首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Fe是海洋“生物泵”中限制浮游生物生长和控制海洋初级生产力的主要因素之一,也可间接影响大气中CO2含量,反馈于全球的气候变化。近年来基于多接收电感耦合等离子体质谱仪(MC ICP MS)分析方法的改进及测试精度的提高,应用Fe同位素组成、变化及其分馏机制,为研究海水中Fe的主要来源以及示踪海洋环境中Fe的循环过程等,提供了一个有效地球化学指标,也对示踪地球不同演化阶段的海洋沉积环境变化具有指示意义。较为详细地介绍了海洋环境中不同储库的Fe同位素组成,洋中脊热液流体—玄武岩、海水—大洋玄武岩等水—岩反应影响Fe同位素分馏效应的主要因素及地球不同演化阶段古海洋沉积环境中的Fe同位素变化。认为海洋环境下Fe同位素可以产生较为明显的分馏作用,轻铁同位素具有更易活动、易迁移的特征,并进一步提出不同相态、不同矿物间Fe同位素分馏系数的确定等相关问题仍是今后Fe同位素研究的主要方向。  相似文献   

2.
We use the molybdenum isotope paleoredox proxy to look for evidence of small amounts of O2 in the environment ∼50 Ma before the Great Oxidation Event (GOE) in a high resolution profile from the ∼2.5 Ga Mt. McRae Shale. The molybdenum isotope compositions (δ98/95Mo) from samples throughout the sequence span a range from 0.99‰ to 1.86‰. All samples have heavier δ98/95Mo compared to average upper continental crust. In addition, the upper (S1) and lower (S2) black shale units within the Mt. McRae Shale exhibit systematic differences in average isotopic compositions and distinct patterns of δ98/95Mo variation. Heavier δ98/95Mo values occur in the S1 unit, where δ98/95Mo correlates with Mo enrichments. In the S2 unit, δ98/95Mo is not as heavy and is relatively invariant.Based on sedimentary Fe proxies we infer that S1 sediments were deposited under euxinic conditions, so that Mo removal from bottom waters was likely quantitative. Thus, δ98/95Mo in this interval likely records coeval seawater. The lighter δ98/95Mo values in the S2 unit may indicate a less fractionated ocean Mo inventory relative to the S1 unit. However, sedimentary Fe proxies suggest that S2 sediments accumulated under a water column that was ferruginous rather than euxinic, raising the possibility of non-quantitative Mo scavenging and hence an expressed δ98/95Mo fractionation relative to coeval seawater. Because any associated fractionations during this process would have favored the light isotope in sediments, the lighter δ98/95Mo values in the S2 unit represent a lower limit on the value in contemporaneous seawater.After evaluating a range of hypotheses, we conclude that the isotopically heavy δ98/95Mo values seen throughout the Mt. McRae Shale likely reflect the effects of oxidative weathering and adsorption of Mo to oxide mineral surfaces on land or in surface oceans. The extent of environmental oxygenation in either unit is difficult to assess due to uncertainties in the global Mo isotope budget. Because of the small ocean Mo inventory in the Late Archean, documented by low concentrations of Mo and low Mo/TOC, the extent of oxygenation required to account for the observed fractionations is much smaller than in modern oceans. However, when juxtaposed against the record of δ98/95Mo through time, our findings provide further evidence of the onset of environmental oxygenation before the GOE.  相似文献   

3.
随着表面热离子质谱(TIMS)和多接收器电感耦合等离子体质谱(MC-ICP-MS)的广泛应用以及同位素分析方法的改进,近10年来非传统稳定同位素(Cu、Zn、Fe、Se、Mo、Cr、Hg等)的研究得到迅速发展.其中,由于Mo同位素的分馏明显受氧化还原条件的控制,使其在指示古环境及古气候的变化方面有独特的地球化学指示意义.同时,Mo同位素在指示成矿物质来源和海洋Mo循环等方面也取得较大成果.因此,Mo同位素地球化学研究已成为国际地学领域的一个前沿和热点.本文综合前人的研究成果,结合近期自己的工作,论述了Mo同位素地球化学研究领域的一些重要进展,详细介绍了Mo同位素的化学分离、提纯和质谱分析技术,并对其应用前景进行了展望.  相似文献   

