首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

2.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

3.
The Hujiayu Cu deposit,representative of the "HuBi-type" Cu deposits in the Zhongtiao Mountains district in the southern edge of the North China Craton,is primarily hosted in graphitebearing schists and carbonate rocks.The ore minerals comprise mainly chalcopyrite,with minor sphalerite,siegenite[(Co,Ni)_3S_4],and clausthalite[Pb(S,Se)].The gangue minerals are mainly quartz and dolomite,with minor albite.Four fluid inclusion types were recognized in the chalcopyrite-pyrite-dolomite-quartz veins,including CO_2-rich inclusions(type Ⅰ),low-salinity,liquid-dominated,biphase aqueous inclusions(type Ⅱ),solid-bearing aqueous inclusions(type Ⅲ),and solid-bearing aqueous-carbonic inclusions(type Ⅳ).Type I inclusion can be further divided into two sub-types,i.e.,monophase CO_2 inclusions(type Ⅰa) and biphase CO_2-rich inclusions(with a visible aqueous phase),and type Ⅲ inclusion is divided into a subtype with a halite daughter mineral(type Ⅲa) and a subtype with multiple solids(type Ⅲb).Various fluid inclusion assemblages(FIAs) were identified through petrographic observations,and were classified into four groups.The group-1 FIA,consisting of monophase CO_2 inclusions(type Ⅰa),homogenized into the liquid phase in a large range of temperatures from-1 to 28℃,suggesting post-entrapment modification.The group-2 FIA consists of type Ⅰb,Ⅲb and Ⅳ inclusions,and is interpreted to reflect fluid immiscibility.The group-3 FIA comprises type Ⅱ and Ⅲa inclusions,and the group-4FIA consists of type Ⅱ inclusions with consistent phase ratios.The group-1 and group-2 FIAs are interpreted to be entrapped during mineralization,whereas group-3 and group-4 FIAs probably represent the post-mineralization fluids.The solid CO_2 melting temperatures range from-60.6 to56.6℃ and from-66.0 to-63.4℃ for type Ⅰa and type Ⅳ inclusions,respectively.The homogenization temperatures for type Ⅱ inclusions range from 132 to 170℃ for group-3 FIAs and115 to 219℃ for group-4 FIAs.The halite melting temperatures range from 530 to 562℃ for typeⅢ b and Ⅳ inclusions,whereas those for type Ⅲa inclusions range from 198 to 398℃.Laser Raman and SEM-EDS results show that the gas species in fluid inclusions are mainly CO_2 with minor CH_4,and the solids are dominated by calcite and halite.The calcite in the hosting marble and dolomite in the hydrothermal veins have δ~(13)C_(V-pdb) values of-0.2 to 1.2‰ and-1.2 to-6.3‰,and δ~(18)O_(v-smow) values of 14.0 to 20.8 ‰ and 13.2 to 14.3‰,respectively.The fluid inclusion and carbon-oxygen isotope data suggest that the ore-forming fluids were probably derived from metamorphic fluids,which had reacted with organic matter in sedimentary rocks or graphite and undergone phase separation at 1.4-1.8 kbar and 230-240℃,after peak metamorphism.It is proposed that the Hujiayu Cu deposit consists of two mineralization stages.The early stage mineralization,characterized by disseminated and veinlet copper sulfides,probably took place in an environment similar to sediment-hosted stratiform copper mineralization.Ore minerals formed in this precursor mineralization stage were remobilized and enriched in the late metamorphic hydrothermal stage,leading to the formation of thick quartz-dolomite-sulfides veins.  相似文献   

4.
The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated fault mylonite zone of the Sinian-Silurian metamorphic rock series. In this study there have been discovered melt inclusions, fluid-melt inclusions and organic inclusions in ore-bearing quartz veins of the ore deposit and mylonite for the first time. The homogenization temperatures of the various types of inclusions are 160℃, 180 - 350℃, 530℃ and 870℃ for organic inclusions, liquid inclusions, two-phase immiscible liquid inclusions and melt inclusions, respectively. Ore fluid is categorized as the neutral to basic K+ -Ca2+ -Mg2+ -Na+ - SO2- 4-HCO3-Cl- system. The contents of trace gases follow a descending order of H2O>CO2>CH4>(or < ) H2>CO>C2H2>C2I-I6>O2>N2.The concentrations of K , Ca2 + ,SO2-4,HCO3-,Cl- H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in ores from different levels of the gold deposit. This is significant for deep ore prospecting in the region. Daughter minerals in melt inclusions were analyzed using SEM. Quartz, orthoclase, wollastonite and other silicate minerals were identified. They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins. Sedimentary metamorphic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism, which possess melt-solution characteristics. Ore formation is related to the multi-stage forming process of silicate melt and fluid.  相似文献   

