首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文采用^40Ar-^39Ar真空击碎技术和阶段加热技术,测定了采自落雪矿的“东川式”层状铜矿之两个石英样品的年龄,获得了810-770Ma的^40Ar-^39Ar等时线年龄,这是首次获得的“东川式”铜矿的成矿年龄。这些年龄与作者以前获得的脉状铜矿石英的年龄范围一致,远远小于赋矿围岩落雪组的年龄,研究结果表明“东川式”层状铜矿并非沉积成因,与脉状铜矿一样,也是热液成因,并且再次证实晋宁-澄江期是东川铜矿的主要成矿期。  相似文献   

2.
“东川式”层状铜矿~(40)Ar-~(39)Ar成矿年龄测定   总被引:3,自引:0,他引:3  
本文采用40 Ar 3 9Ar真空击碎技术和阶段加热技术 ,测定了采自落雪矿的”东川式”层状铜矿之两个石英样品的年龄 ,获得了 810~ 770Ma的40 Ar 3 9Ar等时线年龄 ,这些年龄与我们从前获得的脉状铜矿石英的年龄范围一致 ,再次表明晋宁 澄江期是东川铜矿的主要成矿期。  相似文献   

3.
邱华宁  孙大中 《地球化学》1998,27(4):335-343
采用真空击碎技术提取东川汤丹铜矿床石英流体包裹体进行40Ar-39Ar法年龄测定,获得了逐渐下降的阶梯形年龄谱,表明流体包裹体含有过剩氩;数据点在40Ar/36Ar-39Ar/36Ar图解上构成等时线,等时线年龄为(712±33)Ma,代表了矿床的形成年龄。随后对其粉末进行40Ar-39Ar阶段加热(100—800℃)分析,形成相对比较平坦的年龄谱,坪年龄为(317±6)Ma(39Ar占45%,含真空击碎分析在内),粉末加热分析全部数据点构成的等时线年龄为(321±13)Ma。电子探针分析和显微镜观察证实了该石英样品中含有粒径大于100μm,K2O含量为8%-10%,形成时间明显晚于石英的白云母类富钾矿物,粉末阶段加热分析结果表明~320Ma应为后期白云母类矿物的年龄。  相似文献   

4.
采用真空击碎技术提取东川汤丹铜矿床石英流体包裹体,进行40Ar-39Ar法年龄测定,获得了逐渐下降的阶梯形年龄谱,表明流体包裹体含有过剩氩;数据点在40Ar/36Ar-39Ar/36Ar图解上构成等时线,年龄为712±33Ma,这一年龄值代表了矿床的形成年龄[1]。随后对其粉末进行40Ar/39Ar阶段加热(100-800℃)分析,形成相对比较平坦的年龄谱,坪年龄为317±6Ma(39Ar占45%,含真空击碎分析在内),全部加热分析数据点构成的等时线年龄为321±13Ma,这一年龄初步解释为流体包裹体内子  相似文献   

5.
东川桃园式铜矿Ar-Ar同位素年龄及意义   总被引:3,自引:1,他引:3  
通过对东川桃园铜矿与铜矿共生石英的40Ar/39Ar同位素年龄的测定,得到马鞍形年龄谱,其坪年龄为768.43Ma±0.58Ma,等时线年龄为770.00Ma±5.44Ma。该矿床后期改造作用明显,并非同生沉积或成岩作用早期成矿,而与晋宁期Rodina大陆裂解有关。东川铜矿的形成可能是在Rodinia大陆裂解时,从深部带来大量成矿物质改造成岩时期初始的矿化,形成矿床的叠加富集和最终定位,因此,晋宁-澄江期是东川铜矿的主成矿期。  相似文献   

6.
对武定迤腊厂铜矿成矿期石英进行了40Ar-39Ar同位素年龄测定,得到马鞍形年龄谱,坪年龄为(784.25±0.95)Ma,等时线年龄为(783.93±8.59)Ma.地质特征研究表明该矿床后期改造作用明显,并非同生沉积或成岩作用早期成矿,而与晋宁期Rodina大陆裂解有关.武定迤腊厂铜矿的形成可能是在Rodinia大陆裂解时,从深部带来大量成矿物质,改造成岩时期初始的矿化,形成矿床的叠加富集和最终定位,晋宁-澄江期是该矿床的主成矿期.  相似文献   

