首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mt. Baker is a dominantly andesitic stratovolcano in the northern Cascade arc. In this study, we show that the andesites are not all derived from similar sources, and that open-system processes were dominant during their petrogenesis. To this end, we discuss petrographic observations, mineral chemistry, and whole rock major and trace element chemistry for three of Mt. Baker’s late Pleistocene to Holocene lava flow units. These include the basalt and basaltic andesite of Sulphur Creek (SC) (51.4–55.8 wt% SiO2, Mg# 57–58), the Mg-rich andesite of Glacier Creek (GC) (58.3–58.7 wt% SiO2, Mg# 63–64), and the andesite and dacite of Boulder Glacier (BG) (60.2–64.2 wt% SiO2, Mg# 50–57). Phenocryst populations in all units display varying degrees of reaction and disequilibrium textures along with complicated zoning patterns indicative of open-system processes. All lavas are medium-K and calc-alkaline, but each unit displays distinctive trace element and REE characteristics that do not correlate with the average SiO2 content of the unit. The mafic lavas of SC have relatively elevated REE abundances with the lowest (La/Yb)N (~4.5). The intermediate GC andesites (Mg- and Ni-rich) have the lowest REE abundances and the highest (La/Yb)N (~6.7) with strongly depleted HREE. The more felsic BG lavas have intermediate REE abundances and (La/Yb)N (~6.4). The high-Mg character of the GC andesites can be explained by addition of 4% of a xenocrystic olivine component. However, their depleted REE patterns are similar to other high-Mg andesites reported from Mt. Baker and require a distinct mantle source. The two dominantly andesitic units (GC and BG) are different enough from each other that they could not have been derived from the same parent basalt. Nor could either of them have been derived from the SC basalt by crystal fractionation processes. Crystal fractionation also cannot explain the compositional diversity within each unit. Compositional diversity within the SC unit (basalt to basaltic andesite) can, however, be successfully modeled by mixing of basalt with compositions similar to the dacites in the BG unit. Given that the BG dacites erupted at ~80–90 ka, and a similar composition was mixed with the SC lavas at 9.8 ka, the process that produced this felsic end-member must have been repeatedly active for at least 70 ka.  相似文献   

2.
A garnet-bearing tonalitic porphyry from the Achiq Kol area, northeast Tibetan Plateau has been dated by SHRIMP U-Pb zircon techniques and gives a Late Triassic age of 213 ± 3 Ma. The porphyry contains phenocrysts of Ca-rich, Mn-poor garnet (CaO > 5 wt%; MnO < 3 wt%), Al-rich hornblende (Al2O3 ~ 15.9 wt%), plagioclase and quartz, and pressure estimates for hornblende enclosing the garnet phenocrysts yield values of 8–10 kbar, indicating a minimum pressure for the garnet. The rock has SiO2 of 60–63 wt%, low MgO (<2.0 wt%), K2O (<1.3 wt%), but high Al2O3 (>17 wt%) contents, and is metaluminous to slightly peraluminous (ACNK = 0.89–1.05). The rock samples are enriched in LILE and LREE but depleted in Nb and Ti, showing typical features of subduction-related magmas. The relatively high Sr/Y (~38) ratios and low HREE (Yb < 0.8 ppm) contents suggest that garnet is a residual phase, while suppressed crystallization of plagioclase and lack of negative Eu anomalies indicate a high water fugacity in the magma. Nd–Sr isotope compositions of the rock (εNdT = −1.38 to −2.33; 87Sr/86Sri = 0.7065–0.7067) suggest that both mantle- and crust-derived materials were involved in the petrogenesis, which is consistent with the reverse compositional zoning of plagioclase, interpreted to indicate magma mixing. Both garnet phenocrysts and their ilmenite inclusions contain low MgO contents which, in combination with the oxygen isotope composition of garnet separates (+6.23‰), suggests that these minerals formed in a lower crust-derived felsic melt probably in the MASH zone. Although the rock samples are similar to adakitic rocks in many aspects, their moderate Sr contents (<260 ppm) and La/Yb ratios (mostly 16–21) are significantly lower than those of adakitic rocks. Because of high partition coefficients for Sr and LREE, fractionation of apatite at an early stage in the evolution of the magma may have effectively decreased both Sr and LREE in the residual melt. It is suggested that extensive crystallization of apatite as an early phase may prevent some arc magmas from evolving into adakitic rocks even under high water fugacity.  相似文献   

