首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文报道在东昆仑地区发现的一种较为稀少的含石榴石英云闪长玢岩,这也是此类岩石在中国的首次发现。该次火山岩形成于晚三叠纪,主要由富钙(CaO5 wt%)、贫锰(MnO3 wt%)的石榴石,富铝的角闪石(15.9 wt%),中性斜长石和石英等斑晶以及基质物质组成。岩石含有中等的SiO_2(61.1~62.2wt%),低的MgO(2.0 wt%),K_2O(1.3 wt%)以及较高的Al_2O_3(17 wt%)含量,呈现出次铝质至轻微过铝质的特征(ACNK=0.89~1.05)。在微量元素方面,该岩石富集大离子亲石元素和轻稀土元素,同时亏损Nb-Ta-Ti,显示出典型的消减带特征。而异常低的重稀土(Yb0.8×10~(-6))和相对高的Sr/Y比值(约38)表明石榴石是一个残留相,而较高的Al_2O_3含量,大多为正的铕异常反映了斜长石因结晶受到抑制而在岩浆演化晚期的聚集,同时表明岩浆具有较高的水含量。Nd-Sr同位素组成(ε_(Nd)(t)=-2.33~-1.38;~(87)Sr/~(86)Sr=0.706 5~0.706 7)和斜长石的反向分带显示,壳幔间岩浆混合作用在岩体的形成过程中扮演了重要角色。石榴石斑晶和其中的钛铁矿包体均含有较低的MgO,且包裹石榴石的角闪石形成于较高的压力(8~10 kb)条件下,显示这些矿物结晶自一个长英质岩浆中,且很可能形成于壳幔过渡带附近。尽管该岩石在富铝、低重稀土、高Sr/Y等很多方面均类似于埃达克岩石,但其中等含量的Sr(260×10~(-6))和La/Yb比值(16~21)却明显低于典型的埃达克岩和太古代的TTG。结合石榴石斑晶中广泛存在的磷灰石包体以及其较高的Sr和轻稀土分配系数,本文提出在岩浆演化早期结晶的磷灰石有效地降低了残余熔体中的Sr和轻稀土。这进一步表明,即使在高水逸度的条件下,磷灰石在岩浆早期的大量结晶可以有效地阻止一些弧岩浆演化成为埃达克质岩石。  相似文献   

2.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

3.
Petrogenesis of high Mg# adakitic rocks in intracontinental settings is still a matter of debate. This paper reports major and trace element, whole-rock Sr–Nd isotope, zircon U–Pb and Hf isotope data for a suite of adakitic monzogranite and its mafic microgranular enclaves (MMEs) at Yangba in the northwestern margin of the South China Block. These geochemical data suggest that magma mixing between felsic adakitic magma derived from thickened lower continental crust and mafic magma derived from subcontinental lithospheric mantle (SCLM) may account for the origin of high Mg# adakitic rocks in the intracontinental setting. The host monzogranite and MMEs from the Yangba pluton have zircon U–Pb ages of 207 ± 2 and 208 ± 2 Ma, respectively. The MMEs show igneous textures and contain abundant acicular apatite that suggests quenching process. Their trace element and evolved Sr–Nd isotopic compositions [(87Sr/86Sr)i = 0.707069–0.707138, and εNd(t) = −6.5] indicate an origin from SCLM. Some zircon grains from the MMEs have positive εHf(t) values of 2.3–8.2 with single-stage Hf model ages of 531–764 Ma. Thus, the MMEs would be derived from partial melts of the Neoproterozoic SCLM that formed during rift magmatism in response to breakup of supercontinent Rodinia, and experience subsequent fractional crystallization and magma mixing process. The host monzogranite exhibits typical geochemical characteristics of adakite, i.e., high La/Yb and Sr/Y ratios, low contents of Y (9.5–14.5 ppm) and Yb, no significant Eu anomalies (Eu/Eu* = 0.81–0.90), suggesting that garnet was stable in their source during partial melting. Its evolved Sr–Nd isotopic compositions [(87Sr/86Sr)i = 0.7041–0.7061, and εNd(t) = −3.1 to −4.3] and high contents of K2O (3.22–3.84%) and Th (13.7–19.0 ppm) clearly indicate an origin from the continental crust. In addition, its high Mg# (51–55), Cr and Ni contents may result from mixing with the SCLM-derived mafic magma. Most of the zircon grains from the adakitic monzogranite show negative εHf(t) values of −9.4 to −0.1 with two-stage Hf model ages of 1,043–1,517 Ma; some zircon grains display positive εHf(t) of 0.1–3.9 with single-stage Hf ages of 704–856 Ma. These indicate that the source region of adakitic monzogranite contains the Neoproterozoic juvenile crust that has the positive εHf(t) values in the Triassic. Thus, the high-Mg adakitic granites in the intracontinental setting would form by mixing between the crustal-derived adakitic magma and the SCLM-derived mafic magma. The mafic and adakitic magmas were generated coevally at Late Triassic, temporally consistent with the exhumation of deeply subducted continental crust in the northern margin of the South China Block. This bimodal magmatism postdates slab breakoff at mantle depths and therefore is suggested as a geodynamic response to lithospheric extension subsequent to the continental collision between the South China and North China Blocks.  相似文献   