7.
浙江遂昌治岭头金矿床的石英标型   总被引:2,自引:1,他引:2  
梅建明 《现代地质》2001,15(2):222-225
对遂昌治岭头金矿床的中矿段和西矿段中的石英进行了化学成分、热发光、红外光密度、40 Ar-39Ar年龄测定等特征的研究 ,石英中的成矿元素显示该矿区为伴生铜、铅、锌的银 -金矿床 ;石英的热发光特征说明了西矿段比中矿段远离火山热源 ;从石英的 40 Ar-39Ar年龄测定 ,认为本区的主成矿年龄应为 ( 1 39.4± 1 8.6) Ma。结合 F1 断裂及黄铁矿标型特征等的综合研究 ,认为矿区主成矿期为中生代 ,火山、次火山热液叠加使陈蔡群中的金矿化富集。  相似文献   

8.
采用单矿物40Ar-39Ar同位素年代学方法,对乔霍特铜矿区钾长花岗岩中钾长石进行精确的年龄测定,获得坪年龄为274.78±0.44 Ma,等时线年龄为272.7±3.0 Ma.鉴于该钾长花岗岩体形成之后未见构造变形和热液蚀变现象,因此40Ar-39Ar同位素年龄代表钾长花岗岩中钾长石结晶年龄,即钾长花岗岩体的结晶晚期年龄.根据钾长花岗岩体和乔霍特铜矿体的空间关系、铜矿石的品位变化、钾长花岗岩和铜矿石的稀土元素特征及铜矿石流体包裹体氢氧同位素组成等,认为乔霍特铜矿床的成矿作用直接与钾长花岗岩的侵入活动有关,钾长花岗岩中钾长石结晶年龄基本上代表乔霍特铜矿床成矿时代的下限.  相似文献   

9.
个旧变玄武岩系中热液型铜锡多金属矿床主要分布于老厂、卡房矿田西部。文章利用40Ar-39Ar同位素测年方法对老卡隐伏花岗岩体的钾长石、老卡矿田"玄武岩型"铜矿的金云母进行年龄测试。结果显示,老卡岩体钾长石的40Ar-39Ar同位素坪年龄为71.6±0.29 Ma;老厂和卡房"玄武岩型"铜矿蚀变矿物金云母坪年龄分别为81.99±0.85 Ma和82.46±0.85 Ma,表明其形成时代皆为晚白垩世。结合区域资料,指出个旧锡-铜多金属矿田经历了较长的岩浆-热液演化时期,"玄武岩型"铜多金属矿床与燕山晚期花岗岩浆活动相关,为晚白垩世软流圈上涌、岩石圈大规模伸展减薄的产物。  相似文献   

10.
华北地块南缘中段中生代花岗质岩石的40Ar-39Ar年代学研究   总被引:6,自引:4,他引:2  
对华北地块南缘4个中生代花岗质岩体中的角闪石和黑云母进行了40Ar-39Ar定年研究。结果表明,陕西黑山村岩体黑云母花岗闪长岩中黑云母的40Ar-39Ar坪年龄为126. 6±0. 3Ma,河南马家湾岩体细粒黑云母花岗闪长岩中黑云母的40Ar-39Ar坪年龄为126. 6±0. 2Ma,河南洛宁南八百坡岩体黑云母二长花岗岩中角闪石的40Ar-39Ar坪年龄为128. 3±0. 3Ma,山西蚕坊岩体花岗闪长岩中角闪石的40Ar-39Ar坪年龄为129. 2±0. 2Ma。上述结果显示华北地块南缘中生代的岩浆活动主要发生在早白垩世。该期岩浆的产生应与中国东部早白垩世的伸展环境相联系。  相似文献   