3.
The bulk (post-eruptive) wt% FeO concentration in each of 11 phenocryst-poor (<5%) andesite and dacite (60–69 wt% SiO2) lavas from different monogenetic vents in the Mexican arc has been measured by titration, in duplicate. The results match, within analytical error, the wt% FeO content of the magmas during phenocryst growth (pre-euptive), which were calculated on the basis of oxygen fugacity and temperature results from Fe–Ti two-oxide oxygen barometry. The average deviation between the pre- and post-eruptive FeO concentrations is ±0.15 wt%. Application of the plagioclase-liquid hygrometer shows that at the time of phenocryst growth, these 11 magmas contained from ~3–8 wt% H2O, which was extensively degassed upon eruption. There is no evidence that degassing of ≤8 wt% H2O changed the oxidation state of these magmas. Calculations of pre-eruptive and post-eruptive oxygen fugacity values relative to the Ni-NiO buffer (in terms of log10 units) for the 11 samples span a similar range; pre-eruptive ∆NNO = −0.9 to +0.7 and post-eruptive ∆NNO = −0.4 to +0.8. The data further show that extensive groundmass (closed-system) crystallization had no affect on bulk Fe3+/Fe2+ ratios. Finally, there is no systematic variation in the range of pre-eruptive Fe3+/FeT values of the samples as a function of SiO2 concentration (i.e., differentiation). Therefore, the results of this study indicate that the elevated Fe3+/FeT ratios of arc andesites and dacites, compared with magmas erupted in other tectonic settings, cannot be attributed to the effects of (1) degassing of H2O, (2) closed-system crystallization, and/or (3) differentiation effects, but instead must be inherited from their parental source rocks (i.e., mantle-derived arc basalts).  相似文献   

4.
We present elemental and Sr–Nd–Pb isotopic data for the magmatic suite (~79 Ma) of the Harşit pluton, from the Eastern Pontides (NE Turkey), with the aim of determining its magma source and geodynamic evolution. The pluton comprises granite, granodiorite, tonalite and minor diorite (SiO2 = 59.43–76.95 wt%), with only minor gabbroic diorite mafic microgranular enclaves in composition (SiO2 = 54.95–56.32 wt%), and exhibits low Mg# (<46). All samples show a high-K calc-alkaline differentiation trend and I-type features. The chondrite-normalized REE patterns are fractionated [(La/Yb) n  = 2.40–12.44] and display weak Eu anomalies (Eu/Eu* = 0.30–0.76). The rocks are characterized by enrichment of LILE and depletion of HFSE. The Harşit host rocks have weak concave-upward REE patterns, suggesting that amphibole and garnet played a significant role in their generation during magma segregation. The host rocks and their enclaves are isotopically indistinguishable. Sr–Nd isotopic data for all of the samples display I Sr = 0.70676–0.70708, ε Nd(79 Ma) = −4.4 to −3.3, with T DM = 1.09–1.36 Ga. The lead isotopic ratios are (206Pb/204Pb) = 18.79–18.87, (207Pb/204Pb) = 15.59–15.61 and (208Pb/204Pb) = 38.71–38.83. These geochemical data rule out pure crustal-derived magma genesis in a post-collision extensional stage and suggest mixed-origin magma generation in a subduction setting. The melting that generated these high-K granitoidic rocks may have resulted from the upper Cretaceous subduction of the Izmir–Ankara–Erzincan oceanic slab beneath the Eurasian block in the region. The back-arc extensional events would have caused melting of the enriched subcontinental lithospheric mantle and formed mafic magma. The underplating of the lower crust by mafic magmas would have played a significant role in the generation of high-K magma. Thus, a thermal anomaly induced by underplated basic magma into a hot crust would have caused partial melting in the lower part of the crust. In this scenario, the lithospheric mantle-derived basaltic melt first mixed with granitic magma of crustal origin at depth. Then, the melts, which subsequently underwent a fractional crystallization and crustal assimilation processes, could ascend to shallower crustal levels to generate a variety of rock types ranging from diorite to granite. Sr–Nd isotope modeling shows that the generation of these magmas involved ~65–75% of the lower crustal-derived melt and ~25–35% of subcontinental lithospheric mantle. Further, geochemical data and the Ar–Ar plateau age on hornblende, combined with regional studies, imply that the Harşit pluton formed in a subduction setting and that the back-arc extensional period started by least ~79 Ma in the Eastern Pontides.  相似文献   

