首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The adsorption properties of eggshell membranes (ESM), eggshells (ES) and orange peels (OP) were studied for the removal of arsenic (total As) and selenium (total Se). The effect of chemical treatment of these adsorbents by HNO3 and NaOH was also investigated using Fourier transform infrared spectroscopy (FT-IR). Analysis of the FT-IR spectra showed that treatment with NaOH and HNO3 had an effect on the functional groups present in the materials and also on the adsorption by extension. Thermal analysis showed that ES were more thermally stable than the others with no water molecules in their matrix, which could have caused a substantial weight loss at around 70 °C. In terms of adsorption capacities, chemical treatment increased the adsorption capacities of ESM and OP achieving up to 170 μg g?1 (As) and 160 μg g?1 (Se), and 120 μg g?1 (As) and 70 μg g?1 (Se), respectively, with not much activity for ES in terms of adsorption. The two adsorbents (NaOH-treated OP and ESM) were then tested in environmental water samples and the results showed that 68.9 % of As and 74.8 % of Se, and 54.1 % of As and 47.3 % of Se were removed from domestic wastewater samples investigated using OP and ESM, respectively. Moreover, better selectivities towards the compounds of interest were achieved.  相似文献   

2.
A specific method for the determination of bromine and iodine species in drinking water was developed by using high performance liquid chromatography‐ICP‐MS. An ICS‐A23 ion chromatography column was chosen for the separation of species, with the mobile phase being 0.03 mol l?1 ammonium carbonate at a flow rate of 0.8 ml min?1. The detection limits for BrO3?, Br?, IO3? and I? were 0.032, 0.063, 0.008 and 0.012 μg l?1, respectively. Spectroscopic interferences were only observed in blank samples and mainly resulted from the argon‐potassium polyatomic ion (40Ar39K+). However, this interference was negligible because of the elution and complete separation from that of iodinate under optimised conditions. The method developed was successfully applied to twenty‐two samples of drinking water obtained from a supermarket. Results indicated that 36.4% of the samples had BrO3? concentrations exceeding the Chinese national limit for drinking water of 10 μg l?1.  相似文献   

3.
A method was developed for the determination of platinum‐group elements (PGE) in geological samples by isotope dilution‐inductively coupled plasma‐mass spectrometry combined with sulfide fire assay preconcentration. Samples were fused and PGE analytes were concentrated in sulfide buttons. The buttons were dissolved using HCl leaving PGE analytes in insoluble residues, which were digested in HNO3 and simultaneously processed for the distillation of Os. The remaining solutions were further prepared for the purification of Ru, Rh, Pd, Ir and Pt using a tandem assembly of cation and Ln resin columns. The eluents were directly analysed by membrane desolvation‐ICP‐MS. Ruthenium, Pd, Os, Ir and Pt were determined by isotope dilution, whereas Rh was determined by conventional reference material calibration combined with 193Ir as the internal standard element. The method was validated using a series of PGE reference materials, and the measurement data were consistent with the recommended and the literature values. The measurement precision was better than 10% RSD. The procedural blanks were 0.121 ng for Ru, 0.204 for Rh, 0.960 ng for Pd, 0.111 ng for Os, 0.045 ng for Ir and 0.661 ng for Pt, and the limits of detection (3s) were 0.011 ng g?1 for Ru, 0.008 ng g?1 for Rh, 0.045 ng g?1 for Pd, 0.009 ng g?1 for Os, 0.006 ng g?1 for Ir and 0.016 ng g?1 for Pt when a test portion mass of 10 g was used. This indicates that the proposed method can be used for the determination of trace amounts of PGE in geological samples.  相似文献   

4.
A new method using a microcolumn (20 mm length × 2.0 mm i.d.) packed with Azadirachta Indica leaf powder (Neem leaf) as an adsorbent for the preconcentration/separation of Au and Pd prior to their determination by ICP‐OES in geological samples is presented. Various factors affecting the separation and preconcentration of the target analytes such as pH, sample flow rate and volume, eluent concentration and volume and interfering ions were studied and the optimal experimental conditions were established. The adsorption capacity of Azadirachta Indica leaf for Au and Pd was found to be 39.2 and 9.8 mg g−1, respectively. The detection limits (3s) of this method for Au and Pd with an enrichment factor of 50 were 47 ng l−1 and 59 ng l−1 and the relative standard deviations were 4.8% and 5.7% (n = 7, adsorption capacity C = 5 ng ml−1), respectively. In order to validate the proposed method, the certified reference material, GBW07293, was analysed, and a good agreement was obtained between the certified and determined values.  相似文献   