11.
Enthalpies of solution in 2PbO · B2O3 at 981 K have been measured for glasses in the system albite-orthoclase-silica and along the join Na1.6Al1.6Si2.4O8-K1.6Al1.6Si2.4O8. The join KAlSi3O8-Si4O8 shows zero heat of mixing similar to that found previously for NaAlSi3O8-Si4O8 glasses. Albite-orthoclase glasses show negative heats of mixing symmetric about Ab50Or50 (Wn = ? 2.4 ± 0.8 kcal). Negative heats of (Na, K) mixing are also found at Si(Si + Al) = 0.6. Ternary excess enthalpies of mixing in the glassy system Ab-Or-4Q are positive but rarely exceed 1 kcal mol?1.Using earlier studies of the thermodynamic properties of the crystals, the present calorimetric data and the “two-lattice” entropy model, the albite-orthoclase phase diagram is calculated in good agreement with experimental data. Attempts to calculate albite-silica and orthoclase-silica phase diagrams reveal complexities probably related to significant (but unknown) mutual solid solubility between cristobalite and alkali feldspar and to the very small heat and entropy of fusion of SiO2.  相似文献   

12.
Enthalpies of solution in 2PbO· B2O3 at 712°C have been measured for glasses in the systems albite anorthite diopside, NaAlO2-SiO2, Ca0.5AlO2-SiO2 and albite-anorthite-quartz. The systems albite-anorthite and diopside-anorthite show substantial negative enthalpies of mixing, albite-diopside shows significant positive heats of mixing. For compositions up to NaAlO2 = 0.42 (which includes the subsystem albite-silica) the system NaAlO2-SiO2 shows essentially zero heats of mixing. A negative ternary excess heat of mixing is found in the plagioclase-rich portion of the albite-anorthite-diopside system. The join Si4O8-CaAl2Si2O8 shows small but significant heats of mixing. In albite-anorthite-quartz. ternary glasses, the ternary excess enthalpy of mixing is positive.Based on available heat capacity data and appropriate consideration of the glass transition, the enthalpy of the crystal-glass transition (vitrification) is a serious underestimate of the enthalpy of the crystal-liquid transition (fusion) especially when the melting point, Tf, is many hundreds of degrees higher than the glass transition temperature, Tg. On the other hand, the same heat capacity data suggest that the enthalpies of mixing in albite-anorthite-diopside liquids are calculated to be quite similar to those in the glasses. The enthalpies of mixing observed in general support the structural models proposed by Taylor and Brown (1979a, b) and others for the structure of aluminosilicate glasses.  相似文献   

13.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with a =15.90 A?, c = 7.115 A?, and V = 1557.0 A?3. However, these values vary at room temperature with the pressure-temperature conditions of synthesis by ±0.015 A? in a, ±0.010 A? in c, and ±4.0 A?3 in V, probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca.  相似文献   

14.
Five hundred eighty-five viscosity measurements on 40 melt compositions from the ternary system CaMgSi2O6 (Di)-CaAl2Si2O8 (An)-NaAlSi3O8 (Ab) have been compiled to create an experimental database spanning a wide range of temperatures (660-2175°C). The melts within this ternary system show near-Arrhenian to strongly non-Arrhenian properties, and in this regard are comparable to natural melts. The database is used to produce a chemical model for the compositional and temperature dependence of melt viscosity in the Di-An-Ab system. We use the Vogel-Fulcher-Tammann equation (VFT: log η = A + B/(T − C)) to account for the temperature dependence of melt viscosity. We also assume that all silicate melts converge to a common viscosity at high temperature. Thus, A is independent of composition, and all compositional dependence resides in the parameters B and C. The best estimate for A is −5.06, which implies a high-temperature limit to viscosity of 10-5.06 Pa s. The compositional dependence of B and C is expressed by 12 coefficients (bi=1,2.6, cj=1,2..6) representing linear (e.g., bi=1:3) and higher order, nonlinear (e.g., bi=4:6) contributions. Our results suggest a near-linear compositional dependence for B (<10% nonlinear) and C (<7% nonlinear). We use the model to predict model VFT functions and to demonstrate the systematic variations in viscosity due to changes in melt composition. Despite the near linear compositional dependence of B and C, the model reproduces the pronounced nonlinearities shown by the original data, including the crossing of VFT functions for different melt compositions. We also calculate values of Tg for melts across the Di-An-Ab ternary system and show that intermediate melt compositions have Tg values that are depressed by up to 100°C relative to the end-members Di-An-Ab. Our non-Arrhenian viscosity model accurately reproduces the original database, allows for continuous variations in rheological properties, and has a demonstrated capacity for extrapolation beyond the original data.  相似文献   