4.
Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67–72), plagioclase (An56–60) phenocrysts, have 4–5 wt% MgO and 49.6–50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64–72) and olivine phenocrysts (Fo81–84) with spinel inclusions, and have 8–9 wt% MgO and 48.4–49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and subduction-modified mantle.  相似文献   

5.
Summary Melt inclusions in olivine and apatite, and REE distribution of apatite were studied in one of the least differentiated members of the oldest alkaline succession of Mt. Etna. Apatite occurs both as microphenocrysts and as inclusions in olivine crystals, even in the most Mg-rich ones (Fo82). In addition phenocrysts and groundmass are composed of plagioclase, clinopyroxene, olivine and magnetite. Apatite is fluor-apatite, with rather homogeneous major element (measured by electron microprobe, EMP) and REE (measured by laser-ablation microprobe, LAM, and by secondary ion mass spectrometer, SIMS) contents. REE are enriched when compared to the whole rock, with contents in olivine-hosted apatite lower than or the same as those of the microphenocryst cores; these in turn show lower REE values than their edges. Distribution coefficients, calculated from LAM data of microphenocryst edges and whole rock analyses, are higher for LREE (8–12) than for HREE (5–4). In the SiO2 vs. P2O5 diagram melt inclusions and whole rock samples define a trend that is consistent with continuous apatite extraction from a “high P” basalt magma. Finally, whole rock data show LREE/HREE (La/Lu)n enrichment ratios from hawaiites to mugearites (=1.14), consistent with apatite fractionation, lower than those documented for lavas of the “low P” type (enrichment ratio = 1.34–1.37), where conditions for apatite saturation were not established. Received January 2, 2000; revised version accepted April 2, 2001  相似文献   

6.
Tephra lapilli from six explosive eruptions between April 1996 and February 1998 at Popocatepetl volcano (=Popo) in central Mexico have been studied to investigate the causes of magma diversification in thick-crusted volcanic arcs. The tephra particles are sparsely porphyritic (≈5 vol%) magnesian andesites (SiO2=58–65 wt%; MgO=2.6–5.9 wt%) that contain phenocrysts of NiO-rich (up to 0.67 wt% NiO) magnesian olivine (Fo89–91 cores) with inclusions of Cr-spinel (cr#=59–70), orthopyroxene (mg#=63–76), clinopyroxene (mg#=68–86), intermediate to sodic plagioclase (An33–66), and traces of amphibole. Major and trace element systematics indicate magma mixing. The liquid mg#melt ratios inferred from the ferromagnesian phenocrysts suggest the existence of a mafic (mg#melt ≈ 72–76) and an evolved component magma (mg#melt ≈ 35–40). These component magmas form a hybrid magnesian andesite with an intermediate range of mg#melt=50–72. The mafic end member (mg#melt ≈ 72–75) is saturated with olivine and spinel and crystallizes at temperatures ≈1170–1085 °C with oxygen fugacities close to the fayalite–magnetite–quartz buffer and elevated water contents of several wt% H2O. A likely location of crystallization is at lower crustal levels, possibly at the Moho. Olivine is followed by high-mg# clinopyroxene which could start to crystallize during magma ascent. At depths of ≈4 to 13 km, the mafic magma mixes with an evolved composition containing low-mg# clino- and orthopyroxene and plagioclase at a temperature of ≈950 °C. The repetitive ascent of batches of mafic magmas spaced days to weeks apart implies multiple episodes of crystallization and magma mixing. The tephra is similar to the Popo magnesian andesites, suggesting similar generic processes for the common lavas of the volcano. The advantage of the tephra is that it can be used to reconstruct the composition of the mafic magma. Building on the elemental systematics of the tephra and a comparison to the near-primary basalts from the surrounding monogenetic fields, we infer that the Popo mafic end member is a magnesian andesite with variable, but high SiO2 contents of ≈55–62 wt% and near-primary characteristics, such as high-mg#melt of 72–75, FeO*/MgO ratios <1 (if extrapolated to an mg#melt of 72–75), and high Ni contents (=200 ppm Ni). This model implies that the typical elemental signature of the Popo andesites, such as the low CaO, Al2O3, FeO*, high Na2O contents, and the depletion in high-field strength elements (e.g., P, Zr, Ti), are mantle source phenomena. Thus, determining the elemental budget of the magnesian andesite, as it is prior to the modifications by crustal differentiation, is central to quantifying the subcrustal mass fluxes beneath Popo. Received: 13 December 1999 / Accepted: 11 August 2000  相似文献   

