首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The natural river water certified reference material SLRS‐5 (NRC‐CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP‐MS. Because no certified values are assigned by NRC‐CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given.  相似文献   

2.
Mass fractions of S, Cu, Se, Mo, Ag, Cd, In, Te, Ba, Sm, W and Tl were determined by isotope dilution sector field ICP‐MS in the same sample aliquot of reference materials using HF‐HNO3 digestion in PFA beakers in pressure bombs and glassy carbon vessels in a high‐pressure asher (HPA‐S) for comparison. Additionally, Bi was determined by internal standardisation relative to Tl. Because isobaric and oxide interferences pose problems for many of these elements, efficient chromatographic separation methods in combination with an Aridus desolvator were employed to minimise interference effects. Repeated digestion and measurement of geological reference materials (BHVO‐1, BHVO‐2, SCo‐1, MAG‐1, MRG‐1 and UB‐N) gave results with < 5% relative intermediate precision (1s) for most elements, except Bi. Replicates of NIST SRM 612 glass digested on a hot plate were analysed by the same methods, and the results agree with reference values mostly within 2% relative deviation. Data for the carbonaceous chondrites Allende, Murchison, Orgueil and Ivuna are also reported. Digestion in a HPA‐S was as efficient as in pressure bombs, but some elements displayed higher blank levels following HPA‐S treatment. Pressure bomb digestion yielded precise data for volatile S, Se and Te, but may result in high blanks for W.  相似文献   

3.
To evaluate trace element soil contamination, geochemical baseline contents and reference values need to be established. Pedo-geochemical baseline levels of trace elements in 72 soil samples of 24 soil profiles from the Mediterranean, Castilla La Mancha, are assessed and soil quality reference values are calculated. Reference value contents (in mg kg?1) were: Sc 50.8; V 123.2; Cr 113.4; Co 20.8; Ni 42.6; Cu 27.0; Zn 86.5; Ga 26.7; Ge 1.3; As 16.7; Se 1.4; Br 20.1; Rb 234.7; Sr 1868.4; Y 38.3; Zr 413.1; Nb 18.7; Mo 2.0; Ag 7.8; Cd 4.4; Sn 8.7; Sb 5.7; I 25.4; Cs 14.2; Ba 1049.3; La 348.4; Ce 97.9; Nd 40.1; Sm 10.7; Yb 4.2; Hf 10.0; Ta 4.0; W 5.5; Tl 2.3; Pb 44.2; Bi 2.2; Th 21.6; U 10.3. The contents obtained for some elements are below or close to the detection limit: Co, Ge, Se, Mo, Ag, Cd, Sb, Yb, Hf, Ta, W, Tl and Bi. The element content ranges (the maximum value minus the minimum value) are: Sc 55.0, V 196.0, Cr 346.0, Co 64.4, Ni 188.7, Cu 49.5, Zn 102.3, Ga 28.7, Ge 1.5, As 26.4, Se 0.9, Br 33.0 Rb 432.7, Sr 3372.6, Y 39.8, Zr 523.2, Nb 59.7, Mo 3.9, Ag 10.1, Cd 1.8, Sn 75.2, Sb 9.9, I 68.0, Cs 17.6, Ba 1394.9, La 51.3, Ce 93.5, Nd 52.5, Sm 11.2, Yb 4.2, Hf 11.3, Ta 6.3, W 5.2, Tl 2.1, Pb 96.4, Bi 3.0, Th 24.4, U 16.4 (in mg kg?1). The spatial distribution of the elements was affected mainly by the nature of the bedrock and by pedological processes. The upper limit of expected background variation for each trace element in the soil is documented, as is its range as a criterion for evaluating which sites may require decontamination.  相似文献   