15.
Enthalpies of solution in 2PbO · B2O3 at 974 K have been measured for glasses along the joins Ca2Si2O6 (Wo)-Mg2Si2O6 (En) and Mg2Si2O6-MgAl2SiO6 (MgTs). Heats of mixing are symmetric and negative for Wo-En with WH = ?31.0 ± 3.6 kJ mol?. Negative heats of mixing were also found for the En-MgTs glasses (WH = ?33.4 ± 3.7 kJ mol?).Enthalpies of vitrification of pyroxenes and pyroxenoids generally increase with decreasing alumina content and with decreasing basicity of the divalent cation.Heats of mixing along several glassy joins show systematic trends. When only non-tetrahedral cations mix (outside the aluminosilicate framework), small exothermic heats of mixing are seen. When both nontetrahedral and framework cations mix (on separate sublattices, presumably), the enthalpies of mixing are substantially more negative. Maximum enthalpy stabilization near compositions with Al/Si ≈ 1 is suggested.  相似文献   

16.
Enthalpies of solution of synthetic clinopyroxenes on the join CaMgSi2O6-Mg2Si2O6 have been measured in a melt of composition Pb2B2O5 at 970 K. Most of the measurements were made on samples crystallized at 1600°–1700°C and 30 kbar pressure, which covered the range 0–78 mole per cent Mg2Si2O6, and whose X-ray patterns could be satisfactorily indexed on the diopside (C2/c) structure. For the reaction: Mg2Si2O6→-Mg2Si2O6 enstatite diopside the present data, in conjunction with previous and new measurements on Mg2Si2O6 enstatite, determine ΔH° ~ 2 kcal and WH (regular solution parameter) ~ 7 kcal. These values are in good agreement with those deduced by Saxena and Nehru (1975) from a study of high temperature, high pressure phase equilibrium data under the assumption that the excess entropy of mixing is small, but, in light of the recent theoretical treatment of Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), the meanings of these parameters may be ambiguous.Heat of solution measurements on Ca-rich binary diopsides made by annealing glasses at 1358°C in air gave slighter higher values than the higher temperature high pressure samples. This may be evidence for some (Ca, Mg) disorder of the sort postulated by Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), although no differences in heat of solution dependent on synthesis temperature in the range 1350°–1700°C could be found in stoichiometric CaMgSi2O6.  相似文献   

17.
Glasses in the systems NaAlSi3O8-KAlSi3O8 and NaAlSi3O8-Si4O8 have been studied by means of hydrofluoric acid solution calorimetry at 50°C. Results indicate small negative enthalpies of mixing in the former system and small positive departures from ideality in the latter.  相似文献   

18.
19.
20.
The solubility of hematite in chloride-bearing hydrothermal fluids was determined in the temperature range 400–600°C and at 1000 and 2000 bars using double-capsule, rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Popp, 1979). The changes in the molalities of associated hydrogen chloride (mHCl0) as a function of the molality of total iron in the fluid at constant temperature and pressure were used to identify the predominant species of iron in the hydrothermal fluid. The molality of associated HCl varied from 0.01 to 0.15. Associated FeCl20 was found to be the most abundant species in equilibrium with hematite. Determination of Cl/Fe in the fluid in equilibrium with hematite yields values approximately equal to 2.0 suggesting that ferrous iron is the dominant oxidation state.The equilibrium constant for the reaction Fe2O3 + 4HCl0 + H2 = 2FeCl20 + 3H2O was calculated and used to estimate the difference in Gibbs free energy between FeCl20 and HCl0 in the temperature range 400–600°C at 1000 and 2000 bars pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号