5.
A method was developed for the determination of low‐level rare earth elements (REEs) and thorium in ultramafic samples by inductively coupled plasma‐mass spectrometry. The conventional method for the digestion of ultramafic rocks using HNO3 and HF results in considerable amounts of insoluble fluorides because of the high contents of Mg (generally up to 24% m/m) in these rocks. In this study, we used H3BO3 as a complexing agent to break down the insoluble fluorides, and then separated the REEs from Fe and Mg major and Ba, Ca, Cr minor matrices by anion exchange and co‐precipitation, respectively. The whole procedural blanks estimated from sample‐free analyses ranged from 0.232 ng for Ce to 0.006 ng for Tm and Lu. Limits of detection for this method, defined as three times the standard deviation of these blank analyses, varied from 0.51 ng g?1 for Ce to 0.03 ng g?1 for Lu. The recovery of REEs using this technique, as determined using the standard addition method, ranged from 92.9% for Y to 102.0% for Er with 3% (RSD) variation. The method was validated using GAS (GeoPT‐12), JP‐1 and PCC‐1, and the results were comparable to literature values, elucidating the applicability to the determination of ultra trace REEs in ultramafic rocks.  相似文献   

6.
The influence of the mixtures HF‐HNO3 and HF‐NH4F‐HNO3 in bomb digestion for trace element determination from different rock types was studied using ICP‐MS. It is shown that the HF concentration, not the ratio of reagents in the decomposing mixture, controls the digestion process of a rock. Data for Zr in the granite G‐2 as a function of HF concentration gave the same results as reaction mixtures of various compositions. A complete digestion in 50‐mg sample bombs was achieved by 1.0 ml of HF alone, or with a mixture of other acids at a HF concentration of at least 35% m/m at 196 °C over 18 h. The results of the analysis of basalts BCR‐1, BIR‐1, mica schist SDC‐1, shale SBC‐1, granites G‐2, SG‐1A, garnet‐biotite plagiogneiss GBPg‐1, rhyolite RGM‐1, granodiorite GSP‐1, trachyandesite MTA‐1 and rhyolite MRh‐1 are given and compared against available data. The reproducibility of the element determinations by ICP‐MS and XRF as an independent non‐destructive analysis for a quality check in the range of concentrations typical for routine rock samples is given.  相似文献   

7.
A selective and sensitive method for the extraction and spectrophotometric determination of gold with N,N′‐6,7,9,10,17,18,20,21‐octahydrodibenzo[b,k][1,4,7,10,13,16] hexaoxacyclo‐octadecine‐2,13–diylbis(2‐chloroacetamide) (ODBOCA) is described. The ODBOCA–Au(III) complex was extracted from a slightly acidic aqueous solution (pH 5) into a chloroform layer and then the absorbance of the extract was measured using a UV–Vis spectrophotometer with 1.0 cm quartz cells at 540 nm. An enrichment factor of 200 was achieved. In the chloroform medium at 540 nm, the molar absorptivity and Sandell’s sensitivity were 4.12 × 103 l mol?1 cm?1 and 0.048 μg cm?2, respectively. Beer’s law was obeyed in the range of 0.5–15 μg ml?1 in the measured solution. The relative standard deviation for ten replicate samples at the 1.0 μg ml?1 level was 3.0%. The limit of detection, based on 3s, was 0.5 μg l?1 in the original sample. The effects of pH, ligand concentration and shaking time were studied. The ratio of the metal ion to ligand molecules in the complex was found to be 1:2 according to the Job Method. The effects of interference by a number of metal ions were investigated. The method was verified with certified reference materials and spiked tests, and quantitative recovery values were obtained. The method was fast, accurate, selective and precise, and was applied to the determination of gold in water and ore with good results.  相似文献   