4.
海洋Nd同位素演化及古洋流循环示踪研究   总被引:2,自引:0,他引:2       下载免费PDF全文
海洋Nd同位素演化已经成为示踪陆源风化输入和洋流循环改变的最重要的手段之一,得到了越来越多的应用,并取得了许多重要的成果。海水的Nd同位素组成主要受陆源输入物质控制,热液输入几乎可以忽略。由于Nd在海洋中的停留时间(约500~1000a)略小于海水的平均混合时间(约1500a),且各洋盆有不同的Nd同位素风化输入,因此现代各大洋海水具有不同的Nd同位素组成。在陆源输入稳定的情况下,可以利用海水的Nd同位素组成和演化来示踪水体的混合或洋流循环的改变。目前主要依靠对海洋中水成铁锰结壳、海洋钙质有孔虫壳体、磷酸质鱼骨头或鱼牙齿化石以及沉积物中铁锰氧化物组分等的研究来恢复和反演古海水的Nd同位素组成和演化。4种分析材料各有其优缺点。其中,通过对水成铁锰结壳的Nd同位素分析,基本建立了各大洋新生代以来的主要洋流的Nd同位素组成的长尺度演化。通过有孔虫壳体、鱼化石碎片和沉积物中Fe-Mn氧化物组分可以进行高时间分辨率的古海水Nd同位素演化示踪。利用海水Nd同位素演化可以示踪古洋流通道的开启或闭合,以及获得水体交换的直接信息,为研究构造运动与气候变化之间的关系提供指示。同时,将海水Nd同位素演化与气候变化的指标结合起来,可以用于示踪各种气候条件下洋流循环的改变,将洋流循环的改变与气候变化联系起来,研究两者之间的成因关系。对表层水体的Nd同位素组成的研究则可以示踪不同气候条件下大陆陆源风化输入的改变。  相似文献   

5.
《Chemical Geology》2007,236(3-4):181-198
Variations in molybdenum isotopic composition, spanning the range of ∼ 2.3‰ in the terms of 97Mo/95Mo ratio, have been measured in sediment cores from three lakes in northern Sweden and north-western Russia. These variations have been produced by both isotopically variable input of Mo into the lakes due to Mo isotopic heterogeneity of bedrock in the drainage basins and fractionation in the lake systems due to temporal variations in limnological conditions. Mo isotope abundances of bedrock in the lake drainage basins have been documented by analysis of Mo isotope ratios of a suite of molybdenite occurrences collected in the studied area and of detrital fractions of the lake sediment cores. The median δ97Mo value of the investigated molybdenites is 0.26‰ with standard deviation of 0.43‰ (n = 19), whereas the median δ97Mo value of detrital sediment fractions from two lakes is − 0.40‰ with standard deviation of 0.36‰ (n = 15).The isotopic composition of Mo in the sediment cores has been found to be dependent on redox conditions of the water columns and the dominant type of scavenging phases. Hydrous Fe oxides have been shown to be an efficient scavenger of Mo from porewater under oxic conditions. Oxidative precipitation of Fe(II) in the sediments resulted in co-precipitation of Mo and significant authigenic enrichment at the redox boundary. In spite of a pronounced increase in Mo concentration associated with Fe oxides at the redox boundary the isotopic composition of Mo in this zone varies insignificantly, suggesting little or no isotope fractionation during scavenging of Mo by hydrous Fe oxides. In a lake with anoxic bottom water a chironomid-inferred reconstruction of O2 conditions in the bottom water through the Holocene indicates that increased O2 concentrations are generally associated with low δ97Mo/95Mo values of the sediments, whereas lowered O2 contents of the bottom water are accompanied by relatively high δ97Mo/95Mo values, thus confirming the potential of Mo isotope data to be a proxy for redox conditions of overlying waters. However, it is pointed out that other processes including input of isotopically heterogeneous Mo and Mn cycling in the redox-stratified water column can be a primary cause of variations in Mo isotopic compositions of lake sediments.  相似文献   

6.
非传统稳定同位素(Fe-Cu-Zn-Mo)理论与数据相结合提高了科研工作者对地质体系氧化还原过程的理解。本文对这一相对较新的领域进行了综述,包括与氧化还原过程相关的同位素分馏理论和实验约束、时空尺度下的氧逸度以及同位素示踪氧化还原过程。稳定同位素理论预测,Fe-Cu-Zn-Mo同位素应该对氧化还原状态的变化能够做出响应。结果表明,Fe同位素作为岩浆过程、表生过程、俯冲带流体性质"氧逸度计"应用前景广阔;Cu同位素在岩浆、热液、陆地系统可以很好地示踪氧化还原过程;Zn同位素由于络合过程分馏已经被用在许多不同环境中作为含硫/碳流体迁移的敏感示踪剂;Mo同位素作为古氧逸度计可有效重建古海洋-大气氧化还原状态。  相似文献   

