD值变化范围较大表明,黑云母形成时的热液系统主要为岩浆水,局部受区域变质水和大气降水的混染,也可能与少量黑云母斑晶受到后期绿泥石化、水云母化蚀变有关.绿泥石蚀变主要由岩浆流体作用形成,但混入了一些大气降水,导致其δ 18O值少量降低.绢云母平衡的水的δ18O值和δD值(4.6‰和-19.4‰)表明,绢云母是大气降水与千枚岩共同作用的结果.总体来说,铜厂矿床钾硅酸盐化、绿泥石化蚀变,以及钾硅酸盐化阶段形成的A脉和B脉,均由岩浆流体作用引起,大气降水在绿泥石化阶段进入蚀变-矿化系统,而绢云母化、晚期低温D脉和碳酸盐脉均是大气降水作用的产物.  相似文献   

14.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

15.
腾冲地热区出露有众多热泉泉群,地热活动频繁,岩石发生强烈蚀变,形成的主要蚀变矿物包括高岭石、绢云母、蒙脱石、I/M间层矿物、石英和蛋白石。主要蚀变矿物的种类和含量受蚀变母岩性质的控制,花岗质砂砾岩和花岗岩形成高岭石,玄武岩形成伊利石和蒙托石,安山岩中发育硅化作用。泥化作用增强的趋势是安山岩→花岗岩→玄武岩→花岗质砂砾岩。由于花岗质砂砾岩在热区内广泛分布,通过蚀变作用形成了有经济价值的高岭土矿床。  相似文献   

16.
《Ore Geology Reviews》2011,41(1):27-40
Diyadin mineralization is the first reported gold deposit located in a collisional tectonic environment in Eastern Anatolia. The mineralization is related to N–S and N10–20°W-trending fault systems and hosted within the Paleozoic metamorphic basement rocks of the Anatolide–Toride microcontinent. Calc-schist, dolomitic marble and Miocene and Quaternary volcanic rocks comprise the exposed units in the mineralized area. Geochemical signatures, alteration types and host rock characteristics of the Diyadin gold deposit resemble those of Carlin-type deposits. Mineralization is constrained by alteration of overlying volcanic rocks to younger than ~ 14 Ma (K–Ar).Carbon and oxygen stable isotope measurements of carbonate rocks were made on six drill holes (n = 81) with an additional four samples of fresh carbonate rocks from surface outcrops. Background carbonate rocks have δ13CV-PDB ~ 1.8‰ and δ18OV-SMOW ~ 27‰. Isotopically-altered host rock samples have decreased δ18O (down to ~+11.4‰) and variable δ13C (from − 3.6 to + 4.8‰). Postore carbonate veins and cave-fill material have distinctly different isotopic signatures, particularly carbon (from δ13C = + 8.4 to + 9.8‰). Whether this post-ore carbonate is simply very late in mineralization associated with the gold system, or is a completely different, younger system utilizing the same pathways, is unclear at present. Within the host rock sample set, there is no correlation between gold and δ13C, and a weak correlation between gold and δ18O, indicative of water–rock interaction and isotopic alteration. Both the isotopic data and structural mapping suggest that the main upflow zone for the deposit is near the northern portion of the drill fence. Additional data at multiple scales are required to clarify the relationship(s) between fluid flow and mineralization.  相似文献   

17.
The economic iron ore deposits of Egypt are located at Bahariya Oasis in the Lower Middle Eocene limestone. The main iron minerals are goethite, hematite, siderite, pyrite, and jarosite. Manganese minerals are pyrolusite and manganite. Gangue minerals are barite, glauconite, gibbsite, alunite, quartz, halite, kaolinite, illite, smectite, palygorskite, and halloysite. Geochemical comparison between the ore and the Nubia sandstone showed that the ore is depleted in the residual elements (Al, Ti, V, and Ni) and enriched in the mobile elements (Fe, Mn, Zn, Ba, and U) which indicates that the Bahariya iron ore is not a lateritic deposit despite the deep weathering in this area. On the other hand, the Nubia sandstone showed depletion in the mobile elements, which demonstrates the leaching process in the Nubia Aquifer. The presence of such indicator minerals as jarosite, alunite, glauconite, gibbsite, palygorskite, and halloysite indicate that the ore was deposited under strong acidic conditions in fresh water.Isotopic analyses of the uranium in the amorphous and crystalline phases of the ore, in the country rocks, and dissolved in the Nubia Aquifer water, all support the conclusion that U and Fe were precipitated together from warm ascending groundwater. U and Fe display strong co-variation in the ore, and the 234U/238U activity ratio of the newly precipitated U in the country rock and the leached component of U in the groundwater are identical. There is only slightly more uranium in the amorphous phase than in the crystalline and only a slightly lower 234U/238U activity ratio, suggesting that the iron in the two phases have a similar origin. Comparison of the excess 234U in the water and in the total ore leads to the conclusion that the precipitation of the U, and by inference the iron, occurred within the last million years. However, that both precipitation and leaching of U have occurred over the last 300,000 years is evidenced by the extreme 230Th/234U disequilibria observed in some of the samples. Some of the amorphous depositional events have been very recent, perhaps within the last 10,000 years.  相似文献   