4.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   

5.
The fifth version of natural river water certified reference material, SLRS‐5 (National Research Council – Conseil National de Recherches Canada), is commonly used to control the quality of major and trace element measurements. Concentrations of silicon and thirty‐one uncertified trace elements have been reported for the certified reference material SLRS‐4, but they are not yet available for SLRS‐5. Here, SLRS‐5/SLRS‐4 ratios were deduced from SLRS‐5 and SLRS‐4 measurements by inductively coupled plasma‐atomic emission spectrometry and high‐resolution inductively coupled plasma‐mass spectrometry for certified elements and thirty‐five uncertified elements (rare earth elements, B, Bi, Br, Cs, Ga, Ge, Hf, Li, Nb, P, Pd, Rb, Rh, S, Sc, Si, Sn, Th, Ti, Tl, Y). Both reference materials were measured directly one after the other, so that calculated elemental ratios would not be notably influenced either by calibration uncertainties or by eventual long‐term instrumental drift. The computed ratios are in good agreement with those deduced from the certified values. We also report concentrations for thirty‐three uncertified elements in SLRS‐5 by combining the measured SLRS‐5/SLRS‐4 ratios and the published SLRS‐4 values. The resulting new data set provides target SLRS‐5 values, which will be useful in quality control procedures.  相似文献   

6.
Sample digestion is a critical stage in the process of chemical analysis of geological materials by ICP‐MS. We present a new HF/HNO3 procedure to dissolve silicate rock samples using a high pressure asher system. The formation of insoluble AlF3 was the major obstacle in achieving full recoveries. This was overcome by setting an appropriate digestion temperature and adding Mg to the samples before digestion. Sodium peroxide sintering was also investigated and the inclusion of a heating step to the alkaline sinter solution improved the recoveries of thirteen elements other than the lanthanides. The results of these procedures were compared with data sets generated by common acid decomposition techniques. Forty‐one trace elements were determined using an ICP‐QMS equipped with a collision cell. Under optimum conditions of gas flow and kinetic energy discrimination, polyatomic interferences were eliminated or attenuated. The measurement bias obtained for eight reference materials (BCR‐2, BHVO‐2, BIR‐1, BRP‐1, OU‐6, GSP‐2, GSR‐1 and RGM‐1) and intermediate precision (RSD) were generally better than ± 5%. The expanded measurement uncertainties estimated for two certified reference materials were mostly between 7 and 15%. New data sets for the reference materials are provided, including constituents with previously unavailable values and also for the USGS candidate reference material G‐3.  相似文献   

7.
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP‐MS, electron probe microanalysis (EPMA) and solution ICP‐MS to determine the concentration of twenty‐four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium‐in‐quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA‐ICP‐MS laboratories, three EPMA laboratories and one solution‐ICP‐MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g?1), Al (154 ± 15 μg g?1), Li (30 ± 2 μg g?1), Fe (2.2 ± 0.3 μg g?1), Mn (0.34 ± 0.04 μg g?1), Ge (1.7 ± 0.2 μg g?1) and Ga (0.020 ± 0.002 μg g?1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.  相似文献   

8.
We present a revised alkali fusion method for the determination of trace elements in geological samples. Our procedure is based on simple acid digestion of powdered low‐dilution (flux : sample ≈ 2 : 1) glass beads where large sample dilution demanded by high total dissolved solids, a main drawback of conventional alkali fusion, could be circumvented. Three geological reference materials (G‐3 granite, GSP‐2 granodiorite and SGD‐1a gabbro) decomposed by this technique and routine tabletop acid digestion were analysed for thirty trace elements using a quadrupole ICP‐MS. Results by conventional acid digestion distinctly showed poor recoveries of Zr, Hf and rare earth elements due to incomplete dissolution of resistant minerals. On the other hand, results obtained by our method were in reasonable agreement with reference data for most analytes, indicating that refractory minerals were efficiently dissolved and volatile loss was insignificant.  相似文献   

9.
Four silicate glasses were prepared by the fusion of about 1 kg powder each of a basalt, syenite, soil and andesite to provide reference materials of natural composition for microanalytical work. These glasses are referred to as ‘Chinese Geological Standard Glasses’ (CGSG) ‐1, ‐2, ‐4 and ‐5. Micro and bulk analyses indicated that the glasses are well homogenised with respect to major and trace elements. Some siderophile/chalcophile elements (e.g., Sn, Pt, Pb) may be heterogeneously distributed in CGSG‐5. This paper provides the first analytical data for the CGSG reference glasses using a variety of analytical techniques (wet chemistry, XRF, EPMA, ICP‐AES, ICP‐MS, LA‐ICP‐MS) performed in nine laboratories. Most data agree within uncertainty limits of the analytical techniques used. Discrepancies in the data for some siderophile/chalcophile elements exist, mainly because of possible heterogeneities of these elements in the glasses and/or analytical problems. From the analytical data, preliminary reference and information values for fifty‐five elements were calculated. The analytical uncertainties [2 relative standard error (RSE)] were estimated to be between about 1% and 20%.  相似文献   