5.
Ophiolite complexes, formed in a suprasubduction zone environment during Neoproterozoic time, are widely distributed in the Eastern Desert of Egypt. Their mantle sections provide important information on the origin and tectonic history of ocean basins these complexes represent. The geochemistry and mineralogy of the mantle section of the Wizer ophiolite complex, represented by serpentinites after harzburgite containing minor dunite bodies, are presented. Presence of antigorite together with the incipient alteration of chromite and absence of chlorite suggests that serpentinization occurred in the mantle wedge above a Neoproterozoic subduction zone. Wizer peridotites have a wide range of spinel compositions. Spinel Cr# [100Cr/(Cr + Al)] decrease gradually from dunite bodies (Cr# = 81–87) and their host highly depleted harzburgites (Cr# = 67–79) to the less depleted harzburgites (Cr# = 57–63). Such decreases in mantle refractory character are accompanied by higher Al and Ti contents in bulk compositions. Estimated parental melt compositions point to an equilibration with melts of boninitic composition for the dunite bodies (TiO2 = ~<0.07–0.22 wt%; Al2O3 = 9.4–10.6 wt%), boninitic-arc tholeiite for the highly depleted harzburgites (TiO2 = <0.09–0.28 wt%; Al2O3 = 11.2–14.1 wt%) and more MORB-like affinities for the less depleted harzburgites (TiO2 = ~<0.38–0.51 wt%; Al2O3 = 14.5–15.3 wt%). Estimated equilibrium melts are found in the overlying volcanic sequence, which shows a transitional MORB–island arc geochemical signature with a few boninitic samples. Enrichment of some chromites in TiO2 and identification of sulfides in highly depleted peridotites imply interaction with an impregnating melt. A two-stage partial melting/melt–rock reaction model is advocated, whereby, melting of a depleted mantle source by reaction with MORB-like melts is followed by a second stage melting by interaction with melts of IAT–boninitic affinities in a suprasubduction zone environment to generate the highly depleted harzburgites and dunite bodies. The shift from MORB to island arc/boninitic affinities within the mantle lithosphere of the Wizer ophiolite sequence suggests generation in a protoarc-forearc environment. This, together with the systematic latitudinal change in composition of ophiolitic lavas in the Central Eastern Desert (CED) of Egypt from IAT–boninitic affinities to more MORB-like signature, implies that the CED could represent a disrupted forearc-arc-backarc system above a southeast-dipping subduction zone.  相似文献   

6.
The Maoduan Pb–Zn–Mo deposit is in hydrothermal veins with a pyrrhotite stage followed by a molybdenite and base metal stage. The Re–Os model ages of five molybdenite samples range from 138.6 ± 2.0 to 140.0 ± 1.9 Ma. Their isochron age is 137.7 ± 2.7 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed Linggen granite porphyry gave a 206Pb/238U age of 152.2 ± 2.2 Ma and the hidden Maoduan monzogranite yielded a mean of 140.0 ± 1.6 Ma. These results suggest that the intrusion of the Maoduan monzogranite and Pb–Zn–Mo mineralization are contemporaneous. δ 34S values of sulfide minerals range from 3.4‰ to 4.8‰, similar to magmatic sulfur. Four sulfide samples have 206Pb/204Pb = 18.252–18.432, 207Pb/204Pb = 15.609–15.779, and 208Pb/204Pb = 38.640–39.431, similar to the age-corrected data of the Maoduan monzogranite. These isotope data support a genetic relationship between the Pb–Zn–Mo mineralization and the Maoduan monzogranite and probably indicate a common deep source. The Maoduan monzogranite has geochemical features similar to highly fractionated I-type granites, such as high SiO2 (73.7–75.2 wt.%) and alkalis (K2O + Na2O = 7.8–8.9 wt.%) and low FeOt (0.8–1.3 wt.%), MgO (~0.3 wt.%), P2O5 (~0.03 wt.%), and TiO2 (~0.2 wt.%). The granitic rocks are enriched in Rb, Th, and U but depleted in Ba, Sr, Nb, Ta, P, and Ti. REE patterns are characterized by marked negative Eu anomalies (Eu/Eu* = 0.2–0.4). The Maoduan monzogranite, having (87Sr/86Sr) t  = 0.7169 to 0.7170 and εNd(t) = −13.8 to −13.7, was probably derived from mixing of partial melts from enriched mantle and the Paleoproterozoic Badu group in an extensional tectonic setting.  相似文献   

