首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The original spectral features of felsic rocks are often intermingled with other surface objects, which results in difficulty of detecting felsic rocks using remote sensing techniques. Few felsic rock indices were proposed and visual interpretation with RGB false color composition is widely used to detect felsic rocks. This paper aims to construct a two-dimensional spectral feature space model to extract felsic rocks using ASTER thermal infrared radiance data. The study area is located in northern Qinghai Province, western China with average altitude of approximately 4200 m. A large number of training pixels of mafic–ultramafic rock, quartz-rich rock, felsic rock, carbonate rock and vegetation were selected from the ASTER images as samples of these surface objects. Then we used a quartz-rich rock index (QI, QI = band14  0.844 × band12  1.897) and a mafic–ultramafic rock index (MI, MI = 0.915 × band10  band13 + 1.437) to generate a two-dimensional scatter plot. The plot was named after quartzose–mafic spectral feature space (QMFS). The samples show an approximate triangular shape in the QMFS. Mafic–ultramafic rock, quartz-rich rock and carbonate rock are located in separate locations in the three vertex regions, respectively, while felsic rock is located in the central region of the triangle. Next, we calculated a linear belt of silicate rocks in which silicate rocks vary regularly by using a linear regression analysis in the QMFS. Statistical characteristics of the felsic rock samples are analyzed. Afterwards, a polygon which delineates the distribution of felsic rock samples was constructed from the linear belt of silicate rocks. Then we generated a system of inequalities based on the equations of the edges of the polygon. The application of the inequalities to the ASER images shows a good performance of the QMFS for extracting felsic rocks.  相似文献   

2.
《Ore Geology Reviews》2011,41(1):27-40
Diyadin mineralization is the first reported gold deposit located in a collisional tectonic environment in Eastern Anatolia. The mineralization is related to N–S and N10–20°W-trending fault systems and hosted within the Paleozoic metamorphic basement rocks of the Anatolide–Toride microcontinent. Calc-schist, dolomitic marble and Miocene and Quaternary volcanic rocks comprise the exposed units in the mineralized area. Geochemical signatures, alteration types and host rock characteristics of the Diyadin gold deposit resemble those of Carlin-type deposits. Mineralization is constrained by alteration of overlying volcanic rocks to younger than ~ 14 Ma (K–Ar).Carbon and oxygen stable isotope measurements of carbonate rocks were made on six drill holes (n = 81) with an additional four samples of fresh carbonate rocks from surface outcrops. Background carbonate rocks have δ13CV-PDB ~ 1.8‰ and δ18OV-SMOW ~ 27‰. Isotopically-altered host rock samples have decreased δ18O (down to ~+11.4‰) and variable δ13C (from − 3.6 to + 4.8‰). Postore carbonate veins and cave-fill material have distinctly different isotopic signatures, particularly carbon (from δ13C = + 8.4 to + 9.8‰). Whether this post-ore carbonate is simply very late in mineralization associated with the gold system, or is a completely different, younger system utilizing the same pathways, is unclear at present. Within the host rock sample set, there is no correlation between gold and δ13C, and a weak correlation between gold and δ18O, indicative of water–rock interaction and isotopic alteration. Both the isotopic data and structural mapping suggest that the main upflow zone for the deposit is near the northern portion of the drill fence. Additional data at multiple scales are required to clarify the relationship(s) between fluid flow and mineralization.  相似文献   