10.
A method for the simultaneous determination of Cd with In, Tl and Bi by isotope dilution‐internal standardisation (ID‐IS) ICP‐QMS using the same aliquot for rare earth element and other trace element determinations was developed. Samples mixed with an enriched 149Sm spike were decomposed using a HF‐HClO4 mixture, which was evaporated and then diluted with HNO3. After determination of Sm by ID‐ICP‐QMS and Cd, In, Tl and Bi concentrations were determined using the 149Sm intensity as an internal standard. The interference of MoO+ on Cd+ was corrected using the MoO+/Mo+ ratio separately measured using a Mo standard solution, and the validity of the externally determined oxide‐forming ratio correction was evaluated. The MoO+/Mo+ ratios measured using the standard solution and samples were ~ 0.0002 and < 0.002, respectively. Detection limits for Cd, In, Tl and Bi in silicate samples were at levels of < 1 ng g?1 with a total uncertainty of < 7%. Cadmium in the carbonaceous chondrites, Orgueil (CI1), Murchison (CM2) and Allende (CV3) as well as Cd, In, Tl and Bi in the reference materials, JB‐2, JB‐3, JA‐1, JA‐2, JA‐3, JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 and DTS‐1 (USGS) and NIST SRM 610, 612, 614 and 616 were determined to show the applicability of this method.  相似文献   

11.
A solvent extraction, flame atomic absorption analytical scheme is reported for the elements Au, Tl, Sb, Ga, Mo, Cu, Ni, Co, Ag, Bi, Cd, Pb, Zn and Mn in geological materials. Results are quoted for NIM standard rocks and for USGS reference samples, and are compared with published values; practical detection limits are generally better than 0.2 ppm. A stepwise solvent extraction and preconcentration process is utilised (chloro complexes, diethyldithiocarbamate and 8-hydroxyquinoline chelates are used with methyl isobutyl ketone and n-butyl acetate as solvents) which allows the reproducible isolation of groups of elements which generally occur at similar concentrations geologically. Analytical accuracy is maintained by the chemical elimination, within each step, of other chelate-forming elements present at higher concentrations which would cause spectral interferences during the atomic absorption measurements. The complete stepwise process is reported together with elemental partition data which covers a range of aqueous ionic conditions.  相似文献   

12.
The United States Geological Survey granitic and granodioritic reference materials G‐2 and GSP‐2 were decomposed in high‐pressure bombs using both HF‐HNO3 and HF‐HNO3‐HClO4 in order to evaluate the feasibility of characterising the entire suite of geologically relevant trace elements through direct analysis with a high‐resolution inductively coupled plasma‐mass spectrometer (HR‐ICP‐MS). The digested samples were diluted to the appropriate levels and analysed at low, medium and high resolution depending on the required sensitivity and potential interferences for each element. Memory effects during analysis of the high field strength elements (HFSE) were negligible when analysed using an all‐Teflon, uncooled sample introduction system and combined with adequate wash times with 4% v/v aqua regia + 0.5% v/v HF between samples. The concentration of the remaining lithophile elements was determined with a conventional, cooled, Scott‐type spray chamber using a wash solution of 1% v/v HNO3. Total procedural blanks contributed between 0.01 to 0.5% to final sample concentrations and blank subtractions were typically unnecessary. Abundances for Li, Hf, Ba, Zr, Ga, Rb, Sr, La, Ce, Th and U were systematically higher, while those for the heavy rare earth elements (HREEs), Cu and Y were systematically lower in this study compared to USGS values for G‐2 and GSP‐2. This is likely to be related to, respectively, higher recoveries from more efficient digestion of refractory phases (i.e., zircon, tourmaline), and better resolution of interferences when using a HR‐ICP‐MS. Sample digestion experiments also showed that perchloric acid digestion in high pressure bombs resulted in superior recoveries and better precision for the bulk of the trace elements analysed. The concentration of the remaining elements overlapped within uncertainty with recommended reference values and with values determined in other studies using isotope‐dilution TIMS, ICP‐MS and XRF. Concentrations for the elements Cd, Sn, Sb, Ta, Bi, Tb, Ni and Mo are also reported for G‐2 and GSP‐2 reference materials. Our study shows therefore that it is feasible to determine thirty‐nine geologically relevant trace elements accurately and directly in granitoid sample digests when using a HR‐ICP‐MS, thereby negating the need for ion exchange or isotopic spiking.  相似文献   