7.
Partial melting of metagreywackes, Part II. Compositions of minerals and melts   总被引:16,自引:0,他引:16  
A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100–1000 MPa, 780–1025 °C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11–20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2 = 67.6–74.4 wt%), peraluminous, and leucocratic (FeO + MgO = 0.9–2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5–5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100 MPa and 1000 MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200 MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40 °C at 100 MPa, and 150 °C at 800 MPa. The position of the isotects is interpreted in terms of both the solubility of water in the melt and the nature of the reactions involved in the melting process. A comparison with other partial melting experiments suggests that pelites are the most fertile source rocks above 800 MPa. The difference in fertility between pelites and greywackes decreases with decreasing pressure. A review of the glass compositions obtained in experimental studies demonstrates that partial melting of fertile rock types in the crust (greywackes, pelites, or orthogneisses) produces only peraluminous leucogranites. More mafic granitic compositions such as the various types of calk-alkaline rocks, or mafic S-type rocks, have never been obtained during partial melting experiments. Thus, only peraluminous leucogranites may correspond to liquids directly formed by partial melting of metasediments. Other types of granites involve other components or processes, such as restite unmixing from the source region, and/or interaction with mafic mantle-derived materials. Received: 11 July 1995 / Accepted: 27 February 1997  相似文献   

8.
The petrogenetic potential of in situ laser ablation Hf isotope data from melt precipitated zircons was explored through the analyses of about 700 individual crystals derived from about 20 different granitic intrusions covering the Variscan basement segment of eastern Bavaria, SE Germany. In combination with geochemical features, four major suites of granitic rocks can be distinguished: (1) NE Bavarian redwitzites (52–57 wt% SiO2, intrusion ages around 323 Ma) have chondritic εHf(t) values (+0.8 to –0.4). The redwitzites are hybrid rocks and the Hf data are permissive of mixing of a mantle progenitor and crustal melts. (2) Various intermediate rock types (dioritic dyke, granodiorite, palite, 59–63 wt% SiO2, 334–320 Ma) from the Bavarian Forest yield negative εHf(t) values between –3.4 and –5.1. These values which apparently contradict a mantle contribution fingerprint an enriched (metasomatized) mantle component that was mixed with crustal material. (3) Voluminous, major crust forming granites sensu stricto (67–75 wt% SiO2, 328–298 Ma) are characterized by a range in εHf(t) values from –0.5 to –5.6. Different crustal sources and/or modification of crustal melts by various input of juvenile material can explain this variation. (4) Post-plutonic (c. 299 Ma) porphyritic dykes of dacitic composition (64–67 wt% SiO2) from the southern Bavarian Forest have chondritic εHf(t) values (+0.6 to –1.1) and display large intergrain Hf isotope variation. The dykes form a separate petrogenetic group and the Hf data suggest that the zircons crystallized when a pristine mantle-derived parental melt was modified by infiltration of crustal material. The zircon Hf data form a largely coherent positive array with the whole-rock Nd data and both systems yield similar two-stage depleted mantle model ages (1.1–1.7 Ga).  相似文献   