7.
Recent basaltic andesite lavas from Merapi volcano contain abundant,complexly zoned, plagioclase phenocrysts, analysed here fortheir petrographic textures, major element composition and Srisotope composition. Anorthite (An) content in individual crystalscan vary by as much as 55 mol% (An40–95) across internalresorption surfaces with a negative correlation between highAn mol% (>70), MgO wt% and FeO wt%. In situ Sr isotope analysesof zoned plagioclase phenocrysts show that the 87Sr/86Sr ratiosof individual zones range from 0·70568 to 0·70627.The upper end of this range is notably more radiogenic thanthe host basaltic andesite whole-rocks (< 0·70574).Crystal zones with the highest An content have the highest 87Sr/86Srvalues, requiring a source or melt with elevated radiogenicSr, rich in Ca and with lower Mg and Fe. Recent Merapi eruptiverocks contain abundant xenoliths, including metamorphosed volcanoclasticsediment and carbonate country rock (calc-silicate skarns) analysedhere for petrographic textures, mineralogy, major element compositionand Sr isotope composition. The xenoliths contain extremelycalcic plagioclase (up to An100) and have whole-rock 87Sr/86Srratios of 0·70584 to 0·70786. The presence ofthese xenoliths and their mineralogy and geochemistry, coupledwith the 87Sr/86Sr ratios observed in different zones of individualphenocrysts, indicate that magma–crust interaction atMerapi is potentially more significant than previously thought,as numerous crystal cores in the phenocrysts appear to be inheritedfrom a metamorphosed sedimentary crustal source. This has potentiallysignificant consequences for geochemical mass-balance calculations,volatile saturation and flux and eruptive behaviour at Merapiand similar island arc volcanic systems elsewhere. KEY WORDS: assimilation; isotopes; Merapi; xenolith; calc-silicate  相似文献   

8.
We have studied the chemical zoning of plagioclase phenocrysts from the slow-spreading Mid-Atlantic Ridge and the intermediate-spreading rate Costa Rica Rift to obtain the time scales of magmatic processes beneath these ridges. The anorthite content, Mg, and Sr in plagioclase phenocrysts from the Mid-Atlantic Ridge can be interpreted as recording initial crystallisation from a primitive magma (~11 wt% MgO) in an open system. This was followed by crystal accumulation in a mush zone and later entrainment of crystals into the erupted magma. The initial magma crystallised plagioclase more anorthitic than those in equilibrium with any erupted basalt. Evidence that the crystals accumulated in a mush zone comes from both: (1) plagioclase rims that were in equilibrium with a Sr-poor melt requiring extreme differentiation; and (2) different crystals found in the same thin section having different histories. Diffusion modelling shows that crystal residence times in the mush were <140 years, whereas the interval between mush disaggregation and eruption was ≤1.5 years. Zoning of anorthite content and Mg in plagioclase phenocrysts from the Costa Rica Rift show that they partially or completely equilibrated with a MgO-rich melt (>11 wt%). Partial equilibration in some crystals can be modelled as starting <1 year prior to eruption but for others longer times are required for complete equilibration. This variety of times is most readily explained if the mixing occurred in a mush zone. None of the plagioclase phenocrysts from the Costa Rica Rift that we studied have Mg contents in equilibrium with their host basalt even at their rims, requiring mixing into a much more evolved magma within days of eruption. In combination these observations suggest that at both intermediate- and slow-spreading ridges: (1) the chemical environment to which crystals are exposed changes on annual to decadal time scales; (2) plagioclase crystals record the existence of melts unlike those erupted; and (3) disaggregation of crystal mush zones appears to precede eruption, providing an efficient mechanism by which evolved interstitial melt can be mixed into erupted basalts.  相似文献   