8.
Concentrations of halogens (fluorine, chlorine, bromine and iodine) were determined in six geochemical reference materials (BHVO‐2, GS‐N, JG‐1, JR‐1, JB‐1b, JB‐2). Halogens were first extracted from powdered samples using a pyrohydrolysis technique, then hydrolysis solutions were analysed by ion chromatography for F and Cl and inductively coupled plasma‐mass spectrometry for Br and I. The detection limits in solutions were 100 μg l?1 for both F and Cl and 10 ng l?1 for Br and I. Considering the extraction procedure, performed on a maximum of 500 mg of sample and producing 100 ml of pyrohydrolysis solution, detection limits in rock samples were 20 mg kg?1 for F and Cl and 2 μg kg?1 for Br and I. The mean analytical errors on the studied composition ranges were estimated at 10 mg kg?1 for F and Cl, 100 μg kg?1 for Br and 25 μg kg?1 for I. The concentration values, based on repeated (generally > 10) sample analysis, were in good agreement generally with published values and narrowed the mean dispersion around mean values. Large dispersions are discussed in terms of samples heterogeneity and contaminations during sample preparation. Basaltic RMs were found to be more suitable for studies of halogen compositions than differentiated rock material, especially granites – the powders of which were heterogeneous in halogens at the 500 mg level.  相似文献   

9.
Trace elements from samples of bauxite deposits can provide useful information relevant to the exploration of the ore‐forming process. Sample digestion is a fundamental and critical stage in the process of geochemical analysis, which enables the acquisition of accurate trace element data by ICP‐MS. However, the conventional bomb digestion method with HF/HNO3 results in a significant loss of rare earth elements (REEs) due to the formation of insoluble AlF3 precipitates during the digestion of bauxite samples. In this study, the digestion capability of the following methods was investigated: (a) ‘Mg‐addition’ bomb digestion, (b) NH4HF2 open vessel digestion and (c) NH4F open vessel digestion. ‘Mg‐addition’ bomb digestion can effectively suppress the formation of AlF3 and simultaneously ensure the complete decomposition of resistant minerals in bauxite samples. The addition of MgO to the bauxite samples resulted in (Mg + Ca)/Al ratios ≥ 1. However, adding a large amount of MgO leads to significant blank contamination for some transition elements (V, Cr, Ni and Zn). The NH4HF2 or NH4F open vessel digestion methods can also completely digest resistant minerals in bauxite samples in a short period of time (5 hr). Unlike conventional bomb digestion with HF/HNO3, the white precipitates and the semi‐transparent gels present in the NH4HF2 and NH4F digestion methods could be efficiently dissolved by evaporation with HClO4. Based on these three optimised digestion methods, thirty‐seven trace elements including REEs in ten bauxite reference materials (RMs) were determined by ICP‐MS. The data obtained showed excellent inter‐method reproducibility (agreement within 5% for REEs). The relative standard deviation (% RSD) for most elements was < 6%. The concentrations of trace elements in the ten bauxite RMs showed agreement with the limited certified (Li, V, Cr, Cu, Zn, Ga, Sr, Zr and Pb) and information values (Co, Ba, Ce and Hf) available. New trace element data for the ten RMs are provided, some of which for the first time.  相似文献   

10.
In this study, a high‐precision method for the determination of Sm and Nd concentrations and Nd isotopic composition in highly depleted ultramafic rocks without a preconcentration step is presented. The samples were first digested using the conventional HF + HNO3 + HClO4 method, followed by the complete digestion of chromite in the samples using HClO4 at 190–200 °C and then complete dissolution of fluoride formed during the HF decomposition step using H3BO3. These steps ensured the complete digestion of the ultramafic rocks. The rare earth elements (REEs) were separated from the sample matrix using conventional cation‐exchange chromatography; subsequently, Sm and Nd were separated using the LN columns. Neodymium isotopes were determined as NdO+, whereas Sm isotopes were measured as Sm+, both with very high sensitivity using single W filaments with TaF5 as an ion emitter. Several highly depleted ultramafic rock reference materials including USGS DTS‐1, DTS‐2, DTS‐2b, PCC‐1 and GSJ JP‐1, which contain extremely low amounts of Sm and Nd (down to sub ng g?1 level), were analysed, and high‐precision Sm and Nd concentration and Nd isotope data were obtained. This is the first report of the Sm‐Nd isotopic compositions of these ultramafic rock reference materials except for PCC‐1.  相似文献   