9.
Crystallization experiments have been conducted on compositions along tholeiitic liquid lines of descent to define the compositional space for the development of silicate liquid immiscibility. Starting materials have 46–56 wt% SiO2, 11.7–17.7 wt% FeOtot, and Mg-number between 0.29 and 0.36. These melts fall on the basaltic trends relevant for Mull, Iceland, Snake River Plain lavas and for the Sept Iles layered intrusion, where large-scale liquid immiscibility has been recognized. At one atmosphere under anhydrous conditions, immiscibility develops below 1,000–1,020°C in all of these compositionally diverse lavas. Extreme iron enrichment is not necessary; immiscibility also develops during iron depletion and silica enrichment. Variations in melt composition control the development of silicate liquid immiscibility along the tholeiitic trend. Elevation of Na2O + K2O + P2O5 + TiO2 promotes the development of two immiscible liquids. Increasing melt CaO and Al2O3 stabilizes a single-liquid field. New data and published phase equilibria show that anhydrous, low-pressure fractional crystallization is the most favorable condition for unmixing during differentiation. Pressure inhibits immiscibility because it expands the stability field of high-Ca clinopyroxene, which reduces the proportion of plagioclase in the crystallizing assemblage, thus enhancing early iron depletion. Magma mixing between primitive basalt and Fe–Ti–P-rich ferrobasalts can serve to elevate phosphorous and alkali contents and thereby promote unmixing. Water might decrease the temperature and size of the two-liquid field, potentially shifting the binodal (solvus) below the liquidus, leading the system to evolve as a single-melt phase.  相似文献   

10.
Calculated phase equilibria involving minerals and H2O–CO2–NaCl fluid lead to predictions of how infiltration of rock by H2O–NaCl fluids with X NaCl in the range 0–0.3 (0–58 wt% NaCl) drives the reactions calcite + quartz = wollastonite + CO2 and dolomite = periclase + calcite + CO2. Calculations focus on metamorphism in four aureoles that together are representative of the normal PT conditions and processes of infiltration-driven contact metamorphic reactions. The effect of salinity on the spatial extent of oxygen isotope alteration was also computed. The time-integrated input fluid flux (q°) that displaces the mineral reaction front an increment of distance along the flow path always increases with increasing X NaCl. For input fluids with salinity up to approximately five times that of seawater (X NaCl ≤ 0.05), values of q° required to explain the spatial extent of decarbonation reaction are no more than 1.1–1.5 times that computed assuming the input fluid was pure H2O. For more saline fluids, values of q° may be up to 1.4–7.9 times that for pure H2O. Except for reaction in the presence of halite and vapor (V), infiltration of H2O–NaCl fluids expands the region of oxygen isotope alteration relative to the size of the region of mineral reaction. The expansion is significant only for saline fluids with X NaCl ≥ ~0.1. Immiscible fluid phase separation and differential loss of the liquid (L) or V phase from the mineral reaction site increases the amount of reactive fluid required to advance the mineral reaction front compared to conditions under which equilibration of minerals and fluid is attained with no loss of L or V. Decarbonation reactions driven by infiltration of fluids with even modest seawater-like salinity can explain the occurrence of salt-saturated fluid and solid halide inclusions in contact metamorphosed carbonate rocks.  相似文献   

11.
Olivine-hosted melt inclusions have been analyzed from the young (4,150 ± 300 ybp) Dotsero basaltic (48.2 wt% SiO2) lava flow in Northwest Colorado, USA. Silicate melt-inclusion compositions have a bimodal distribution (41–46 wt% SiO2 and 47–50 wt% SiO2). Low-Si melt inclusions record high pre-eruptive sulfur concentrations (>1,000 ppm S) and variations in their major- and trace-element compositions appears to be related to shallow assimilation of local basement sandstone. Whole-rock compositions are modeled as a contamination of low-Si inclusion compositions with ~10 wt% sandstone. Host olivine crystallization may have accompanied magma injection into a shallow storage chamber. In contrast to the low-Si melt inclusions, the high-Si population is relatively degassed and records late-stage rapid crystallization either during or post-eruption. Hopper or skeletal olivine grains in conjunction with the bimodal inclusion compositions suggest relatively rapid cooling rates at the time of eruption and inclusion entrapment. Inclusion compositions, in conjunction with mineral textures, therefore provide a more complete picture of shallow magma processes, coupling the relative timing of undercooling and crystallization, assimilation and melt compositional evolution. Most of the inclusion and host textural and compositional data indicates late and very shallow petrogenetic processes and does not appear to record deeper (mid-, lower-crustal) processes.  相似文献   