3.
Three large-scale instrumented waste rock piles were constructed at the Diavik Diamond Mine in the Northwest Territories, Canada. These experimental waste rock piles (test piles) are 15 m high and are part of an integrated field and laboratory research program to characterize and compare low-sulfide waste rock and drainage at various scales. During test pile construction, samples of the <50 mm fraction of waste rock were collected from two types of waste rock that are segregated during mining operations based on S content. The samples were analyzed for S content and particle size distribution. One test pile contained waste rock with an average of 0.035 wt.% S in the <50 mm fraction, within the operational S target of <0.04 wt.% S for the lower S waste rock type. The second test pile contained waste rock with an average of 0.053 wt.% S in the <50 mm fraction, lower than the operational S target of >0.08 wt.% S for the higher S waste rock type. The third test pile has a low permeability till layer and a low sulfide waste rock thermal layer covering a core of waste rock with average 0.082 wt.% S in the <50 mm fraction, which is within the operational S target of >0.08 wt.% S for the higher S waste rock. Particle size distributions for the lower and higher S waste rock are similar, but the higher S waste rock has a higher proportion of fine-grained particles. Sulfur determinations for discrete particle sizes of the <50 mm fraction illustrate higher S concentrations in smaller particles for both the lower S waste rock and the higher S waste rock. Similarly, S concentrations calculated for the >10 m scale, from composite blast hole cuttings, are lower than those calculated for the <50 mm scale. Acid–base accounting using standard methods and site-specific mineralogical information was used to calculate the ratio of neutralization potential to acid generating potential. A comparison of calculation approaches to pH and alkalinity data from humidity cell and test pile effluent suggest that ratios are very sensitive to the calculation method. The preferred calculation method was selected by comparing calculation results to pH and alkalinity data from humidity cell effluent collected over 95 weeks and test pile effluent collected over five field seasons. The preferred acid–base accounting values were obtained by calculating the average neutralization potential divided by the average acid potential of a sample set. This approach indicates that waste rock with >0.05 wt.% S is of uncertain acid-generating potential and effluent data indicate this waste rock generates acidic effluent; whereas lower S waste rock does not produce acidic effluent, consistent with the acid–base accounting predictions.  相似文献   

4.
The state of Azad Kashmir is rich in three types of rocks, namely, sedimentary, metamorphic, and igneous rocks. These rocks contain extensive deposits of graphite, marble, limestone, quartzite, granite, dolerite, and sandstone, which are widely used for the construction of dwellings in Azad Kashmir and Pakistan. Therefore, knowledge about the presence of natural radioactivity in these materials is desirable to assess the radiological hazards associated with it. In this context, 30 rock samples were collected from different geologic formations of the Muzaffarabad Division, Azad Kashmir. After processing the samples, the specific activities of 226Ra, 232Th, and 40 K in them were measured using a P-type coaxial high-purity germanium detector. The observed highest dose rate values for sedimentary, metamorphic, and igneous rocks have been found to be 83.16 ± 1.08, 135.87 ± 1.18, and 115.98 ± 1 nGy ⋅ h–1, respectively. The radium equivalent activity (Raeq) varied from 23.76 ± 1.15 for dolerite sample (igneous rock) to 293.69 ± 2.60 Bq ⋅ kg–1 for marble (metamorphic rock). The Raeq values of all rock samples are lower than the limit mentioned in the Organization for Economic Cooperation and Development (OECD, 1979) report (370 Bq ⋅ kg–1, equivalent to γ-dose of 1.5 mSv ⋅ y–1). The values of external (Hex) and internal hazard indices (Hin) are less than unity. The mean outdoor and indoor annual effective dose equivalents are 0.073 mSv ⋅ y–1 and 0.29 mSv ⋅ y–1, respectively. The mean (over all types of rock samples) annual effective dose equivalent is reported as 0.36 mSv ⋅ y–1.  相似文献   

5.
The most suitable candidates for subsurface storage of CO2 are depleted gas fields. Their ability to retain CO2 can however be influenced by the effect which impurities in the CO2 stream (e.g. H2S and SO2) have on the mineralogy of reservoir and seal. In order to investigate the effects of SO2 we carried out laboratory experiments on reservoir and cap rock core samples from gas fields in the northeast of the Netherlands. The rock samples were contained in reactor vessels for 30 days in contact with CO2 and 100 ppm SO2 under in-situ conditions (300 bar, 100 °C). The vessels also contained brine with the same composition as in the actual reservoir. Furthermore equilibrium modeling was carried out using PHREEQC software in order to model the experiments on caprock samples.After the experiments the permeability of the reservoir samples had increased by a factor of 1.2–2.2 as a result of dissolution of primary reservoir minerals. Analysis of the associated brine samples before and after the experiments showed that concentrations of K, Si and Al had increased, indicative of silicate mineral dissolution.In the caprock samples, composed of carbonate and anhydrite minerals, permeability changed by a factor of 0.79–23. The increase in permeability is proportional to the amount of carbonate in the caprock. With higher carbonate content in comparison with anhydrite the permeability increase is higher due to the additional carbonate dissolution. This dependency of permeability variations was verified by the modeling study. Hence, caprock with a higher anhydrite content in comparison with carbonate minerals has a lower risk of leakage after co-injection of 100 ppmv SO2 with CO2.  相似文献   