18.
The deposition of metal-rich black or reddish muds by many thermal springs in the Cordilleras and the Altiplano of Bolivia suggest that these geothermal waters may be related to those that once formed the world-class Bolivian tin, silver and gold mineralisation. The discharge temperatures of these springs are as high as 70 °C. According to δ18O, δD, tritium data and Ar/N2 ratios these waters are predominantly of meteoric origin. Less than 10% of the discharging thermal water represents deep-seated metal-rich thermal brines of at least 530 °C according to carbon exchange between CO2 and CH4. These brines ascend along tectonic faults and mix with low-temperature meteoric water in surface-near aquifers. The meteoric component of the thermal water is recharged in the high Cordilleras with residence times exceeding 50 years. The chemical composition of the thermal water is dominated by the rather inefficient low-temperature leaching of the surface-near aquifer rocks by meteoric water. The small fraction of metal-rich hot deep-seated water is not able to increase the metal content of the water mix to a level sufficient to classify these thermal waters as ore-bearing. Surface-near leaching is supported, e.g., by the B/Li ratios of the spring water of the Western Cordillera and Caleras/Pulacayo in the Eastern Cordillera that correspond very closely to that of the easily leachable glassy inclusions of the outcropping andesitic lavas. The often remarkable metal content of the muds deposited by the springs originate from efficient scavenging of heavy metals by ferric oxyhydroxides. Under the given arid to semi-arid climate the muds are additionally enriched in metals by wind-transported dust. The present study does support a relation of the actual thermal waters with neither the classical subduction-related Upper Tertiary tin, silver and gold mineralisation nor the supposed younger Sb mineralisation of Bolivia.  相似文献   

19.
安徽庐枞盆地矾山酸性蚀变岩帽形成时代及其地质意义   总被引:3,自引:1,他引:2  
酸性蚀变岩帽是岩浆热液流体和围岩在近地表相互作用的产物,是斑岩-浅成低温热液成矿系统的重要指标。发育在长江中下游成矿带庐枞盆地内的矾山酸性蚀变岩帽产出面积较大( 20km~2)。前人对该酸性蚀变岩帽中的明矾石矿床的地质和地化特征进行了相关研究,但详细的年代学研究工作尚未开展。为精确厘定矾山酸性蚀变岩帽的形成时代,本文开展了明矾石~(40)Ar-~(39)Ar法和金红石原位U-Pb法定年。矾山酸性蚀变岩帽中明矾石共有三种类型:ⅠA型明矾石主要呈交代蚀变发生在热液蚀变早阶段,与石英、粒状黄铁矿或赤铁矿、少量金红石共生;ⅠB型明矾石形成于热液蚀变晚阶段,主要呈叶片状集合体充填在开放空间中,与石英、星点状赤铁矿、粒状金红石集合体共生,少量金红石和赤铁矿沿明矾石解理裂隙分布;Ⅱ型明矾石是表生明矾石,主要呈细粒集合体沿裂隙分布,与赤铁矿、高岭石、地开石共生。三类明矾石形成于不同环境下:ⅠA和ⅠB型明矾石形成于岩浆热液环境下,是大矾山明矾石矿区的主要产物;Ⅱ型细粒明矾石分布在矾山酸性蚀变岩帽的非明矾石矿区,是表生环境下的产物。ⅠA型明矾石的~(40)Ar-~(39)Ar定年的坪年龄为131±6Ma,代表了矾山酸性蚀变岩帽的形成时代。与Ⅱ型明矾石密切共生的金红石U-Pb定年结果为32. 7±4Ma,在该期间,整个盆地内无岩浆活动发生,该年龄反映了矾山酸性蚀变岩帽经历表生氧化作用的时间。明矾石和金红石定年结果分别对应岩浆热液和表生明矾石的形成时代。在利用明矾石进行找矿工作时需先明确明矾石成因,矾山酸性蚀变岩帽中深成明矾石是下一阶段的找矿研究的基础。  相似文献   

20.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号