11.
Mercury was determined in thirty‐three international stream sediment and soil reference samples (eleven Chinese soils, GSS‐1 to GSS‐11; twelve Chinese stream sediments, GSD‐1A to GSD‐12; four Canadian stream sediments STSD‐1 to STSD‐4; South African stream sediments, SARM‐42, SARM‐46 and SARM‐47; Japanese stream sediments, JSd‐1 to JSd‐3) by direct mercury analyser. Samples were taken in 500 μl quartz boats, placed in an auto sampler and processed (drying time 60 s at 300 °C; decomposition time 120 s at 850 °C; waiting time 45 s). The instrument was calibrated in the low (0‐50 ng) and high ranges (50‐500 ng) with two reference materials GSS‐5 and GXR‐2 (USGS). Using the calibration line, reference samples were analysed for Hg. The results of the determinations agreed with the recommended values of RMs in all cases except JSd‐1. The RSD calculated for the RMs was found to be within 20%. The detection limit was 1 ng g?1.  相似文献   

12.
To precisely determine the abundances of fifty‐two elements found within natural water samples, with mass fractions down to fg g?1 level, we have developed a method which combines freeze‐drying pre‐concentration (FDC) and isotope dilution internal standardisation (ID‐IS). By sublimation of H2O, the sample solution was reduced to < 1/50 of the original volume. To determine element abundance with accuracy better than 10%, we found that for solutions being analysed by mass spectrometry the HNO3 concentration should be > 0.3 mol l?1 to avoid hydrolysis. Matrix‐affected signal suppression was not significant for the solutions with NaCl concentrations lower than 0.2 and 0.1 cg g?1 for quadrupole ICP‐MS and sector field ICP‐MS, respectively. The recovery yields of elements after FDC were 97–105%. The detection limits for the sample solutions prepared by FDC were ≤ 10 pg g?1, except for Na, K and Ca. Blanks prepared using FDC were at pg‐levels, except for eleven elements (Na, Mg, Al, P, Ca, Mn, Fe, Co, Ni, Cu and Zn). The abundances of fifty‐two elements in bottled drinking water were determined from five different geological sources with mass fractions ranging from the fg g?1 to μg g?1 level with high accuracy.  相似文献   

13.
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP‐MS, electron probe microanalysis (EPMA) and solution ICP‐MS to determine the concentration of twenty‐four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium‐in‐quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA‐ICP‐MS laboratories, three EPMA laboratories and one solution‐ICP‐MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g?1), Al (154 ± 15 μg g?1), Li (30 ± 2 μg g?1), Fe (2.2 ± 0.3 μg g?1), Mn (0.34 ± 0.04 μg g?1), Ge (1.7 ± 0.2 μg g?1) and Ga (0.020 ± 0.002 μg g?1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.  相似文献   

14.
Sample digestion is a critical stage in the process of chemical analysis of geological materials by ICP‐MS. We present a new HF/HNO3 procedure to dissolve silicate rock samples using a high pressure asher system. The formation of insoluble AlF3 was the major obstacle in achieving full recoveries. This was overcome by setting an appropriate digestion temperature and adding Mg to the samples before digestion. Sodium peroxide sintering was also investigated and the inclusion of a heating step to the alkaline sinter solution improved the recoveries of thirteen elements other than the lanthanides. The results of these procedures were compared with data sets generated by common acid decomposition techniques. Forty‐one trace elements were determined using an ICP‐QMS equipped with a collision cell. Under optimum conditions of gas flow and kinetic energy discrimination, polyatomic interferences were eliminated or attenuated. The measurement bias obtained for eight reference materials (BCR‐2, BHVO‐2, BIR‐1, BRP‐1, OU‐6, GSP‐2, GSR‐1 and RGM‐1) and intermediate precision (RSD) were generally better than ± 5%. The expanded measurement uncertainties estimated for two certified reference materials were mostly between 7 and 15%. New data sets for the reference materials are provided, including constituents with previously unavailable values and also for the USGS candidate reference material G‐3.  相似文献   