6.
Granulite grade marble layers interlayered with metapelitic granulites from Lützow Holm Bay, East Antarctica, provide insight into fluid–rock interactions during burial to and exhumation from lower crustal levels. Sub-millimeter scale strontium, oxygen and carbon isotope variations along with LA-ICPMS trace element geochemistry and mineral chemistry of texturally characterized carbonates and associated minerals helped to reconstruct the multistage metamorphic fluid history.Fluid–rock interaction dating back to prograde metamorphism are still preserved in consistently low oxygen and high strontium isotope compositions (δ18O = 12‰; 87Sr/86Sr(550Ma) = 0.7248) within a massif dolomitic marble layer that escaped significant later metasomatism. In most marbles, total re-crystallization and isotopic resetting occurred in the presence of “externally derived” hyper-saline fluids that circulated along the carbonate layers during the early stages of prograde metamorphism. This leads to a trend of increased radiogenic Sr in marbles towards the value of associated metapelitic rocks that have 87Sr/86Sr(550Ma) of 0.764.LA-ICPMS studies on trace elements in carbonate and associated silicate minerals at different textural settings, distinguished using cathodoluminescence microscopy, revealed multiple metasomatic events during retrograde metamorphism. Trace element contents of Ba, Sr, Pb and U gave compelling evidence for metasomatic alteration that postdate the exsolution of carbonate at ~ 600 ºC, which can be correlated with the fluids released from the crystallization of anatectic melts and pegmatites. Subsequently, meteoric fluid infiltration occurred at a shallower level of the crust and caused extreme oxygen isotopic heterogeneity (δ18O = 14.7 ~ ? 4.9‰) and imprinted high concentration of fluid mobile elements. Taken together our results emphasize the importance of integrating textural and chemical heterogeneities to reveal the multiple episodes of fluid–rock interaction processes in a dynamic continental crust, which has major implications on migration of fluids and material and help in formulating models on the geodynamic evolution of crust.  相似文献   

7.
Steroids with unconventional side chains have increasingly been applied as diagnostic markers for geological source and age assessments. However, one of the most distinctive characteristics, the abnormal abundance of pregnane and homopregnane in ancient sediments and petroleum, remains unresolved. Higher pregnane and homopregnane, as well as C23–C26 20-n-alkylpregnanes, relative to the regular steranes were observed in samples collected from different petroleum basins in China. These included Precambrian marine carbonate-derived petroleum (NW Sichuan Basin), Lower Paleozoic marine marl derived crude oils (Tarim Basin), and Eocene hypersaline lacustrine carbonate source rocks and associated petroleum (Bohai Bay Basin). However, all of the samples have many common biomarker characteristics, such as pristane/phytane ratios < 1, low amounts of diasteranes and high C29/C30 hopane (∼0.6–1), C35/C34 hopane (mostly  1) and dibenzothiophene/phenanthrene (DBT/PHEN, mostly 0.5–1) ratios revealing a contribution from anoxic carbonate/marl source rocks deposited in restricted, clastic-starved settings. We suggest that 5α,l4β,l7β-pregnane and homopregnane, as well as their higher C23–C26 homologues, are geological products derived from steroids bound to the kerogen by a sulfurized side chain. Carbon or carbonate minerals are considered to be natural catalysts for this cracking reaction via preferential cleavage of the bond between C-20 and C-22. Similar distributions occur in the short chain analogues of 4-methylsterane, triaromatic steroid and methyltriaromatic steroid hydrocarbons, providing circumstantial evidence for this proposal. The ratio of pregnane and homopregnane to the total regular steranes and the ratio of C27 diasteranes to cholestanes can be sensitive indicators of sedimentary environments and facies. In general, high diasteranes and low pregnanes (with homologues) indicate an oxic water column or significant input of terrigenous organic matter in clay rich source rocks and some organic lean carbonate rocks. Low diasteranes with high pregnanes implies restricted, sulfur rich conditions, typical of anoxic carbonate source rocks. Furthermore, the two ratios may be useful to assess the variation of mineralogy and openness of source rock depositional settings.  相似文献   