5.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   

6.
The Dongshengmiao Pb-Zn deposit located in the Mesoproterozoic aulacogen in a passive continental margin in the north- west margin of the North-China Craton is widely considered to be a untypical SEDEX deposit.Recently,new types of mineralization such as chalcopyrite veins and re-crystallized sphalerite ores with visible hydrothermal alteration have been found in the deposit at depth.In this paper we report the decrepitation temperatures of fluid inclusions in chalcopyrite,sphalerite and quartz from these new types of ores.The decrepitation temperatures of fluid inclusions in chalcopyrite(4 samples),sphalerite(2 samples)and quartz(5 samples)are 303~456℃,97~497℃,146~350℃and 350~556℃,respectively.The decrepitation temperatures of fluid inclusions in the vein-type chalcopyrite are similar to the decrepitation temperatures of fluid inclusions in chalcopyrite from the Hercynian Oubulage porphyry Cu-Au deposit(313~514℃)and the Chehugou porphyry Cu-Mo deposit(277~485℃),supporting our interpretation that the Dongshengmiao deposit was overprinted by magmatic hydrothermal mineralization.The decrepitation temperatures of fluid inclusions in re-crystallized sphalerite from the Dongshengmiao deposit are characterized by two peaks,97~358℃and 358~497℃.The decrepitation temperatures of fluid inclusions in quartz in ehalcopyrite veins from the Dongshengmiao deposit are also characterized by two peaks,146~350℃and 350~556℃.The lower and higher temperature peaks in both cases are considered to represent two separate mineralization events,original SEDEX mineralization and magmatic hydrothermal overprinting,respectively.The higher decrepitation temperatures of fluid inclusions in quartz and sphalerite from the Dongshengmiao deposit are similar to the decrepitation temperatures(340~526℃)of fluid inclusions in sphalerite from the Baiyinnuoer skarn-type Pb-Zn deposit in the region. Replacement of pyrite by sphalerite and overgrowth of chalcopyrite on pyrite in the Dongshengmiao support our interpretation that the original SEDEX mineralization was overprinted by magmatic hydrothermal activity in the deposit.Our results suggest that there may be separate porphyry and skarn-type deposits related to Hercynian magmatism and associated hydrothermal activities in the Langshan area, which are potential exploration targets in the future.  相似文献   

7.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

8.
The Ailaoshan aquamarine-bearing pegmatites are associated with Proterozoic metamorphic rocks in the southern portion of the Ailaoshan fault-folded complex.The gem-bearing pegmatite mineralization zones of the region occur in areas generally consistent with the regional tectonic trend.The pegmatites are found in metamorphic rocks,migmatites and in the inner/outer contact zones of gneissoid granites. The Rb-Sr isochron drawn for the pegmatites is 26~31 Ma,(i.e.in Himalayan).The homogenization temperatures of melt and liquid inclusions in minerals vary from 185 to 920℃,which are comparable to the inclusions observed in banded migmatites and ptygmatic quartz veins in the surrounding metamorphic rocks. The mineralization fluids of the pegmatite were rich in HCO_3 and CO_2,and their compositional assemblages are comparable to metamorphic fluids.Results of H,O,C,Si etc.isotopic analyses and REE,and Be analyses indicates that the sources of mineralization components that formed the pegmatites are closely associated with metamorphic fluids and the enclosing metamorphic rocks. A pegmatite structure simulation experiment was conducted at high temperature and pressure(840℃and 1,500×105Pa.),with various metamorphic rock samples in a water-rich and volatile-rich environment.When the liquidus was reached,the temperature was gradually decreased at the rate of 5~10℃/day over a time period of three months.SEM energy-dispersive spectrum analyses were performed on the experimental products.A series of pegmatoid textures were observed including zonal texture,megacryst texture,drusy cavities,crystal druses,and vesicular texture along with more than ten types of minerals including plagioclase,microcline,quartz and biotite.Different metamorphic rock melts generated different mineral assemblages.Experiment results revealed that the partial melting of metamorphic rocks could form melts similar to pegmatite magmas. Based upon the geological characteristics,geochemistry,and pegmatite texture simulation experimental results,it is concluded that the mineralization components of Ailaoshan aquamarine-bearing pegmatites came from metamorphic rocks.The petrogenetic model for the origin of pegmatites is related to ultrametamorphism and metamorphic anatexis.  相似文献   