7.
The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS).We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis.The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea.  相似文献   

8.
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass‐dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first‐order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and ?0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s).  相似文献   

9.
The Ediacaran-Cambrian transition is characterized by numerous events such as the emergence of large multi-cellular metazoans and surface environmental disturbances.Based on geological evidence,it has been proposed that this transition coincided with the increase in the atmospheric oxygen level that was key to the evolution of life.Even though ancient redox conditions can be inferred from the composition of sedimentary iron mineral species,this method is not necessarily applicable to all rocks.In the Earth system,the cycling of iron is of considerable interest owing to its sensitivity to redox conditions.Information regarding the paleo-oceanic iron cycle is revealed in the iron isotopic composition of ironbearing minerals.Unfortunately,only limited iron isotopic data exists for Ediacaran-to Cambrianperiod oceans.To circumvent this deficiency,we drilled a fossiliferous Ediacaran to Early Cambrian sedimentary succession in the Three Gorges region,South China.We analyzed the iron isotope ratios(δ~(56/54)Fe)of pyrite grains in the drill cores using laser ablation multi collector inductively coupled plasma mass spectrometry.The results demonstrate large variations inδ~(56/54)Fe,from-1.6 to 1.6‰,and positive iron isotope ratios are observed in many successions.The presence of positiveδ~(56/54)Fe in pyrite indicates that the ferrous iron in the seawater was partially oxidized,suggesting that seawater at Three Gorges was ferruginous during the Ediacaran and Early Cambrian periods.However,aggregated pyrite grains in organic carbon-rich black shales at Member 4 of the Doushantuo Formation and the base of the Shuijingtuo Formation yield near-zeroδ~(56/54)Fe values;this suggests that the ocean was transiently dominated by sulfidic conditions during these periods.Notably negativeδ~(56/54)Fe values,lower than-1‰,can be interpreted as a signature of DIR.The DIR also might contribute in part to the re-mineralization of organic matter during the largest negative carbon isotope anomaly in the Ediacaran.  相似文献   