8.
Intraclastic Mn carbonate rocks occur in the marginal areas of the manganese–carbonate orebody (manganesestone) of the Palaeoproterozoic Nsuta deposit in the Birimian of Ghana. Macroscopically the intraclastic rocks display graded bedding and are typified by a matrix-supported fabric with subangular to subrounded particles less than a millimetre to ∼1.5 × 0.5 cm. Both clasts and matrix consist mainly of varying proportions of microcrystalline and microconcretionary carbonates, quartz, muscovite and subordinate pyrite. Within individual intraclasts, carbonate minerals (including distinctly zoned microconcretions) are essentially Mg kutnahorite and Mg–Ca rhodochrosite, similar to the carbonate minerals in the manganesestone. Whole rock chemistry of the intraclastic carbonates shows significant variability in the amounts of SiO2, Al2O3, MnO, MgO, CaO, Na2O and, to a lesser extent, K2O. Major element contents of the manganesestone similarly vary widely, except that these have, in particular, comparably higher MnO but less SiO2 and Al2O3 than the intraclastic carbonates and host rock Mn phyllite. Rare earth element (REE) concentrations in the intraclastic carbonates are approximately an order of magnitude higher than in the manganesestone. Whereas both rocks exhibit positive Eu anomalies, only the manganesestone shows a discernibly negative Ce anomaly. Petrographic and geochemical features suggest that the intraclasts are fragments of reworked Mn carbonate sediments derived from intraformational erosion and subsequent (mass flow) deposition as carbonate “turbidite” mud. Processes such as submarine slumping, sliding and other sediment gravity flows may have likely interrupted Mn sedimentation and transported partially consolidated manganiferous sediments down slopes into the early Birimian ocean.  相似文献   

9.
This contribution reports our preliminary work to determine Cu isotope ratios for various granite rocks and examine the Cu isotope systematics within granite suites. A chemical procedure, modified from Maréchal [Maréchal, C.N., Télouk, P. and Albarède, F., 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1–4): 251–273.], was used to separate Cu from rock matrix. Quantitative recovery (100.6 ± 1.6%), with a low total procedural blank (2.65 ± 0.66 ng) for Cu, has been achieved, allowing Cu isotopic measurements on samples with as little as 10 ppm Cu. The Cu isotope ratios (δ65Cu relative to NIST SRM 976) of 32 rock samples, ranging from mafic to felsic compositions, from 3 batholiths (2 I-type, 1 S-type) from the Lachlan Fold Belt in southeastern Australia, vary from ? 0.46‰ to 1.51‰. Most of them cluster around zero, with mean values for the I-type and S-type granites of 0.03 ± 0.15‰ and ? 0.03 ± 0.42‰ (2 sigma) respectively. These data, together with Cu isotope ratios of two loess samples, provide preliminary evidence that the baseline Cu isotopic composition of the crystalline part of upper continental crust is close to zero. The tight clustering of Cu isotope ratios of rocks from the I-type suites suggests that high-temperature magmatic processes do not produce significant Cu isotope fractionation. However, two granites with abnormally heavy Cu isotope signatures (up to 1.51‰) appears to be the result of localized hydrothermal alteration. Measurable variation in Cu isotopic composition of the S-type granite may reflect isotopic heterogeneity in the sedimentary source region as a result of redox processes or may be due to hydrothermal overprinting. Thus, Cu isotope geochemistry may be a useful tracer for studying hydrothermal alteration and source heterogeneity of granitic rocks.  相似文献   

10.
During filling in 1992 of the Tongjiezi reservoir, in Southwest China, it was noticed that the dam body and the rock masses on the right side of the valley were uplifted up to 22.2 mm and 24.3 mm respectively. After reservoir filling in 1993, the uplift continued, but the rate decreased, and the measured maximum uplift increased from 22.2 mm to 27.5 mm in the dam body and from 24.3 mm to 28.9 mm in the rock masses from 1993 to 2004. Based on the geological features of the dam site and observed geomechanics data, a numerical method is used to evaluate the representative elementary volume (REV) and to identify the parameters related to the mechanical and hydraulic properties of the rock mass. Furthermore, a coupled hydro-mechanical model is presented to describe the uplift process. The simulated results agree well with those measured. In addition, the time-dependent deformation is studied in the laboratory and numerically. It is concluded that, with the specific hydrogeological conditions at the Tongjiezi dam site, hydro-mechanical coupling during and after the reservoir impoundment is the main factor contributing to the uplift, and the time-dependent deformation is due to the rheological behavior of rock masses under seepage pressure.  相似文献   