9.
Anhua-Xupu fault belt plays a very important role in the formation of Xuefeng Mountains. The fault belt shows an arc-structure extruding towards NW. Fault rocks, microstructures and homogeneous temperature (concentrated around 160℃) of fluid inclusions in the quartz veins shows that the fault belt mainly underwent shallow brittle deformation and the highest-grade dynamic metamorphic rock is mylonitized sericite phyllite. The ESR (Electron Spin Resonance) dating from the quartz veins in the fault rocks shows that the fault belt underwent two intense fluid movement stages at Yanshanian(156.9-136.2Ma, 119.8-90.6Ma); moreover not only the occurrence and microstructures but also the homogeneous temperature of the quartz veins developed in that two stages show obvious diversity, which can prove that there exists the reversion period of Mesozoic extension and compression movement of Xuefeng mountains between these two stages.  相似文献   

10.
The Kekesayi gold deposit is located in the Buergen ductile shear zone in the southern margin of Altay, Qinghe County, Xinjiang. The deposit consists of altered mylonite type and gold-bearing quartz veins type ores. The main ore-bearing rocks are gray metamorphic tuffs of the Tuoranggekuduke Formation. The ores are mostly lenticular and vein, and are strictly controlled by shear bands. Through field investigation, sample collection and laboratory identification, the structural alteration characteristics are studied in detail. The microstructure of quartz is analyzed by SEM cathodoluminescence (SEM-CL). The fluid inclusions of the deposit were studied by means of micro-temperature measurement and laser Raman analysis, and the tectonic-fluid evolution characteristics were discussed. Our results showed that: (1) The gold mineralization is closely related to the structural alteration of the ductile shear zone. The mylonitization, subgrain deformation and fluid structure are developed in the mining area. The recrystallized texture, dissolution structure and multistage composite shear structure characteristics of SEM-CL show that the deformation and metamorphism are very strong. The tectonic-hydrothermal activity resulted in strong silicification and pyritization and closely related to gold mineralization. (2) The fluid inclusions of quartz veins in the mineralized rocks are distributed in groups and the morphology of the fluid inclusions are mostly oval and tadpole in shape. The primary fluid inclusions are distributed in disorder, and the secondary fluid inclusions distribute linearly along the fissures mostly elongated owing to the strong tectonic deformation. Fluid inclusions are not of uniform size, generally are 8-20 μm. The types of inclusions can be classified according to the petrography and micro temperature measurement: two phase aqueous solution type (LH2O-VH2O), carbon-rich type (LH2O-LH2O) and single phase aqueous solution type (LH2O). The evolution of the fluid is characterized by high temperature, low salinity and rich CO2 in the early stage. As the deformation of the shear zone increases in the middle and late stages, the fluid evolved into low temperature, low salinity rich H2O. (3) The Kekesayi gold deposit has the characteristics of orogenic gold deposit, and the evolutionary characteristics of tectonic-ore forming fluids are consistent with the evolution of shear zones. Structural alteration of shear zone is the main controlling factor of mineralization. And magmatic hydrothermal alteration may also play an important role in mineralization. © 2018, Science Press. All right reserved.  相似文献   