10.
高剑峰  凌洪飞  赵葵东 《地球学报》2005,26(Z1):203-204
目前大多数研究者认为太古代地球大气中缺氧,到2400~1800Ma的时候,大气中的氧含量有了巨大的增长,大气已经处于氧化环境(Canfied 等,2000;Kasting,2001)。然而海洋从还原状态转变到以氧化为主的时间还有很大的争论(Amold等,2004;Siebert 等,2005)。Mo 元素在氧化条件下主要呈稳定的溶解态 MoO42-形式存在,故在现代氧化海洋中 Mo 有很长的存留时间(0.8 Ma;Morford 等,1999),但在还原条件下特别是在有 H2S 存在的条件下,Mo 呈硫化物形式迅速沉淀。因此,Mo 元素能够很灵敏地反映海洋的氧化还原状态(Emerson 等,1991;Crusius 等,1996;Helz等,1996;Morford 等,1999)。随着同位素分析技术的发展,Mo 同位素的分析精度可达0.2‰(Wieser等,2003;2005;Arnold 等,2004)。现代大洋海水的 Mo 具有均一的同位素组成,δ97Mo/95Mo 值为(1.56±0.13)‰。海洋沉积环境依据氧化还原状态可以分为3个部分,即氧化部分、缺氧部分和还原部分。氧化部分的代表样品为铁锰结壳,铁锰结壳吸附的 Mo 的δ97Mo/95Mo 值为(-0.47±18)‰,与海水溶解的 Mo 同位素[(1.56±0.13)‰]之间存在稳定的、很大的同位素分馏;还原部分的代表为现在黑海沉积物,δ97Mo/95Mo 值为(1.28±0.42)‰,还原性沉积样品 Mo 同位素组成变化较大,与还原程度有关,强还原条件下(存在游离 H2S),进入海水的 Mo 几乎全部沉淀,其 Mo 同位素组成与海水的相接近,弱还原条件下,沉积物与海水 Mo 同位素有一定的分馏。因此,可以用其来推测古海水 Mo 同位素的变化;缺氧环境的样品比较复杂,其δ97Mo/95Mo 同位素值约为介于海水值和大陆岩石样品值之间。在地质历史上某个时期,随着海洋的氧化δ97Mo/95Mo 值升高。虽然有研究者尝试用二元模型来研究中元古代的海洋(Arnold 等,2004),但是,目前 Mo 同位素的测试精度以及样品性质决定了仅仅使用 Mo 同位素进行海洋的氧化还原状态的研究还存在很大困难,甚至得出错误的结论。最近有研究者(Sibert 等,2005)在进行 Mo 同位素研究的同时,测定了样品的 Mo 含量,对于揭示海洋氧化还原状态的改变提供了较为可靠的信息。在太古代的黑色页岩等样品中,Mo 的含量范围 为(0.62~6.01)×10-6,但大多数样品都低于3.5×10-6,δ97Mo/95 Mo 值为(-0.14~+0.60)‰;早元古代的黑色页岩样品中 Mo 含量范围为(0.56~3.72)×10-6,δ97Mo/95 Mo 值为(-0.22~+0.40)‰;1700 Ma 的黑色页岩样品 Mo 含量突然增大到(42~52)×10-6,δ97Mo/95 Mo 值为(+0.4~+0.6)‰;1400 Ma 的黑色页岩样品中 Mo 含量为(11~60)×10-6,δ97Mo/95 Mo 值为(+0.3~+0.6)‰;现在黑海的海相页岩中的 Mo 含量为(1~127)×10-6,δ97Mo/95 Mo 值为(1.14±0.08)‰ 至 (1.52±0.23)‰ (Arnold 等,2004)。从以上 Mo 含量及同位素的分析可邮(图1),早元古代样品的 Mo 含量及同位素特征与太古代的样品类似,既没有 Mo 元素的富集,也没有产生明显的 Mo 同位素分馏,推测在早元古代的时候,海洋还基本处于还原状态,到1700Ma 左右时,由于空气已经处于氧化状态,所以大陆风化过程中,氧化态 Mo 开始大量进入海洋中,此时海洋也已经不是大面积处于还原状态,其中的 Mo 含量已经升高,可是局部沉积的黑色页岩提供充足的 Mo,因此此后沉积的黑色页岩中 Mo 的含量明显升高,当然,沉积速率也会影响黑色页岩 Mo 含量,但这是相对次级的因素;与此同时,海洋中开始出现铁锰氧化物等氧化性沉积物,它们携带轻 Mo 同位素从海水中沉淀出来,导致海水中的 Mo 同位素变重,δ97Mo/95 Mo 值升高,并且这种升高趋势持续今。由此,可以推断,大气氧化主要发生在1700Ma 以前,而海洋氧化似乎是一个从1700Ma 或1400Ma 至今的持续的过程。  相似文献   

11.
Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in δ56Fe (differences in the 56Fe/54Fe ratio relative to the IRMM-14 standard) from −0.27 ± 0.09‰ to +0.21 ± 0.08‰. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean δ56Fe of +0.08 ± 0.13‰, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean δ56Fe of −0.14 ± 0.19‰. Negative correlations of the δ56Fe values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of −1.06 ± 0.20‰ for δ56Fe. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved δ56Fe value of about −1.4‰ to −0.9‰. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive δ56Fe values.  相似文献   

12.
Molybdenum (Mo) isotopes have great potential as a paleoredox indicator, but this potential is currently restricted by an incomplete understanding of isotope fractionations occurring during key (bio)geochemical processes. To address one such uncertainty we have investigated the isotopic fractionation of Mo during adsorption to a range of Fe (oxyhydr)oxides, under variable Mo/Fe-mineral ratios and pH. Our data confirm that Fe (oxyhydr)oxides can readily adsorb Mo, highlighting the potential importance of this removal pathway for the global Mo cycle. Furthermore, adsorption of Mo to Fe (oxyhydr)oxides is associated with preferential uptake of the lighter Mo isotopes. Fractionations between the solid and dissolved phase (Δ98Mo) increase at higher pH, and also vary with mineralogy, increasing in the order magnetite (Δ98Mo = 0.83 ± 0.60‰) < ferrihydrite (Δ98Mo = 1.11 ± 0.15‰) < goethite (Δ98Mo = 1.40 ± 0.48‰) < hematite (Δ98Mo = 2.19 ± 0.54‰). Small differences in isotopic fractionation are also seen at varying Mo/Fe-mineral ratios for individual minerals. The observed isotopic behaviour is consistent with both fractionation during adsorption to the mineral surface (a function of vibrational energy) and adsorption of different Mo species/structures from solution. The different fractionation factors determined for different Fe (oxyhydr)oxides suggests that these minerals likely exert a major control on observed natural Mo isotope compositions during sediment deposition beneath suboxic through to anoxic (but non-sulfidic) bottom waters. Our results confirm that Mo isotopes can provide important information on the spatial extent of different paleoredox conditions, providing they are used in combination with other techniques for evaluating the local redox environment and the mineralogy of the depositing sediments.  相似文献   