13.
The main Woodlawn ore lens is a polymetallic, massive sulphide deposit’ with pyrite the major constituent, variable sphalerite, galena and chalcopyrite, and minor arsenopyrite, tetrahedrite‐tennantite, pyrrhotite and electrum. The silicate gangue minerals are chlorite, quartz, talc and sericitic mica. Other mineralization in the vicinity consists of footwall copper ore in chlorite schist and several smaller massive sulphide lenses. The predominant country rocks are felsic volcanics and shales, with abundant quartz, chlorite and mica, and talc in mineralized zones.

An important textural feature of the massive ore is the fine compositional banding. Bands, which vary in thickness from a few tens of micrometres to several millimetres, are produced by variations in the sulphide content. Post‐depositional metomorphism and minor fracturing have only slightly modified this banding.

Apart from the major element constituents—Pb, Zn, Fe, Cu and S—the ore is characterized by significant (100–1000 ppm) values for Ag, As, Cd, Mn, Sb and Sn, and lower (1–100 ppm) values of Au, Bi, Co, Ga, Hg, Mo, Ni, Tl. In and Ge. Variations in the base‐metal sulphide content, the gangue mineralogy, and trace elements, are used to separate the orebody into hanging‐wall and footwall zones. The hanging‐wall zone shows a more variable trace element content, with higher Tl, Sn, Ni, Mn, Ge and Sb, but lower Ag, Cd, and Mo, than the footwall zone.

In general style of mineralization, mineralogy, and chemistry, the Woodlawn deposit resembles other volcanogenic massive sulphide deposits in eastern Australia, in New Brunswick in Canada, and the Kuroko deposits of Japan.  相似文献   

14.
New analytical results are reported for rarely determined elements Be, B, Ge, As, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, W, Re, Ir, Pt, Au, Tl and Bi in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate glasses and the NIST SRM 610‐614 synthetic soda‐lime glasses using 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. The method used involved external calibration against GOR132‐G for Ir and NIST SRM 610 for other elements, internal standardisation using Ca, and ablation with a crater diameter of 160 μm and a pulsed laser repetition rate of 10 Hz. Small amounts of nitrogen (5 ml min?1) were added to the central channel gas of the plasma to improve the limits of detection for most of these elements by a factor of 1.2–2.5 and to reduce the oxide interference level to 0.02% (ThO+/Th+). Under these conditions, the LODs for most of these rarely determined elements were within the range 0.1 to 10 ng g?1. The operating conditions that were required to minimise ICP‐induced fractionation (U+/Th+≈ 1) in the mode without nitrogen were accompanied by a 50–60% reduction in sensitivity for elements such as Ca, Au and Pt. In contrast, ICP‐induced fractionation could be minimised (U+/Th+≈ 1) with no loss of analyte sensitivity in the nitrogen mode. Interferences of CuAr+, ZnAr+, Cd+, Pb2+ and Sn+ on Pd+, Rh+, Cd+ and In+ were corrected. Oxide interferences were not considered due to their lower production rate. Analytical precision, as given by one relative standard deviation (% RSD) was less than 15% for most of the elements present at concentrations greater than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with a correlation coefficient of ?0.76. This trend indicates that possible chemical heterogeneities for most of these elements are smaller than the analytical uncertainty. Our results for Be, B, Ge, Sb and W are generally in good agreement with their reference values. In contrast, other elements in many of the reference glasses have only information values, upper limits or even no values, which restrict any detailed evaluation of the accuracy of the determined values. However, concentrations from multiple isotopes of one element analysed in this study showed excellent agreement, which guarantee the quality of our data to a certain extent.  相似文献   