9.
Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y < 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.  相似文献   

10.
Summary ?To enhance the ability to distinguish tholeiitic from alkalic magma parentages by mineral compositions, I determined trace-element abundances in plagioclase separated from xenolithic gabbros of Mauna Kea volcano. These gabbros have origins in tholeiitic and alkalic magmas of the Hamakua postshield stage of Mauna Kea volcanism. Chondrite-normalized rare-earth element (REE) patterns for plagioclase show that highly calcic plagioclase, ≥ An78, from alkalic magma has greater light-REE/heavy-REE (LREE/HREE) ratios than less calcic plagioclase, An64–75, from tholeiitic magma (ratios, 22–33 vs < 20), suggesting that higher LREE/HREE ratios are inherent to plagioclase of alkalic magmas. However, with compositional evolution (i.e., to lower An), plagioclase REE patterns are of limited use for distinguishing tholeiitic from alkalic parentage because LREE/HREE ratios within each group increase and overlap in the range of ∼ 20–90. Sr, Ba, Hf, and Ta can also discern parentages as their abundances in plagioclase largely reflect abundances inherent to their parental magmas. The best expressions for identifying parentage use Sr abundances (Sr vs An; vs Ce/Yb; vs Sr/Ce), although Hf, Ba, and Ta abundances vs An and vs Ce/Yb are also useful – the distinctions due to tholeiitic plagioclase having relatively low Sr (∼ 500–1000 ppm), Ba (< 100 ppm), Hf (< 0.10 ppm), and Ta (< 0.05 ppm). These relationships help to distinguish between the effects of differentiation on trace-element abundances in plagioclase and their abundances owed to intrinsic concentrations in their magmas. They create compositional fields for tholeiitic and alkalic parentages that remain graphically separated even though differentiation may have enriched the plagioclase in incompatible elements.
Zusammenfassung ?Plagioklas aus tholeitischen und alkalischen Magmen von Hawaii: Unterscheidung aufgrund von REE, Sr, Ba, Hf und Ta Um die M?glichkeit der Unterscheidung tholeitischer von alkalischer Magmaherkunft durch Mineralzusammensetzungen zu verbessern, habe ich die Spurenelementverteilung in Plagioklasen, die von xenolithischen Gabbros des Mauna Kea Vulkans abgetrennt wurden, untersucht, Diese Gabbros entstammen tholeitischen und alkalischen Magmen des Hamakua “Post-Schild” Stadiums des Mauna Kea Vulkanismus. Chondritisch normalisierte Seltene Erd (SEE) Verteilungs-Muster für Plagioklase zeigen, dass stark kalzische Plagioklase, > An78, aus alkalischen Magmen h?here leichte SEE/schwere SEE (LSEE/HSEE) Verh?ltnisse zeigen, als weniger kalzische Plagioklase, An64–75 aus tholeitischem Magma (Verh?ltniszahlen 22–33 gegenüber < 20). Dies weist darauf hin, dass h?here LSEE/HSEE-Verh?ltnisse typisch für Plagioklase aus alkalischen Magmen sind. Im Zuge der Evolution der Zusammensetzungen (d.h. zu niedrigeren An-Werten hin), sind die SEE Verteilungsmuster von Plagioklasen weniger hilfreich um tholeitische von alkalischer Herkunft zu unterscheiden. Dies ist deshalb so, weil die Verh?ltniszahlen innerhalb jeder Gruppe zunehmen und im Bereich von 20–90 überlappen. Sr, Ba, Hf und Ta k?nnen auch dazu dienen, um die Herkunft der Plagioklase zu definieren, da ihre H?ufigkeit gro?teils auf H?ufigkeiten, die für die Ursprungsmagmen typisch sind, zurückgehen. Die besten Herkunft-Parameter sind die Sr H?ufigkeiten (Sr vs An; vs Ce/Yb; vs Sr/Ce), obwohl die H?ufigkeit von Hf, Ba und Ta gegen An und gegen Ce/Yb auch nützlich sind. Diese Unterscheidungen gehen darauf zurück, dass tholeitische Plagioklase relativ niedrige Sr (∼ 500–1000 ppm), Ba (< 500 ppm) Hf (< 0.10 ppm) und Ta (< 0.5 ppm) führen. Diese Beziehungen erleichtern die Unterscheidung zwischen den Auswirkungen der Differenzierung auf die Spurenelement-Verteilungsmuster in Plagioklasen und auf ihre H?ufigkeiten, die auf die intrisischen Konzentrationen in den Ursprungsmagmen zurückgehen. Sie definieren charakteristische Felder für tholeitische und für alkalische Herkunft, die graphisch separiert bleiben, auch wenn die Gehalte der Plagioklase an inkompatiblen Elementen durch Differenzierung zugenommen haben mag.