13.
Concerning the question of how and when free oxygen started to accumulate in the Earth’s atmosphere and hydrosphere, we report Mo concentrations and isotopic compositions as well as Platin group element and Rhenium (PGE-Re) data from black shales of the Transvaal Supergroup (Ghaap Group, 2.64-2.5 Ga, and Pretoria Group, 2.45-2.15 Ga). For comparison we also include new data from the 3.23 Ga Fig Tree Group, Barberton Greenstone Belt. This time range covers the period between the first robust evidence for cyanobacteria at 2.7 Ga and the disappearance of mass independent sulfur isotope fractionation (MIF) at 2.32 Ga. Due to the redox dependent solubility of Mo, Re and Os, such data are important proxies for changes in oxygen levels of the early atmosphere and oceans. In particular, Mo isotope fractionation can only occur when Mo is in solution as oxyanions, requiring free oxygen. In the Fig Tree Group samples, Mo is not fractionated relative to the continental crust, and PGE-Re abundance patterns reflect those of komatiites, indicating a purely detrital input of these element, a sign of no free oxygen. A general increase in Mo concentration and isotope fractionation, as well as an enrichment in Re, compared to the continental crust and Fig Tree Group, can be seen within the Ghaap Group indicating a gradual rise of oxygen between 2.64 and 2.5 Ga. However, Mo concentrations and δ98/95Mo values vary strongly in this period. Local conditions of sedimentation (changes in redox and input conditions) and/or global oxic/anoxic fluctuations could have caused these Mo variations.Samples of the overlying Pretoria Group (2.45-2.15 Ga) show Mo concentrations and isotopic compositions somewhat below the continental input, while PGE-Re abundance patterns are quite similar to those for the Ghaap. The apparent contradiction between the decoupled Mo and PGE-Re values can be resolved assuming a stratified ocean with almost total scavenging of Mo. Such an increased scavenging can result from enhanced biological sedimentation between and especially after glacial events. This period coincides with the Lomagundi-Jatulian carbon isotope excursion, which indeed indicates very enhanced organic carbon burial.  相似文献   

14.
李梦娣  周炼  王焰新  吴潇  王帅 《地球科学》2014,39(1):99-107
砷在天然环境中的迁移富集与氧化还原状态密切相关.盆地环境地下水中砷的活化迁移机制主要为沉积物中铁/锰氢氧化物由氧化还原条件变化导致发生还原性溶解进而释放吸附在其表面的砷.钼及钼同位素为氧化还原环境的重要指示参数, 且铁/锰氢氧化物对钼同位素分馏有着重要的控制作用.将地下水的钼同位素应用于砷的活化迁移规律研究.大同盆地地下水中钼同位素比值(δ98Mo)范围为-0.12‰~+2.17‰, 相比于淡水中钼同位素组成偏重.桑干河河水的δ98Mo为+0.72‰, 与文献报道的河水平均钼同位素比值+0.7‰相当.大同盆地地下水中δ98Mo与硫化物之间存在正相关关系, 表明Mo-Fe-S复合物可能形成于特定条件下, 并优先利用水溶液中轻的钼使地下水中δ98Mo比值升高.砷浓度与钼浓度之间的微弱负相关以及砷浓度与钼同位素之间的正相关说明, Mo-Fe-S的形成过程可能与同环境中As-Fe-S的复合物的形成存在竞争关系, 进而使得地下水中砷富集.地下水中相对偏高的δ98Mo可能来源于铁的氢氧化物对溶液中轻的钼的吸附速率高于先前吸附在铁的氢氧化物的钼的释放, 且铁的氢氧化物对水溶液中钼的再吸附这一循环过程会导致地下水中钼浓度降低及钼同位素比值的升高.钼同位素指示的循环性的铁的氢氧化物的还原溶解及再氧化过程对砷的富集也有重要影响.   相似文献   