12.
 The equilibrium water content of cordierite has been measured for 31 samples synthesized at pressures of 1000 and 2000 bars and temperatures from 600 to 750° C using the cold-seal hydrothermal technique. Ten data points are presented for pure magnesian cordierite, 11 data points for intermediate iron/magnesium ratios from 0.25 to 0.65 and 10 data points for pure iron cordierite. By representing the contribution of H2O to the heat capacity of cordierite as steam at the same temperature and pressure, it is possible to calculate a standard enthalpy and entropy of reaction at 298.18° K and 1 bar for, (Mg,Fe)2Al4Si5O18+H2O ⇄ (Fe,Mg)2Al4Si5O18.H2O Combining the 31 new data points with 89 previously published experimental measurements gives: ΔH ° r =–37141±3520 J and ΔS °  r =–99.2±4 J/degree. This enthalpy of reaction is within experimental uncertainty of calorimetric data. The enthalpy and entropy of hydration derived separately for magnesian cordierite (–34400±3016 J, –96.5±3.4 J/degree) and iron cordierite (–39613±2475, –99.5±2.5 J/degree) cannot be distinguished within the present experimental uncertainty. The water content as a function of temperature, T(K), and water fugacity, f(bars), is given by n H2O=1/[1+1/(K ⋅ f H2O)] where the equilibrium constant for the hydration reaction as written above is, ln K=4466.4/T–11.906 with the standard state for H2O as the gas at 1 bar and T, and for cordierite components, the hydrous and anhydrous endmembers at P and T. Received: 2 August 1994/Accepted: 7 February 1996  相似文献   

13.
Sulfide-poor mafic layered intrusions, sills/dykes and lava flows in the Funing region, SW China, are part of the ~260 Ma Emeishan large igneous province. They belong to either a high-Ti group (TiO2 = 1.6–4.4 wt%) with elevated Ti/Y ratios (351–1,018), or a low-Ti group (TiO2 < 1.2 wt%) with low Ti/Y ratios (133–223). This study investigates the role of fractionation of olivine, chromite and sulfide on the distributions of chalcophile elements, Ni, Cu and PGE, of the high-Ti and low-Ti group rocks at Funing. The high-Ti group rocks contain 1.6–5.3 ppb Pt + Pd, 0.06–0.43 ppb Ir and 0.01–0.13 ppb Ru, and show relative constant (Cu/Pd)PM ratios (4.0–9.7) and a negative correlation between Ni/Pd and Cu/Ir ratios. Fractionated IPGE/PPGE patterns and very negative Ru anomalies of the high-Ti group rocks, together with low Fo values (59–62 mol%) of olivine, indicate that the high-Ti magmas may have experienced fractionation of olivine and chromite under S-undersaturated condition. Based on the PGE concentrations, the low-Ti group rocks can be further divided into two subgroups; a high-PGE low-Ti subgroup and a low-PGE low-Ti subgroup. The high-PGE low-Ti group rocks are rich in MgO (10–20 wt%), but Fo values of olivine from the rocks are low (74–76 mol%). The rocks contain highly variable PGE (Pt + Pd = 1.7–88 ppb, Ir = 0.05–1.3 ppb), Ni (179 –1,380 ppm) and Cu (59–568 ppm). They have Cu/Zr ratios >1, low (Y/Pd)PM ratios (0.2–7.1) and nearly constant (Cu/Pd)PM ratios (1.5–3.8). The even and parallel chalcophile element patterns of the high-PGE low-Ti subgroup rocks are likely a result of olivine-dominated fractionation under S-undersaturated condition. The low-PGE low-Ti group rocks have low MgO (4.5–8.9 wt%) and very poor PGE (Pt + Pd 0.5–1.6 ppb, Ir 0.004–0.02 ppb) with low Cu/Zr ratios (0.1–0.5), high (Y/Pd)PM (26–70) and variable (Cu/Pd)PM ratios (2.8–14). The trough-like chalcophile element patterns of the low-PGE low-Ti subgroup rocks indicate that the magmas were sulfide saturation and sulfide melts were extracted from the magmas. The extracted sulfide melts might be potential Ni–Cu sulfide ores at depth in the Funing region.  相似文献   