Received July 22, 1999;revised version accepted December 7, 1999  相似文献   

11.
The Edgecumbe volcanic field is a Holocene volcanic province located on Kruzof Island, SE Alaska. Exposed within the 260 km2 field are basalt, andesitic basalt, andesite, dacite and rhyodacite. The rhyodacites were erupted after the basalts and before the andesites. The volcanics, which are Al-rich (14–18 wt%) and lack an iron enrichment trend, range from tholeiites (47 wt% SiO2) through rhyodacites (72%), but a compositional gap of approximately 9 wt% separates the dacites and rhyodacites. Initial 87Sr/86Sr ranges from 0.70297 in the basalts to 0.70440 in a pyroxene andesite. δ 18O increases across the suite: 5.8‰ to 7.9‰. Plagioclase (An32–86) is the dominant phenocryst in all but one lava. Olivine (Fo58–86) occurs in the basic lavas (<53 wt% SiO2), but is replaced by orthopyroxene (En43–73) and clinopyroxene (En31Wo41-En48Wo40) in the more siliceous volcanics. In the basalts and rhyodacites, plagioclase is weakly zoned, but extreme zoning (<30 mole% An) is characteristic of phenocrysts in the intermediate lavas. Fractionation of the observed phenocryst assemblages could not have produced the more silicous volcanics. Instead they were generated by partial melting of intrusive basement (87Sr/86Sr=0.70487; δ 18O: 8.7–9.3) by basaltic magma and subsequent assimilation. Mass balance calculations show the rhyodacites are almost pure partial melt (<5% basaltic component) whereas the intermediate lavas contain between 30 and 60% partial melt.  相似文献   

12.
We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements (i.e. Rb, Ba, Th, K and LREEs) and even larger variation in radiogenic (Pb, Sr, Nd) isotope ratios. Tibetan adakitic rocks have extraordinarily low HREE (Yb: 0.34–0.61 ppm) and Y (3.71–6.79 ppm), high Sr/Y (66–196), high Dyn/Ybn and Lan/Ybn. They show strong evidence of binary mixing both in isotopic space (Sr-Nd, common Pb, thorogenic Pb) and trace element systematics. The majority of the adakitic rocks in south Tibet, including published and our new data, have variational Mg# (0.32–0.70), clear Nb (and HFSE) enrichment, the lowest initial 87Sr/86Sr and 206Pb/204Pb ratios, and the highest 144Nd/143Nd ratios of all Neogene volcanic rocks in south Tibet. These results indicate an involvement of slab melts in petrogenesis. Major and trace element characteristics of the isotopically more enriched adakites are compatible with derivation from subducted sediment but not with assimilation of crustal material. Thus, the south Tibetan adakitic magmas are inferred to have been derived from an upper mantle source metasomatised by slab-derived melts. An interesting observation is that temporally coeval and spatially related lamproites could be genetically related to the adakitic rocks in representing partial melts of distinct mantle domains metasomatised by subducted sediment. Our favoured geodynamic interpretation is that along-strike variation in south Tibetan post-collisional magma compositions may be related to release of slab melts and fluids along the former subduction zone resulting in compositionally distinct mantle domains.  相似文献   