15.
胡永亮  王伟  周传明 《沉积学报》2020,38(1):138-149
地质历史时期新元古代大气氧含量普遍较低。在硫酸盐还原细菌作用下,作为海洋重要的氧化性离子,陆源硫酸根离子有效促进了深层海水的氧化进程。在此过程中,硫元素在硫酸根和黄铁矿之间发生显著同位素分馏,其分馏程度可反推当时古海洋的氧化还原状态。沉积地层中的黄铁矿普遍具有多种形态,不同形态黄铁矿的形成环境多有不同。如草莓状黄铁矿多形成于底层缺氧水体或沉积物的浅表面,而大颗粒单晶黄铁矿或脉状黄铁矿则多沉积于成岩早期的沉积物孔隙或形成于成岩后期的热液改造。与草莓状黄铁矿不同,大颗粒单晶或脉状黄铁矿的硫同位素组成并不能反映沉积时期的古海洋氧化还原条件。判定沉积地层中不同形态的黄铁矿及形成过程,是获得有效反映海洋沉积环境硫同位素组成特征的基本前提。简要总结了地质历史时期沉积地层中的黄铁矿类型及矿物形成过程,并以华南埃迪卡拉纪蓝田组岩芯样品为例,识别出各个样品中的黄铁矿形态组成特征,对比分析了全岩黄铁矿与样品中大颗粒黄铁矿硫同位素组成差异。研究结果表明:不同岩性样品中黄铁矿的形态种类及含量均存在差异。页岩样品保存有更好形态的自形晶以及草莓状黄铁矿;碳酸盐岩样品中具有较多自形晶以及他形晶黄铁矿,并且其中的少量草莓状黄铁矿遭受后期成岩作用而发生不同程度的晶体蚀变。样品中大颗粒黄铁矿的硫同位素值(δ34SL-pyr)通常显著高于全岩黄铁矿的硫同位素值(δ34ST-pyr),最大差值可达48.5‰。在利用黄铁矿的硫同位素组成来反推当时古海洋环境时,需要区分不同形态黄铁矿,仔细剔除大颗粒黄铁矿,降低成岩期黄铁矿对样品中硫同位素组成的影响。更细致的微区黄铁矿硫同位素分析工作将依赖于SIMS分析测试手段进行。  相似文献   

16.
条带状铁建造(BIF)是形成于前寒武纪海洋中的化学沉积岩,记录了古海洋氧化还原状态的重要信息。华北克拉通广泛分布的新太古代和古元古代BIF,是了解古元古代大氧化事件(GOE)前后古海洋氧化还原环境变化的理想对象。初步研究表明,华北克拉通新太古代BIF主要为磁铁矿型氧化物相和硅酸盐相,极少数出现碳酸盐相;古元古代BIF包括赤铁矿型和磁铁矿型氧化物相、硅酸盐相和碳酸盐相,其中赤铁矿相是古元古代BIF独有的。以上矿物学特征表明,新太古代和古元古代水体的氧化还原条件是不同的。华北克拉通新太古代BIF的稀土元素组成缺乏强烈的负Ce异常,反映同期海水氧含量非常低,为缺氧状态; 但少量BIF也包含有负Ce异常,同时具有较大变化范围的Th/U值,指示新太古代海洋的局部水体氧含量相对较高,呈弱氧化状态。与新太古代BIF相比,古元古代BIF的Ce异常变化较大,包括无异常、正异常和负异常,尤其是赤铁矿相BIF具明显的负Ce异常,表明古元古代水体的氧含量和氧化还原结构已发生了明显变化; 结合华北克拉通BIF的Ni/Co、V/(V+Ni)和Th/U等比值特征,认为古元古代海洋呈次氧化—氧化环境。新太古代BIF 强烈富集重铁同位素,S同位素非质量分馏效应较为明显;而古元古代BIF相对富集轻铁同位素,S同位素非质量分馏效应不明显。综上,新太古代海洋环境整体缺氧,但局部可能存在氧气“绿洲”,暗示光合产氧作用在太古代晚期已经存在;大氧化事件期间及之后的古海洋总体具上部氧化、下部还原的分层特征。  相似文献   