11.
The Tianqiao Pb–Zn deposit in the western Yangtze Block, southwest China, is part of the Sichuan–Yunnan–Guizhou (SYG) Pb–Zn metallogenic province. Ore bodies are hosted in Devonian and Carboniferous carbonate rocks, structurally controlled by a thrust fault and anticline, and carried about 0.38 million tons Pb and Zn metals grading > 15% Pb + Zn. Both massive and disseminated Pb–Zn ores occur either as veinlets or disseminations in dolomitic rocks. They are composed of ore minerals, pyrite, sphalerite and galena, and gangue minerals, calcite and dolomite. δ34S values of sulfide minerals range from + 8.4 to + 14.4‰ and display a decreasing trend from pyrite, sphalerite to galena (δ34Spyrite > δ34Ssphalerite > δ34Sgalena). We interpret that reduced sulfur derived from sedimentary sulfate (gypsum and barite) of the host Devonian to Carboniferous carbonate rocks by thermal–chemical sulfate reduction (TSR). δ13CPDB and δ18OSMOW values of hydrothermal calcite range from –5.3 to –3.4‰ and + 14.9 to + 19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid was a mixture origin of mantle, marine carbonate rocks and sedimentary organic matter. Sulfide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.378 to 18.601, 207Pb/204Pb = 15.519 to 15.811 and 208Pb/204Pb = 38.666 to 39.571) that are plotted in the upper crust Pb evolution curve and overlap with that of Devonian to Carboniferous carbonate rocks and Proterozoic basement rocks in the SYG province. Pb isotope compositions suggest derivation of Pb metal from mixed sources. Sulfide minerals have 87Sr/86Sr ratios ranging from 0.7125 to 0.7167, higher than Sinian to Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than basement rocks. Again, Sr isotope compositions are supportive of a mixture origin of Sr. They have an Rb–Sr isotopic age of 191.9 ± 6.9Ma, possibly reflecting the timing of Pb–Zn mineralization. C–O–S–Pb–Sr isotope compositions of the Tianqiao Pb–Zn deposit indicate a mixed origin of ore-forming fluids, which have Pb–Sr isotope homogenized before the mineralization. The Permian flood basalts acted as an impermeable layer for the Pb–Zn mineralization hosted in the Devonian–Carboniferous carbonate rocks.  相似文献   

12.
The Tasiast gold deposits are hosted within Mesoarchean rocks of the Aouéouat greenstone belt, Mauritania. The Tasiast Mine consists of two deposits hosted within distinctly different rock types, both situated within the hanging wall of the west-vergent Tasiast thrust. The Piment deposits are hosted within metasedimentary rocks including metaturbidites and banded iron formation where the main mineral association consists of magnetite-quartz-pyrrhotite ± actinolite ± garnet ± biotite. Gold is associated with silica flooding and sulphide replacement of magnetite in the turbidites and in the banded iron formation units. The West Branch deposit is hosted within meta-igneous rocks, mainly diorites and quartz diorites that lie stratigraphically below host rocks of the Piment deposits. Most of the gold mineralisation at West Branch is hosted by quartz–carbonate veins within the sheared and hydrothermally altered meta-diorites that constitute the Greenschist Zone. At Tasiast, gold mineralisation has been defined over a strike length > 10 km and to vertical depths of 740 m. All of the significant mineralised bodies defined to date dip moderately to steeply (45° to 70°) to the east and have a south–southeasterly plunge. Gold deposits on the Tasiast trend are associated with second order shear zones that are splays cutting the hanging wall block of the Tasiast thrust. An age of 2839 ± 36 Ma obtained from the hydrothermal overgrowth on zircons from a quartz vein is interpreted to represent the age of mineralisation.  相似文献   