13.
A spatial and temporal association between adakitic rocks and Nb-enriched basalts (NEB) is recognised for the first time in the western sector of the Trans-Mexican Volcanic Belt in the San Pedro–Cerro Grande Volcanic Complex (SCVC). The SCVC is composed of subalkalic intermediate to felsic rocks, spanning in composition from high-silica andesites to rhyolites, and by the young transitional hawaiite and mugearite lavas of Amado Nervo shield volcano. Intermediate to felsic rocks of the SCVC show many geochemical characteristics of typical adakites, such as high Sr/Y ratios (up to 180) and low Y (<18 ppm) and Yb contents. Mafic Amado Nervo rocks have high TiO2 (1.5–2.3 wt%), Nb (14–27 ppm), Nb/La (0.5–0.9) and high absolute abundances of HFSE similar to those shown by NEB. However, the Sr and Nd isotopic signature of SCVC rocks is different from that shown by typical adakites and NEB. Although the adakites–NEB association has been traditionally considered as a strong evidence of slab-melting, we suggest that other processes can lead to its generation. Here, we show that parental magmas of adakitic rocks of the SCVC derive their adakitic characteristic from high-pressure crystal fractionation processes of garnet, amphibole and pyroxene of a normal arc basalt. On the other hand, Amado Nervo Na-alkaline parental magmas have been generated by sediment melting plus MORB-fluid flux melting of a heterogeneous mantle wedge, consisting of a mixture of depleted and an enriched mantle sources (90DM + 10EM). We cannot exclude a contribution to the subduction component of slab melts, because the component signature is dominated by sediment melt, but we argue that caution is needed in interpreting the adakites–NEB association in a genetic sense.  相似文献   

14.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

15.
The 1995 eruption of Fogo (Cape Verde Islands) differed from previous eruptions by the occurrence of evolved lavas, the SW-orientation of vents, and pre-eruptive seismicity between Fogo and the adjacent (~20 km) island of Brava. We have conducted a thermobarometric and chemical study of this eruption in order to reconstruct its magma plumbing system and to test for possible connections to Brava. The bimodal eruption produced basanites (5.2–6.7 wt% MgO) and phonotephrites (2.4–2.8 wt% MgO) that are related by fractional crystallization. Clinopyroxene-melt-barometry of phenocrysts yields pressure ranges of 460–680 MPa for the basanites and 460–520 MPa for the phonotephrites. Microthermometry of CO2-dominated fluid inclusions in olivine and clinopyroxene phenocrysts yields systematically lower pressure ranges of 200–310 MPa for basanites and 270–470 MPa for phonotephrites. The combined data indicate pre-eruptive storage of the 1995 magmas within the lithospheric mantle between 16 and 24 km depth. During eruption, the ascending magmas stalled temporarily at 8–11 km depth, within the lower crust, before they ascended to the surface in a few hours as indicated by zonations of olivine phenocrysts. Our data provide no evidence for magma storage at shallow levels (<200 MPa) or lateral magma movements beneath the Fogo-Brava platform. Sr–Nd–Pb isotope ratios of samples from Brava differ significantly from those of the 1995 and older Fogo lavas, which rules out contamination of the 1995 magmas by Brava material and indicates different mantle sources and magma plumbing systems for both islands.  相似文献   

16.
The La Costa pluton in the Sierra de Velasco (NW Argentina) consists of S-type granitoids that can be grouped into three igneous facies: the alkali-rich Santa Cruz facies (SCF, SiO2 ~67 wt%) distinguished by the presence of andalusite and Na- and Li-rich cordierite (Na2O = 1.55–1.77 wt% and Li2O = 0.14–0.66 wt%), the Anillaco facies (SiO2 ~74 wt%) with a significant proportion of Mn-rich garnet, and the Anjullón facies (SiO2 ~75 wt%) with abundant albitic plagioclase. The petrography, mineral chemistry and whole-rock geochemistry of the SCF are compatible with magmatic crystallization of Na- and Li-rich cordierite, andalusite and muscovite from the peraluminous magma under moderate P–T conditions (~1.9 kbar and ca. 735°C). The high Li content of cordierite in the SCF is unusual for granitic rocks of intermediate composition.  相似文献   