14.
Garnet-bearing mantle peridotites, occurring as either xenoliths in volcanic rocks or lenses/massifs in high-pressure and ultrahigh-pressure terrenes within orogens, preserve a record of deep lithospheric mantle processes. The garnet peridotite xenoliths record chemical equilibrium conditions of garnet-bearing mineral assemblage at temperatures (T) ranging from ~700 to 1,400°C and pressures (P) > 1.6–8.9 GPa, corresponding to depths of ~52–270 km. A characteristic mineral paragenesis includes Cr-bearing pyropic garnet (64–86 mol% pyrope; 0–10 wt% Cr2O3), Cr-rich diopside (0.5–3.5 wt% Cr2O3), Al-poor orthopyroxene (0–5 wt% Al2O3), high-Cr spinel (Cr/(Cr + Al) × 100 atomic ratio = 2–86) and olivine (88–94 mol% forsterite). In some cases, partial melting, re-equilibration involving garnet-breakdown, deformation, and mantle metasomatism by kimberlitic and/or carbonatitic melt percolations are documented. Isotope model ages of Archean and Proterozoic are ubiquitous, but Phanerozoic model ages are less common. In contrast, the orogenic peridotites were subjected to ultrahigh-pressure (UHP) metamorphism at temperature ranging from ~700 to 950°C and pressure >3.5–5.0 GPa, corresponding to depths of >110–150 km. The petrologic comparisons between 231 garnet peridotite xenoliths and 198 orogenic garnet peridotites revealed that (1) bulk-rock REE (rare earth element) concentrations in xenoliths are relatively high, (2) clinopyroxene and garnet in orogenic garnet peridotites show a highly fractionated REE pattern and Ce-negative anomaly, respectively, (3) Fo contents of olivines for off-cratonic xenolith are in turn lower than those of orogenic garnet and cratonic xenolith but mg-number of garnet for orogenic is less than that of off-cratonic and on-cratonic xenolith, (4) Al2O3, Cr2O3, CaO and Cr# of pyroxenes and chemical compositions of whole rocks are very different between these garnet peridotites, (5) orogenic garnet peridotites are characterized by low T and high P, off-cratonic by high T and low P, and cratonic by medium T and high P and (6) garnet peridotite xenoliths are of Archean or Proterozoic origin, whereas most of orogenic garnet peridotites are of Phanerozoic origin. Taking account of tectonic settings, a new orogenic garnet peridotite exhumation model, crust-mantle material mixing process, is proposed. The composition of lithospheric mantle is additionally constrained by comparisons and compiling of the off-cratonic, on-cratonic and orogenic garnet peridotite.  相似文献   

15.
The metamorphic paragenesis of cordierite in pelitic rocks   总被引:2,自引:0,他引:2  
A petrogenetic grid is constructed for mineral assemblages occurring in metapelitic rocks, particularly those involved in the paragenesis of cordierite. The most useful assemblages for estimating pressures and temperatures are staurolite-cordierite, cordierite-biotite-Al2SiO5 and cordierite-hypersthene. Cordierite is stable with kyanite, sillimanite or andalusite. At high pressures cordierite is Mg-rich so that pelitic rocks typically do not contain the phase. Cordierite is stable at temperatures less than 500° C but does not commonly appear in metapelitic rocks until the garnet-chlorite, chlorite-staurolite or chlorite-Al2SiO5 tie-lines are broken. At high metamorphic grades, the assemblage garnet-hypersthene-cordierite indicates relatively low pressures, and the assemblage hypersthene-cordierite-sillimanite relatively high pressures. It is clear however, that the absence of cordierite is of little use in characterizing a metamorphic facies unless an alternate mineral assemblage can be shown to be more stable.  相似文献   