13.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

14.
The Shanshulin Pb–Zn deposit occurs in Upper Carboniferous Huanglong Formation dolomitic limestone and dolostone, and is located in the western Yangtze Block, about 270 km west of Guiyang city in southwest China. Ore bodies occur along high angle thrust faults affiliated to the Weishui regional fault zone and within the northwestern part of the Guanyinshan anticline. Sulfide ores are composed of sphalerite, pyrite, and galena that are accompanied by calcite and subordinate dolomite. Twenty-two ore bodies have been found in the Shanshulin deposit area, with a combined 2.7 million tonnes of sulfide ores grading 0.54 to 8.94 wt.% Pb and 1.09 to 26.64 wt.% Zn. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 3.1 to + 2.5‰ and + 18.8 to + 26.5‰, respectively. These values are higher than mantle and sedimentary organic matter, but are similar to marine carbonate rocks in a δ13CPDB vs. δ18OSMOW diagram, suggesting that carbon in the hydrothermal fluid was most likely derived from the carbonate country rocks. The δ34SCDT values of sphalerite and galena samples range from + 18.9 to + 20.3‰ and + 15.6 to + 17.1‰, respectively. These values suggest that evaporites are the most probable source of sulfur. The δ34SCDT values of symbiotic sphalerite–galena mineral pairs indicate that deposition of sulfides took place under chemical equilibrium conditions. Calculated temperatures of S isotope thermodynamic equilibrium fractionation based on sphalerite–galena mineral pairs range from 135 to 292 °C, consistent with previous fluid inclusion studies. Temperatures above 100 °C preclude derivation of sulfur through bacterial sulfate reduction (BSR) and suggest that reduced sulfur in the hydrothermal fluid was most likely supplied through thermo-chemical sulfate reduction (TSR). Twelve sphalerite samples have δ66Zn values ranging from 0.00 to + 0.55‰ (mean + 0.25‰) relative to the JMC 3-0749L zinc isotope standard. Stages I to III sphalerite samples have δ66Zn values ranging from 0.00 to + 0.07‰, + 0.12 to + 0.23‰, and + 0.29 to + 0.55‰, respectively, showing the relatively heavier Zn isotopic compositions in later versus earlier sphalerite. The variations of Zn isotope values are likely due to kinetic Raleigh fractional crystallization. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide samples fall in the range of 18.362 to 18.573, 15.505 to 15.769 and 38.302 to 39.223, respectively. The Pb isotopic ratios of the studied deposit plot in the field that covers the upper crust, orogenic belt and mantle Pb evolution curves and overlaps with the age-corrected Proterozoic folded basement rocks, Devonian to Lower Permian sedimentary rocks and Middle Permian Emeishan flood basalts in a 207Pb/204Pb vs. 206Pb/204Pb diagram. This observation points to the derivation of Pb metal from mixed sources. Sphalerite samples have 87Sr/86Sr200 Ma ratios ranging from 0.7107 to 0.7115 similar to the age-corrected Devonian to Lower Permian sedimentary rocks (0.7073 to 0.7111), higher than the age-corrected Middle Permian basalts (0.7039 to 0.7078), and lower than the age-corrected Proterozoic folded basement (0.7243 to 0.7288). Therefore, the Sr isotope data support a mixed source. Studies on the geology and isotope geochemistry suggest that the Shanshulin deposit is a carbonate-hosted, thrust fault-controlled, strata-bound, epigenetic, high grade deposit formed by fluids and metals of mixed origin.  相似文献   

15.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

16.
The paper describes mineralogy of the low grade metamorphosed manganese sediments, which occur in sedimentary complexes of the Pai Khoi Ridge and the Polar Urals and volcanosedimentary complexes of the Central and South Urals. The degree of metamorphism of the rocks studied corresponds to PT conditions of the prehnite–pumpellyite (deposits of Pai Khoi and Polar and South Urals) and green schist (deposits of the Central Urals) facies. One hundred and nine minerals were identified in the manganese-bearing rocks on the basis of optical and electron microscopy, X-ray diffraction, and microprobe analysis. According to the variations in the amount of major minerals of the manganese rocks of the Urals, they are subdivided on carbonate (I), oxide–carbonate–silicate (II), and oxide–silicate (III) types. Carbonates, various Mn2 +-bearing silicates associated with oxides and carbonates, and braunite (Mn3 +-bearing silicate) are the major Mn hosts in types I, II, and III, respectively. Because of the different oxidation state of Mn, the rocks of types I and II are termed as “reduced” and the rocks of type III, as “oxidized”. The formation of a certain mineralogical type of metamorphic assemblage is controlled by the content of organic matter in the primary sediments. The sequence type I  type II  type III reflects the decrease in the amount of organic matter in metalliferous sediments. Mineralogical data indicate that manganese in the primary sediments accumulated in a silicate form (MnSi gel, glass, etc). During diagenesis, the Mn–Si phase was transformed to neotokite with subsequent formation of caryopilite and further crystallization of pyroxmangite, rhodonite, tephroite, and other silicates due to reactions involving caryopilite. The hydrated Mn-silicates (caryopilite and/or friedelite) and the spatially associated parsettensite, stilpnomelane, and other minerals are the index minerals of the low grade metamorphism. Under PT conditions of prehnite–pumpellyite facies, nearly 70% of silicate minerals are hydrous. The metamorphosed Mn-bearing sediments are characterized by the low-temperature caryopilite (or tephroite-caryopilite-pyroxmangite ± rhodonite) and the high-temperature caryopilite-free (or tephroite-pyroxmangite ± rhodonite) facies. Their PT conditions correspond to zeolite and prehnite-pumpellyite (the low-temperature) and green schist and higher grade (the high-temperature) facies.  相似文献   