17.
Banded iron formation(BIF)belongs to sedimentary rocks formed in Precambrian marine,which can directly reflect the redox state of the ancient oceans. Mineral composition and geochemistry of BIF can reveal the relative changes of oxygen contents of ancient atmosphere-ocean. The Neoarchean and Paleoproterozoic BIFs widely distributed in the North China Craton(NCC),are the ideal research objects for understanding the changes of the ancient ocean redox environment before and after the Paleoproterozoic Great Oxidation Event(GOE). Our previous studies indicated that the sedimentary facies of the Neoarchean BIF in the NCC are mainly magnetite-type oxide and silicate,with minor carbonate. The sedimentary facies of the Paleoproterozoic BIF are hematite- and magnetite-type oxide,silicate and carbonate,of which the hematite-oxide facies is unique to the Paleoproterozoic BIF. The above mineralogical features suggest that the redox conditions of the Neoarchean and Paleoproterozoic seawater are different. The rare earth element composition of the Neoarchean BIF in the NCC lacks a strong negative Ce anomaly,reflecting that the oxygen content of contemporary seawater is very low and the marine is anoxic. However,a small amount of BIFs in the NCC also present the negative Ce anomalies and a wide range of Th/U ratios,indicating that the local water of the Neoarchean ocean had relatively high oxygen content and was at a weak oxidation state. Compared with the Neoarchean BIFs,the Paleoproterozoic BIFs present a wide range of Ce anomalies(i.e.,no Ce anomalies,positive Ce anomalies and negative Ce anomalies). The hematite-bearing BIF has an obvious negative Ce anomalies,implying that the oxygen content and redox state of Paleoproterozoic seawater changed significantly. Combined with the ratios of Ni/Co,V/(V+Ni)and Th/U of the BIFs in the NCC,the Paleoproterozoic oceans exhibited a suboxidation to oxidation environment. Besides,Neoarchean BIF is strongly enriched in heavy iron isotopes and the non-mass fractionation of S isotope is obvious,whereas the Paleoproterozoic BIF is relatively enriched in light iron isotopes and the non-mass fractionation of S isotope is not obvious. It is summarized that the Neoarchean marine is anoxic,but the oxygen‘oasis' may exist locally,implying that photosynthetic oxygen production already existed in the Late Neoarchean. The ancient ocean presented a layered characteristics during and after the GOE,indicating that the shallow water was generally oxidized and the deep water was reduced.  相似文献   

18.
The isotopic composition of U in nature is generally assumed to be invariant. Here, we report variations of the 238U/235U isotope ratio in natural samples (basalts, granites, seawater, corals, black shales, suboxic sediments, ferromanganese crusts/nodules and BIFs) of ∼1.3‰, exceeding by far the analytical precision of our method (≈0.06‰, 2SD). U isotopes were analyzed with MC-ICP-MS using a mixed 236U-233U isotopic tracer (double spike) to correct for isotope fractionation during sample purification and instrumental mass bias. The largest isotope variations found in our survey are between oxidized and reduced depositional environments, with seawater and suboxic sediments falling in between. Light U isotope compositions (relative to SRM-950a) were observed for manganese crusts from the Atlantic and Pacific oceans, which display δ238U of −0.54‰ to −0.62‰ and for three of four analyzed Banded Iron Formations, which have δ238U of −0.89‰, −0.72‰ and −0.70‰, respectively. High δ238U values are observed for black shales from the Black Sea (unit-I and unit-II) and three Kupferschiefer samples (Germany), which display δ238U of −0.06‰ to +0.43‰. Also, suboxic sediments have slightly elevated δ238U (−0.41‰ to −0.16‰) compared to seawater, which has δ238U of −0.41 ± 0.03‰. Granites define a range of δ238U between −0.20‰ and −0.46‰, but all analyzed basalts are identical within uncertainties and slightly lighter than seawater (δ238U = −0.29‰).Our findings imply that U isotope fractionation occurs in both oxic (manganese crusts) and suboxic to euxinic environments with opposite directions. In the first case, we hypothesize that this fractionation results from adsorption of U to ferromanganese oxides, as is the case for Mo and possibly Tl isotopes. In the second case, reduction of soluble UVI to insoluble UIV probably results in fractionation toward heavy U isotope compositions relative to seawater. These findings imply that variable ocean redox conditions through geological time should result in variations of the seawater U isotope compositions, which may be recorded in sediments or fossils. Thus, U isotopes might be a promising novel geochemical tracer for paleo-redox conditions and the redox evolution on Earth. The discovery that 238U/235U varies in nature also has implications for the precision and accuracy of U-Pb dating. The total observed range in U isotope compositions would produce variations in 207Pb/206Pb ages of young U-bearing minerals of up to 3 Ma, and up to 2 Ma for minerals that are 3 billion years old.  相似文献   