11.
The Na Son deposit is a small‐scale Pb–ZnPb–Zn–Ag deposit in northeast Vietnam and consists of biotite–chlorite schist, reddish altered rocks, quartz veins and syenite. The biotite–chlorite schist is intruded by syenite. Reddish altered rocks occur as an alteration halo between the biotite–allanite‐bearing quartz veins and the biotite–chlorite schist. Allanite occurs in the biotite–allanite‐bearing quartz veins and in the proximal reddish altered rocks. Rare earth element (REE) fluorocarbonate minerals occur along fractures or at rim of allanite crystals. The later horizontal aggregates of sulfide veins and veinlets cut the earlier reddish altered rocks. The earlier Pb–Zn veins consist of a large amount of galena and lesser amounts of sphalerite, pyrite and molybdenite. The later Cu veins cutting the Pb–Zn veins include chalcopyrite and lesser amounts of tetrahedrite and pyrite. The occurrences of two‐phase H2O–CO2 fluid inclusions in quartz from biotite–allanite‐bearing quartz veins and REE‐bearing fluorocarbonate minerals in allanite suggest the presence of CO2 and F in the hydrothermal fluid. The oxygen isotopic ratios of the reddish altered rocks, biotite–chlorite schist, and syenite range from +13.9 to +14.9 ‰, +11.5 to +13.3 ‰, and +10.1 to +11.6 ‰, respectively. Assuming an isotopic equilibrium between quartz (+14.6 to +15.8 ‰) and biotite (+8.6 ‰) in the biotite–allanite‐bearing quartz vein, formation temperature was estimated to be 400°C. At 400°C, δ18O values of the hydrothermal fluid in equilibrium with quartz and biotite range from +10.5 to +11.7 ‰. These δ18O values are consistent with fluid that is derived from metamorphism. Assuming an isotopic equilibrium between galena (+1.5 to +1.7 ‰) and chalcopyrite (+3.4 ‰), the formation temperature was estimated to be approximately 300°C. The formation temperature of the Na Son deposit decreased with the progress of mineralization. Based on the geological data, occurrence of REE‐bearing minerals and oxygen isotopic ratios, the REE mineralization is thought to result from interaction between biotite–chlorite schist and REE‐, CO2‐ and F‐bearing metamorphic fluid at 400°C under a rock‐dominant condition.  相似文献   

12.
The Xiaojiashan tungsten deposit is located about 200 km northwest of Hami City, the Eastern Tianshan orogenic belt, Xinjiang, northwestern China, and is a quartz vein‐type tungsten deposit. Combined fluid inclusion microthermometry, host rock geochemistry, and H–O isotopic compositions are used to constrain the ore genesis and tectonic setting of the Xiaojiashan tungsten deposit. The orebodies occur in granite intrusions adjacent to the metamorphic crystal tuff, which consists of the second lithological section of the first Sub‐Formation of the Dananhu Formation (D2d 12). Biotite granite is the most widely distributed intrusive bodies in the Xiaojiashan tungsten deposit. Altered diorite and metamorphic crystal tuff are the main surrounding rocks. The granite belongs to peraluminous A‐type granite with high potassic calc‐alkaline series, and all rocks show light Rare Earth Element (REE)‐enriched patterns. The trace element characters suggest that crystallization differentiation might even occur in the diagenetic process. The granite belongs to postcollisional extension granite, and the rocks formed in an extensional tectonic environment, which might result from magma activity in such an extensional tectonic environment. Tungsten‐bearing quartz veins are divided into gray quartz vein and white quartz veins. Based on petrography observation, fluid inclusions in both kinds of vein quartz are mainly aqueous inclusions. Microthermometry shows that gray quartz veins have 143–354°C of Th, and white quartz veins have 154–312°C of Th. The laser‐Raman test shows that CO2 is found in fluid inclusions of the tungsten‐bearing quartz veins. Quadrupole mass spectrometry reveals that fluid inclusions contain major vapor‐phase contents of CO2, H2O. Meanwhile, fluid inclusions contain major liquid‐phase contents of Cl?, Na+. It can be speculated that the ore‐forming fluid of the Xiaojiashan tungsten deposit is characterized by an H2O–CO2, low salinity, and H2O–CO2–NaCl system. The range of hydrogen and oxygen isotope compositions indicated that the ore‐forming fluids of the tungsten deposit were mainly magmatic water. The ore‐forming age of the Xiaojiashan deposit should to be ~227 Ma. During the ore‐forming process, the magmatic water had separated from magmatic intrusions, and the ore‐bearing complex was taken to a portion where tungsten‐bearing ores could be mineralized. The magmatic fluid was mixed by meteoric water in the late stage.  相似文献   