15.
山西平朔安太堡露天矿9号煤层中的微量元素   总被引:12,自引:0,他引:12       下载免费PDF全文
庄新国  曾荣树 《地球科学》1998,23(6):583-588
使用ICP-AES方法对安太堡露天矿9号煤层中的微量元素进行了系统测定,检测出53种微量元素,将研究煤样的平均微量元素质量分数与世界范围微量元素平均质量分数相比较,煤样中Li,Ga,Sr,Zr,Nb,Sn和Ta具有较高的富集,而Cr,Co,Ni,Ge,Rb,Y,Cs和Ba具有较低的富集,研究资料表明不同微量元素在垂向剖面上其质量分数具有不同的分布特征。经相关分析表明:(1)与镜质组含量相关的元素有  相似文献   

16.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

17.
We report on an improved method for determining trace element abundances in seawater and other natural waters. The analytical procedure involves co‐precipitation on iron hydroxides after addition of a Tm spike, and measurement by inductively coupled plasma‐sector field mass spectrometry (ICP‐SFMS). The validity of the method was assessed through a series of co‐precipitation experiments, using ultra‐diluted solutions of a certified rock reference material (BIR‐1). Results obtained for four natural water reference materials (NASS‐5, CASS‐4, SLEW‐3, SLRS‐4) are in agreement with published working values for rare earth elements, yttrium, vanadium and, when available, for hafnium, zirconium, thorium and scandium. A set of proposed values with uncertainties typically better than 8% RSD is proposed for Hf, Zr and Th.  相似文献   

18.
Data reported by laboratories contributing to the GeoPT proficiency testing programme for geochemical laboratories over the period from 2001 to 2011 have been assessed to identify the elements and concentration ranges over which analytical performance can be considered satisfactory. Criteria developed in the paper indicated that performance in the content determination of the elements/constituents SiO2, Al2O3, MnO, Cs, Dy, Er, Eu, Ga, Hf, Ho, Lu, Nd, Pr, Sm, Sr, Tb, Tl, Tm, U, Y, Yb and Zn was satisfactory over the full concentration range assessed. The elements/constituents TiO2, Fe2O3(T), MgO, CaO, Na2O, K2O, P2O5, Ba, Be, Cd, Ce, Co, Gd, La, Li, Nb, Rb, Sb, Sc, Sn, Ta, Th, V and Zr showed some degradation in performance at lower concentration levels (approaching the detection limit of some techniques). Performance in determining LOI, As, Bi, Cr, Cu, Ge, Mo, Ni, Pb and W was in general unsatisfactory over the full concentration range assessed. Other elements (especially Fe(II)O, H2O+, CO2, Ag, Au, B, Br, Cl, F, Hg, I, In, Ir, N, Os, Pd, Pt, Re, Rh, S, Se, Te) could not be evaluated as they were not routinely reported by laboratories participating in the GeoPT programme, often because they are present in silicate rocks at sufficiently low concentrations to require a pre‐concentration stage. Some suggestions are made for the causes of unsatisfactory performance, but further progress will require a detailed assessment of the methods used by participating laboratories, which will form the subject of a further paper.  相似文献   

19.
An in situ, medium‐resolution LA‐ICP‐MS method was developed to measure the abundances of the first‐row transition metals, Ga and Ge in a suite of geological materials, namely the MPI‐DING reference glasses. The analytical protocol established here hinged on maximising the ablation rate of the ultraviolet (UV) laser system and the sensitivity of the ICP‐MS, as well minimising the production of diatomic oxides and argides, which serve as the dominant sources of isobaric interferences. Non‐spectral matrix effects were accounted for by using multiple external calibrators, including NIST SRM 610 and the USGS basaltic glasses BHVO‐2G, BIR‐1G and BCR‐2G, and utilising 43Ca as an internal standard. Analyses of the MPI‐DING reference glasses, which represent geological matrices ranging from basaltic to rhyolitic in composition, included measurements of concentrations as low as < 100 μg g?1 and as high as > 104 μg g?1. The new data reported here were found to statistically correlate with the ‘preferred’ reference values for these materials at the 95% confidence level, though with significantly better precision, typically on the order of ≤ 3% (2sm). This analytical method may be extended to any matrix‐matched geological sample, particularly oceanic basalts, silicate minerals and meteoritic materials.  相似文献   

20.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号