17.
Sedimentological and geochronological analyses were performed on Carboniferous strata from central Inner Mongolia (China) to determine the tectonic setting of the southeastern Central Asian Orogenic Belt (CAOB). Sedimentological analyses indicate that the widespread Late Carboniferous strata in central Inner Mongolia were dominated by shallow marine clastic-carbonate deposition with basal conglomerate above the Precambrian basement and Early Paleozoic orogenic belts. Based on lithological comparison and fossil similarity, five sedimentary stages were used to represent the Carboniferous deposition. The depositional stages include, from bottom to top, 1) basal molassic, 2) first carbonate platform, 3) terrigenous with coeval intraplate volcanism, 4) second carbonate platform, and 5) post-carbonate terrigenous. These five stages provide evidence for an extensive transgression in central Inner Mongolia during the Late Carboniferous. Detrital zircon geochronological studies from five samples yielded five main age populations: ~ 310 Ma, ~ 350 Ma, 400–450 Ma, 800–1200 Ma and some Meso-Proterozoic to Neoarchean grains. The detrital zircon geochronological studies indicate that the provenances for these Late Carboniferous strata were mainly local magmatic rocks (Early Paleozoic arc magmatic rocks and Carboniferous intrusions) with subordinate input of Precambrian basement. Combining our sedimentological and provenance analyses with previous fossil comparison and paleomagnetic reconstruction, an inland sea was perceived to be the main paleogeographic feature for central Inner Mongolia during the Late Carboniferous. The inland sea developed on a welded continent after the collision between North China Craton and its northern blocks.  相似文献   

18.
Iron mobilisation from aquifer rocks in an important fractured aquifer system in South Africa is resulting in clogging of boreholes by Fe oxide minerals. Leach experiments using natural waters were conducted to determine the effects of redox conditions, pH lithology and presence of organic acids on the rate and extent of Fe dissolution from aquifer rocks, with the aim of clarifying the association of Fe clogging with geological formations that show Fe staining on weathering. The results indicate that the greatest amount of Fe (>30 mmol/kg rock) is leached from arenaceous rocks with low total Fe contents (49.0–75.0 mmol/kg) under anoxic conditions. Rocks with the highest Fe contents (>800 mmol/kg) generated low concentrations of Fe (<10 mmol/kg) even under favourable conditions of 0 mg/L DO and pH 3. The extent of Fe dissolution from the rocks was found to be most strongly dependent on the redox conditions, and the form of Fe present in the rock, with ascorbate-extracted amorphous Fe being the most mobile. The rate of dissolution is affected by pH and the presence of natural organic acids in the leachate. However, the effect of organic acids was only noticeable on arenaceous rocks.  相似文献   