13.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

14.
The Wangfeng gold deposit is located in Western Tian Shan and the central section of the Central Asian Orogenic Belt (CAOB). The deposit is mainly hosted in Precambrian metamorphic rocks and Caledonian granites and is structurally controlled by the Shenglidaban ductile shear zone. The gold orebodies consist of gold-bearing quartz veins and altered mylonite. The mineralization can be divided into three stages: quartz–pyrite veins in the early stage, sulfide–quartz veins in the middle stage, and quartz–carbonate veins or veinlets in the late stage. Ore minerals and native gold mainly formed in the middle stage. Four types of fluid inclusions were identified based on petrography and laser Raman spectroscopy: CO2–H2O inclusions (C-type), pure CO2 inclusions (PC-type), NaCl–H2O inclusions (W-type), and daughter mineral-bearing inclusions (S-type). The early-stage quartz contains only primary CO2–H2O fluid inclusions with salinities of 1.62 to 8.03 wt.% NaCl equivalent, bulk densities of 0.73 to 0.89 g/cm3, and homogenization temperatures of 256 °C–390 °C. Vapor bubbles are composed of CO2. The middle-stage quartz contains all four types of fluid inclusions, of which the CO2–H2O and NaCl–H2O types yield homogenization temperatures of 210 °C–340 °C and 230 °C–300 °C, respectively. The CO2–H2O fluid inclusions have salinities of 0.83 to 9.59 wt.% NaCl equivalent and bulk densities of 0.77 to 0.95 g/cm3, with vapor bubbles composed of CO2, CH4, and N2. Fluid inclusions in the late-stage quartz are NaCl–H2O solution with low salinities (0.35–3.87 wt.% NaCl equivalent) and low homogenization temperatures (122 °C–214 °C). The coexistence of inclusions of these four types in middle-stage quartz suggests that fluid boiling occurred in the middle-stage mineralization. Trapping pressures estimated from CO2–H2O inclusions are 110–300 MPa and 90–250 MPa for the early and middle stages, respectively, suggesting that gold mineralization mainly occurred at depths of about 10 km. In general, the Wangfeng gold deposit originated from a metamorphic fluid system characterized by low salinity, low density, and enrichment of CO2. Depressurized fluid boiling caused gold precipitation. Given the regional geology, ore geology, fluid-inclusion features, and ore-forming age, the Wangfeng gold deposit can be classified as a hypozonal orogenic gold deposit.  相似文献   

15.
The Jinman Cu polymetallic deposit is located within Middle Jurassic sandstone and slate units in the Lanping Basin of southwestern China. The Cu mineralization occurs mainly as sulfide‐bearing quartz–carbonate veins in faults and fractures, controlled by a Cenozoic thrust–nappe system. A detailed study of fluid inclusions from the Jinman deposit distinguishes three types of fluid inclusions in syn‐ore quartz and post‐ore calcite: aqueous water (type A), CO2–H2O (type B), and CO2‐dominated (type C) fluid inclusions. The homogenization temperatures of CO2–H2O inclusions vary from 208°C to 329°C, with corresponding salinities from 0.6 to 4.6 wt.% NaCl equivalent. The homogenization temperatures of the aqueous fluid inclusions mainly range from 164°C to 249°C, with salinities from 7.2 to 20.2 wt.% NaCl equivalent. These characteristics of fluid inclusions are significantly different from those of basinal mineralization systems, but similar to those of orogenic or magmatic mineralization systems. The H and O isotope compositions suggest that the ore‐forming fluid is predominantly derived from magmatic water, with the participation of basinal brine. The δ34S values are widely variable between ?9.7 ‰ and 9.7 ‰, with a mode distribution around zero, which may be interpreted by the variation in physico‐chemical conditions or by compositional variation of the sources. The mixing of a deeply sourced CO2‐rich fluid with basinal brine was the key mechanism responsible for the mineralization of the Jinman deposit.  相似文献   