15.
A method for the simultaneous determination of Cd with In, Tl and Bi by isotope dilution‐internal standardisation (ID‐IS) ICP‐QMS using the same aliquot for rare earth element and other trace element determinations was developed. Samples mixed with an enriched 149Sm spike were decomposed using a HF‐HClO4 mixture, which was evaporated and then diluted with HNO3. After determination of Sm by ID‐ICP‐QMS and Cd, In, Tl and Bi concentrations were determined using the 149Sm intensity as an internal standard. The interference of MoO+ on Cd+ was corrected using the MoO+/Mo+ ratio separately measured using a Mo standard solution, and the validity of the externally determined oxide‐forming ratio correction was evaluated. The MoO+/Mo+ ratios measured using the standard solution and samples were ~ 0.0002 and < 0.002, respectively. Detection limits for Cd, In, Tl and Bi in silicate samples were at levels of < 1 ng g?1 with a total uncertainty of < 7%. Cadmium in the carbonaceous chondrites, Orgueil (CI1), Murchison (CM2) and Allende (CV3) as well as Cd, In, Tl and Bi in the reference materials, JB‐2, JB‐3, JA‐1, JA‐2, JA‐3, JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 and DTS‐1 (USGS) and NIST SRM 610, 612, 614 and 616 were determined to show the applicability of this method.  相似文献   

16.
A simple, rapid method for the determination of Re and Os concentrations and isotope compositions using isotope dilution multi‐collector inductively coupled plasma‐mass spectrometry (ID‐MC‐ICP‐MS) combined with Carius tube digestion and sparging introduction of Os was developed. For Os measurement, four channeltron ion counters to detect different Os isotopes were used simultaneously, which led to a drastic reduction in the measurement time. Rhenium isotopes were measured by means of eight Faraday cups with solution nebulisation and an ultrasonic membrane desolvator. The representative 188Os count rate of an Os standard solution containing 50 pg of total Os was approximately 110000–120000 cps at the onset of measurement; the Re intensity of our in‐house 10 pg g?1 standard solution reached 1820 V/μg g?1 with a sample uptake rate of 95–99 μl min?1. These values indicate that the sensitivity of the method was sufficient even for samples with low Re and Os concentrations, such as chert. As the temporal variations of the amplification efficiency of the ion counters differed from one another, we adopted a sample‐calibrator bracketing method to correct the measured Re and Os isotope ratios. The Re and Os concentrations via the isotope dilution method and the 187Os/188Os ratios of two sedimentary rock reference materials (JMS‐2 and JCh‐1) on the basis of the isotope ratios determined by the MC‐ICP‐MS and by negative thermal ionisation mass spectrometry (N‐TIMS) were comparable within their ranges. Based on Os isotope measurement of the IAG reference material [Durham Romil Os (DROsS)], the average difference from the recommended value and precision of Os isotope measurements by the sparging method in combination with multi‐ion‐counters were 0.72% and 0.76% [1RSD (%), n = 29], respectively. The precisions in the 187Os/188Os ratios [1RSD (%)] of JMS‐2, JCh‐1 and DROsS were 0.35–0.71, 1.56–3.31 and 0.99–1.28%, respectively, which depended on their Os ion intensities. No systematic difference was observed between the Re and Os geochemical compositions of JCh‐1 and JMS‐2 obtained by means of digestion with inverse aqua regia and CrO3‐H2SO4 solutions, suggesting that either acid solution can be used for the sparging method of sedimentary rock samples. As CrO3‐H2SO4 solution is believed to liberate predominantly the hydrogenous Re and Os fraction from organic‐rich sediment, the sparging method combined with CrO3‐H2SO4 digestion and multi‐ion‐counters in the mass spectrometry is expected to be a powerful tool for reconstructing the secular change in marine Os isotope compositions with high sample throughput.  相似文献   