19.
Strongly-deformed marbles may be easily confused with linear and elongated carbonatite intrusions. Both rocks may present similar texture and foliation to the host rock, or even cross cutting field relationships, which could be interpreted either as igneous or high-grade metamorphosed marble. Diagnostic criteria are even more complex when there is evidence of melting of the metasedimentary carbonate rock, such as has been described in the Himalayas and in the Eastern Ghats, India.In the Alto Moxotó Terrane, a high-grade gneissic domain of the Borborema Province, Northeastern Brazil, there are metacarbonates associated with banded gneisses and different metaplutonic rocks. Field evidence indicates the absence of other metasedimentary rocks associated with these marbles, thus suggesting that these carbonates were separated from other siliciclastic metasedimentary rocks. The presence of marble also suggests that it may represent the initial stage of a crustal carbon recycling into the mantle. These marbles present many field similarities to carbonatites (e.g., fluid-flow structure) and, together with metagranites and metamafic intrusions, may represent a major collisional tectonic suture.A detailed study of the carbon, oxygen and strontium isotopic composition of these marbles is presented. This study aims to identify the origin of the different isotopic components. It is argued that these rocks were subjected to temperature and pressure conditions that were sufficiently high to have melted them. The isotopic data presented here support this interpretation and indicate the mixing of two components: (i) one characterized by radiogenic Sr isotopes and mantle-like carbon isotopes, which is associated with the gneissic and mafic rocks, and (ii) another characterized by low 87Sr/86Sr ratios and highly positive δ13C values. Available geochemical data for the upper Paleoproterozoic indicate that the 87Sr/86Sr ratio of ocean water, varying between 0.7050 (2.25 ± 0.25 Ga) and 0.7047 (1.91 Ga), falls within the lower range of the samples from Itatuba and thus reinforces the interpretation that these marbles are sedimentary-derived and were partially contaminated by interaction with the host gneissic and mafic rocks.  相似文献   

20.
Zircon is the best mineral to record the complex evolution history of ultrahigh-pressure (UHP) metamorphic rocks as mineralogical and geochemical tracers of UHP metamorphism are almost obliterated in matrix assemblages resulted from subsequent retrogression during exhumation. Zircons from Dabie–Sulu UHP rocks, including outcrop and core samples from drill holes ranging from 432 to 5158 m in depth contain abundant mineral inclusions of protolith, prograde, peak (UHP) and retrograde minerals in different domains; these minute inclusions were identified by laser Raman spectroscopy and/or electronic microprobe analysis. Systematic studies on inclusions in zircons from previous and present studies indicate that the Dabie–Sulu UHP terrane extends for >2000 km, is about 50 km wide, and has at least 10 km thick, probably the largest UHP terrane recognized in the world thus far. The internal structure of zircon revealed by cathodoluminescence (CL) imaging displays a distinct zonation, which comprises an inherited (magmatic or detrital) core, prograde, peak (UHP), and outmost retrograde domains, each with distinctive mineral inclusion assemblages. Low-pressure, igneous mineral inclusions are common in the inherited (magmatic or detrital) zircon cores. In contrast, quartz eclogite-facies inclusion assemblages occur in prograde domains, coesite eclogite-facies inclusion assemblages are preserved in UHP domains, and amphibolite-facies inclusion assemblages are enclosed in outmost retrograde rims. Parageneses and compositions of inclusion minerals preserved in distinct zircon domains were used to constrain the metamorphic PT path of many Dabie–Sulu UHP rocks. The results indicate that Neoproterozoic supracrustal rocks together with minor mafic-ultramafic rocks were subjected to a prograde subduction-zone metamorphism at 570–690 °C and 1.7–2.1 GPa, and UHP metamorphism at 750–850 °C and 3.4–4.0 GPa, following by rapid decompression to amphibolite-facies retrograde metamorphism at 550–650 °C and 0.7–1.05 GPa. Sensitive high-resolution ion microprobe (SHRIMP) U–Pb spot analyses of the zoned zircons show four discrete and meaningful ages of the Dabie–Sulu metamorphic evolution: (1) Neoproterozoic protolith ages (800–750 Ma); (2) 246–244 Ma for early-stage quartz eclogite-facies prograde metamorphism; (3) 235–225 Ma for UHP metamorphism; and (4) 215–208 Ma for late-stage amphibolite-facies retrogression. This indicates that Neoproterozoic voluminous igneous protoliths of orthogneiss in response to the breakup of Rodinia supercontinent, together with various sedimentary rocks, and minor mafic-ultramafic intrusive and extrusive rocks, were subjected to coeval Triassic subduction to mantle depths and exhumation during the collision between the South China Block and North China Block. The estimated subduction and exhumation rates for the Dabie–Sulu UHP terrane would be up to 4.7–9.3 km Myr?1 and 5.0–11.3 km Myr?1, respectively. The zonal distribution of mineral inclusions and the preservation of index UHP minerals such as coesite imply that zircon is the best mineral container for each metamorphic stage, particular for supracrustal rocks as their metamorphic evolution and UHP evidence have been almost or completely obliterated. Similar conclusions have been documented elsewhere for other UHP terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号