16.
Fluid inclusions trapped in quartz veins hosted by a leucogneiss from the southern part of the Naxos Metamorphic Core Complex (Attic‐Cycladic‐Massif, Greece) were studied to determine the evolution of the fluid record of metamorphic rocks during their exhumation across the ductile/brittle transition. Three sets of quartz veins (V‐M2, V‐BD & V‐B) are distinguished. The V‐M2 and V‐BD are totally or, respectively, partially transposed into the foliation of the leucogneiss. They formed by hydrofracturing alternating with ductile deformation accommodated by crystal‐plastic deformation. The V‐B is discordant to the foliation and formed by fracturing during exhumation without subsequent ductile transposition. Fluids trapped during crystal–plastic deformation comprise two very distinct fluid types, namely a CO2‐rich fluid and a high‐salinity brine, that are interpreted to represent immiscible fluids generated from metamorphic reactions and the crystallization of magmas respectively. They were initially trapped at ~625 °C and 400 MPa and then remobilized during subsequent ductile deformation resulting in various degrees of mixing of the two end‐members with later trapping conditions of ~350 °C and 140 MPa. In contrast, brittle microcracks contain aqueous fluids trapped at 250 °C and 80 MPa. All veins display a similar δ13C pointing to carbon that was trapped at depth and then preserved in the fluid inclusions throughout the exhumation history. In contrast, the δD signature is marked by a drastic difference between (i) V‐M2 and V‐BD veins that are dominated by carbonic, aqueous‐carbonic and high‐salinity fluids of metamorphic and magmatic origin characterized by δD between ?56‰ and ?66‰, and (ii) V‐B veins that are dominated by aqueous fluids of meteoric origin characterized by δD between ?40‰ and ?46‰. The retrograde PT pathway implies that the brittle/ductile transition separates two structurally, chemically and thermally distinct fluid reservoirs, namely (i) the ductile crust into which fluids originating from crystallizing magmas and fluids in equilibrium with metamorphic rocks circulate through a geothermal gradient of 30 °C km?1 at lithostatic pressure, and (ii) the brittle upper crust through which meteoric fluids percolate through a high geothermal gradient of 55 °C km?1 at hydrostatic pressure.  相似文献   

17.
Eclogites from the Onodani area in the Sambagawa metamorphic belt of central Shikoku occur as layers or lenticular bodies within basic schists. These eclogites experienced three different metamorphic episodes during multiple burial and exhumation cycles. The early prograde stage of the first metamorphic event is recorded by relict eclogite facies inclusions within garnet cores (XSps 0.80–0.24, XAlm 0–0.47). These inclusions consist of relatively almandine‐rich garnet (XSps 0.13–0.24, XAlm 0.36–0.45), aegirine‐augite/omphacite (XJd 0.08–0.28), epidote, amphiboles (e.g. actinolite, winchite, barroisite and taramite), albite, phengite, chlorite, calcite, titanite, hematite and quartz. The garnet cores also contain polyphase inclusions consisting of almandine‐rich garnet, omphacite (XJd 0.27–0.28), amphiboles (e.g. actinolite, winchite, barroisite, taramite and katophorite) and phengite. The peak P–T conditions of the first eclogite facies metamorphism are estimated to be 530–590 °C and 19–21 kbar succeeded by retrogression into greenschist facies. The second prograde metamorphism began at greenschist facies conditions. The peak metamorphic conditions are defined by schistosity‐forming omphacites (XJd ≤ 49) and garnet rims containing inclusions of barroisitic amphibole, phengite, rutile and quartz. The estimated peak metamorphic conditions are 630–680 °C and 20–22 kbar followed by a clockwise retrograde P–T path with nearly isothermal decompression to 8–12 kbar. In veins cross‐cutting the eclogite schistosity, resorbed barroisite/Mg‐katophorite occurs as inclusions in glaucophane which is zoned to barroisite, suggesting a prograde metamorphism of the third metamorphic event. The peak P–T conditions of this metamorphic event are estimated to be 540–600 °C and 6.5–8 kbar. These metamorphic conditions are correlated with those of the surrounding non‐eclogitic Sambagawa schists. The Onodani eclogites were formed by subduction of an oceanic plate, and metamorphism occurred beneath an accretionary prism. These high‐P/T type metamorphic events took place in a very short time span between 100 and 90 Ma. Plate reconstructions indicate highly oblique subduction of the Izanagi plate beneath the Eurasian continent at a high spreading rate. This probably resulted in multiple burial and exhumation movements of eclogite bodies, causing plural metamorphic events. The eclogite body was juxtaposed with non‐eclogitic Sambagawa schists at glaucophane stability field conditions. The amalgamated metamorphic sequence including the Onodani eclogites were exhumed to shallow crustal/surface levels in early Eocene times (c. 50 Ma).  相似文献   

18.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

19.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号