17.
A new digestion procedure and chemical separation technique has been developed for measurement of Lu/Hf and Hf isotope ratios that does not require high‐pressure bombs or use of HF or HClO4 acids. Samples are digested in dilute HCl or HNO3 after flux‐fusion at 110 0 °C in the presence of lithium metaborate. High field strength elements (HFSE) and rare earth elements (REE) are separated from this solution by co‐precipitation with iron hydroxide. The dissolved precipitate (in 2 mol l?1 HCl) is loaded directly onto a standard cation exchange column which separates remaining sample matrix from the heavy REE (Lu+Yb), and the middle‐light REE and HFSE (Hf). The middle‐light REE and individual HFSE are then separated (10.5, 9 and 6 mol l?1 HCl) using a miniaturized column containing TEVA spec resin which provides a REE‐, Ti‐ and Zr‐free Hf cut. This chemical separation scheme can also be readily adapted for isotopic analysis of the Sm‐Nd system and/or the other HFSE (Ti, Zr). Total procedural blanks for this technique are < 10 0 pg and < 2 pg for Hf and Lu, respectively, even when digesting large (0.5 g) samples. We present data from replicate digestions of international rock reference materials which demonstrate this technique routinely reproduces Lu/Hf ratios to < 0.2% (2s) and 176 Hf/177 Hf isotope ratios to < 30 ppm (2s). Moreover, the technique is matrix‐independent and has been successfully applied to analysis of diverse materials including basalts, meteorites, komatiites, kimberlites and carbonatites. The relative simplicity of this technique, coupled with the ease of digestion (and sample‐spike equilibration) of large difficult‐to‐dissolve samples, and the speed (2 days) with which samples can be digested and processed through the chemical separation scheme makes it an attractive new method for preparing samples for Lu‐Hf isotopic investigation.  相似文献   

18.
Complete dissolution is essential to obtain accurate analytical results for geological samples. Felsic rocks are known to be very difficult to dissolve because of the presence of refractory minerals such as zircon. In this study, we undertook a systematic evaluation of the effect of the HF/HNO3 ratio, digestion time, digestion temperature, digested test portion mass and the presence of insoluble fluorides on analytical results for the felsic rock GSP‐2 using high‐pressure HF and HF/HNO3 digestion. Digestion in mixtures of HF and HNO3 acids is a commonly used method of dissolution for geological samples. However, our results clearly indicate that adding HNO3 inhibited the digestion capabilities of HF for refractory minerals such as zircon. It took 8–12 hr for Zr to be completely recovered in GSP‐2 at 190 °C, whereas it needed about 36 and 72 hr at 160 and 140 °C, respectively. White precipitates were observed in the final solution for test portion mass > 100 mg, irrespective of which of the five different digestion solutions was used (1 ml HF, 2 ml HF, 1 ml HF + 0.5 ml HNO3, 1 ml HF + 1 ml HNO3 and 1.5 ml HF + 1.5 ml HNO3). Environmental scanning electron microscopy showed that these precipitates were mainly composed of AlF3. Instead of further HCl, HNO3 or HClO4 attack, we propose that using ultra‐fine samples and a small sample size is a good way to avoid the formation of insoluble residues (e.g., fluorides). To further investigate the precision and accuracy of the proposed method (using HF alone as the digestion solution during the first acid attack step), a suite of silicate rock reference materials was analysed. Most of the results were found to be in reasonable agreement with the reference values, with a relative error of < 10%.  相似文献   

19.
Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 μ m?3) and yearly (15 μg m?3) mass‐per‐unit‐volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non‐regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size‐limiting cyclone, or with no particle‐size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate‐bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM25 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m?3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co‐occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n‐alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non‐alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires).  相似文献   

20.
Geological reference materials (RMs) with variable compositions and NIST SRM 612 were analysed by isotope dilution mass spectrometry for bulk rock concentrations of chalcogen elements (sulfur, selenium and tellurium), rhenium and platinum‐group elements (PGEs: Ru, Pd, Os, Ir and Pt), including the isotope amount ratios of 187Os/188Os. All concentrations were obtained from the same aliquot after HCl‐HNO3 digestion in a high pressure asher at 320 °C. Concentrations were determined after chemical separation by negative TIMS, ICP‐MS and hydride generation ICP‐MS (Se, Te). As in previous studies, concentrations of the PGEs in most RMs were found to be highly variable, which may be ascribed to sample heterogeneity at the < 1 g level. In contrast, S, Se and Te displayed good precision (RSD < 5%) in most RMs, suggesting that part of the PGE budget is controlled by different phases, compared with the chalcogen budget. The method may minimise losses of volatile chalcogens during the closed‐system digestion and indicates the different extent of heterogeneity of chalcogens, Re and PGEs in the same sample aliquot. OKUM, SCo‐1, MRG‐1, DR‐N and MAG‐1 are useful RMs for the chalcogens. NIST SRM 612 displays homogenous distribution of S, Se, Te, Pt and Pd in 30 mg aliquots, in contrast with micro‐scale heterogeneity of Se, Pd and Pt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号