19.
Strontium isotopic evolution of the Phanerozoic seawater is an emerging research field of the material cycle in the Earth’s outer-spheres. It is greatly significant for the research of the environmental change on the Earth’s surface during the geological history. The researches of the strontium isotopic evolution of the Phanerozoic seawater have gone through three stages: The early stage, the accumulated stage, and the integrated stage. In the early stage, the primitive evaluation of the diagenetic alteration and the low precision of the analytical instruments resulted in most strontium isotope data without stratigraphic significance. Most researches were only at the initially exploratory stage. In the accumulated stage, the gradually mature evaluation of the diagenetic alteration and higher precision of the analytical instruments made ongoing progress in the researches, especially the establishment and development of the high-resolution strontium isotopic evolution curves of the Cenozoic seawater had spawned a new interdisciplinary branch: Strontium isotope stratigraphy. In the integrated stage, the accumulated high-quality strontium isotope data had been integrated into some strontium isotope database of Phanerozoic seawater. These databases are becoming one of the effective tools to solve the problems in the stratigraphy, petrology, ore deposit, hydrology, and other related applications. Currently, many problems still have not been satisfactorily resolved in the researches of the strontium isotopic evolution of the Phanerozoic seawater, such as the preservation differences of the original seawater information in a sample, the age of uncertainty of samples, lower dating accuracy of more ancient samples, the materials and stratigraphic questions of the Cambrian samples, trace rubidium contamination of samples, the isotope fractionation between 86Sr and 88Sr, the interlaboratory bias, the uncertainty of the data fitting, etc. These problems are the difficulties to possess more practicability and applicability of strontium isotope stratigraphy. Based on the summary of the research progress, we attempted to systematically summarize the stages and differences of the researches of strontium isotopic composition of Phanerozoic seawater at different periods. We wish this paper offer some perspective to the researches of strontium isotopic composition of Phanerozoic seawater in future.  相似文献   

20.
The key drivers controlling the redox state of seawater and sediment pore waters in low energy environments can be inferred from redox-sensitive trace elements (RSTE), molecular biomarkers and trace metal isotopes. Here, we apply a combination of these tools to the Upper Permian Kupferschiefer (T1) from the Thuringian Basin, deposited in the southern part of the semi-enclosed Kupferschiefer Sea. Enrichment patterns of the RSTEs molybdenum (Mo) and uranium (U) as well as biomarker data attest to the rapid development of euxinic conditions in basin settings during early T1 times, which became progressively less extreme during T1 deposition. The evolution of redox conditions in basinal settings, and the associated delay in the onset of euxinia at more shallow marginal sites, can be attributed to the interaction of sea-level change with basin paleogeography. Euxinia in the southern Kupferschiefer Sea did not lead to near-quantitative depletion of aqueous Mo, possibly due to short deepwater renewal times in the Thuringian Basin, low aqueous H2S concentrations, the continuous resupply of RSTE during transgression and declining burial rates of RSTEs throughout T1 times. Drawdown of RSTE is, however, indicated for euxinic lagoon environments. Moreover, admixture of freshwater supplied to these lagoons by rivers strongly impacted local seawater chemistry. The highest Mo-isotope compositions of ~ 1.70‰ in basin sediments allow a minimum Kupferschiefer Sea seawater composition of ~ 2.40‰ to be estimated. This composition is similar to the ~ 2.30‰ estimate for the Late Permian open ocean, and confirms a strong hydrographic connection between the epeiric Kupferschiefer Sea and the global ocean. The substantial variation in Mo-isotope signatures is paralleled by diagnostic shifts in biomarkers responding to oxygenation in different parts of the water column. Water column chemistry has been affected by variation in sea level, hydrodynamic restriction, riverine freshwater influx and evaporitic conditions in shallow lagoons. Elucidation of the relative role of each driving factor by a single geochemical proxy is not feasible but the complex scenario can be disentangled by a multiproxy approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号