17.
Trace element concentrations in the four principal peridotitic silicate phases (garnet, olivine, orthopyroxene, clinopyroxene) included in diamonds from Akwatia (Birim Field, Ghana) were determined using SIMS. Incompatible trace elements are hosted in garnet and clinopyroxene except for Sr which is equally distributed between orthopyroxene and garnet in harzburgitic paragenesis diamonds. The separation between lherzolitic and harzburgitic inclusion parageneses, which is commonly made using compositional fields for garnets in a CaO versus Cr2O3 diagram, is also apparent from the Ti and Sr contents in both olivine and garnet. Titanium is much higher in the lherzolitic and Sr in the harzburgitic inclusions. Chondrite normalised REE patterns of lherzolitic garnets are enriched (10–20 times chondrite) in HREE (LaN/YbN = 0.02–0.06) while harzburgitic garnets have sinusoidal REEN patterns, with the highest concentrations for Ce and Nd (2–8 times chondritic) and a minimum at Ho (0.2–0.7 times chondritic). Clinopyroxene inclusions show negative slopes with La enrichment 10–100 times chondritic and low Lu (0.1–1 times chondritic). Both a lherzolitic and a harzburgitic garnet with very high knorringite contents (14 and 21 wt% Cr2O3 respectively) could be readily distinguished from other garnets of their parageneses by much higher levels of LREE enrichment. The REE patterns for calculated melt compositions from lherzolitic garnet inclusions fall into the compositional field for kimberlitic-lamproitic and carbonatitic melts. Much more strongly fractionated REE patterns calculated from harzburgitic garnets, and low concentrations in Ti, Y, Zr, and Hf, differ significantly from known alkaline and carbonatitic melts and require a different agent. Equilibration temperatures for harzburgitic inclusions are generally below the C-H-O solidus of their paragenesis, those of lherzolitic inclusions are above. Crystallisation of harzburgitic diamonds from CO2-bearing melts or fluids may thus be excluded. Diamond inclusion chemistry and mineralogy also is inconsistent with known examples of metasomatism by H2O-rich melts. We therefore favour diamond precipitation by oxidation of CH4-rich fluids with highly fractionated trace element patterns which are possibly due to “chromatographic” fractionation processes. Received: 27 January 1996 / Accepted: 5 May 1997  相似文献   

18.
The Rotoiti (~120 km3) and Earthquake Flat (~10 km3) eruptions occurred in close succession from the Okataina Volcanic Centre at ~50 ka. While accessory mineral geochronology points to long periods of crystallization prior to eruption (104–105 years) and separate thermal histories for the magmas, little was known about the rates and processes of the final melt production and eruption. Crystal zoning patterns in plagioclase and quartz reveal the thermal and compositional history of the magmatic system leading up to the eruption. The dominant modal phase, plagioclase, displays considerable within-crystal zonation: An37–74, ~40–227 ppm MgO, 45–227 ppm TiO2, 416–910 ppm Sr and 168–1164 ppm Ba. Resorption horizons in the crystals are marked by sharp increases (10–30%) in Sr, MgO and XAn that reflect changes in melt composition and are consistent with open system processes. Melt inclusions display further evidence for open system behaviour, some are depleted in Sr and Ba relative to accompanying matrix glass not consistent with crystallization of modal assemblage. MI also display a wide range in XH2O that is consistent with volatile fluxing. Quartz CL images reveal zoning that is truncated by resorption, and accompanied by abrupt increases in Ti concentration (30–80 ppm) that reflect temperature increases ~50–110°C. Diffusion across these resorption horizons is restricted to zones of <20 μm, suggesting most crystallization within the magma occurred in <2000 years. These episodes are brief compared to the longevity (104–105 year) of the crystal mush zones. All textural and compositional features observed within the quartz and plagioclase crystals are best explained by periodic mafic intrusions repeatedly melting parts of a crystal-rich zone and recharging the system with silicic melt. These periodic influxes of silicic melt would have accumulated to form the large volume of magma that fed the caldera-forming Rotoiti eruption.  相似文献   

19.
Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere–lithosphere history of partial melting and subsequent multi-stage melt–rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting (F = 5–10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling (T = 970–1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt–rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt–rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt–rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt–rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt–rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the lithospheric depths at which interaction occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号