16.
The Pleistocene Incapillo Caldera and Dome Complex (5,570 m) marks the southernmost siliceous center of the Andean Central Volcanic Zone (~28°S), where the steeply dipping (~30°) segment of the subducting Nazca plate transitions into the Chilean “flatslab” to the south. The eruption of the Incapillo Caldera and Dome Complex began with a 3–1 Ma effusive phase characterized by ~40 rhyodacitic dome eruptions. This effusive phase was terminated by an explosive “caldera-forming” event at 0.51 Ma that produced the 14 km3 Incapillo ignimbrite. Distinctive and virtually identical chemical signatures of the domes and ignimbrites (SiO2 = 67–72 wt%; La/Yb = 37–56; Ba/La = 16–28; La/Ta = 30–50; 87Sr/86Sr = 0.70638–0.70669; ε Nd = −4.2 to −4.6) indicate that all erupted lavas originated from the same magma chamber and that differentiation effects between units were minor. The strong HREE depletion (Sm/Yb = 6–8) that distinguishes Incapillo magmas from most of the large ignimbrites of the Altiplano–Puna plateau can be explained by the extent and degree of partial melting at lower crustal depths (>40 km) in the presence of garnet. At upper crustal depths, this high-pressure residual geochemical signature, also common to adjacent late Miocene/Pliocene Pircas Negras andesites, was partially overprinted by shallow-level assimilation and fractional crystallization processes. Energy-constrained AFC modeling suggests that incorporation of anatectic upper crustal melts into a fractionated “adakite-like” dacitic host best explains the petrogenesis of Incapillo magmas. The diminution of the sub-arc asthenospheric wedge during Nazca plate shallowing left the Incapillo magma chamber unreplenished by both mafic mantle-derived and lower crustal melts and thus stranded at shallow depths within the Andean crust. Based on its small size and distinctive high-pressure chemical signature, the Incapillo Caldera and Dome Complex provides an endmember model for an Andean caldera erupting within a waning magmatic arc over a shallowing subduction zone.  相似文献   

17.
Allochthonous carbonatite and ultramafic lamprophyre occur in a diatreme at the beach of the Asseelah village, northeastern Oman. The diatreme consists of heterogeneous deposits dominated by ‘diatreme facies’ pyroclastic rocks. These include aillikite and carbonatite, which intrude late Jurassic to early Cretaceous cherts and shales of the Wahra Formation within the Batain nappes. Both rock types are dominated by carbonate, altered olivine, Ti–Al–phlogopite and Cr–Al–spinel and contain varying amounts of apatite and rutile. The carbonatite occur as fine-grained heterolithic breccias with abundant rounded carbonatite xenoliths, glimmerite and crustal xenoliths. The aillikite consists of pelletal lapilli tuff with abundant fine-grained carbonatite autoliths and crustal xenoliths, which resemble those in the carbonatite breccia. The aillikite and carbonatite are characterized by low SiO2 (11–24 wt%), MgO (9.5–12.4 wt%) and K2O (<0.3 wt%), but high CaO (18–22 wt%), Al2O3 (4.75–7.04 wt%), Fe2O3tot (8.7–13.8 wt%) and loss-on-ignition (24–30 wt%). Higher CaO, Fe2O3total, Al2O3, MnO, TiO2, P2O5 and lower SiO2 and MgO content distinguish carbonatite from the aillikite. The associated carbonatite xenoliths and autoliths have intermediate composition between the aillikite and carbonatite. Mg number is variable and ranges between 58 and 66 in the carbonatite, 66 and 72 in the aillikite and between 48 to 64 in the carbonatite autoliths and xenoliths. The Asseelah aillikite, carbonatite, carbonatite xenoliths and autoliths overlap in most of their mineral parageneses, mineral composition and major and trace element chemistry and have variable but overlapping Sr, Nd and Pb isotopic composition, implying that these rocks are related to a common type of parental magma with variable isotopic characteristics. The Asseelah aillikite, carbonatite and carbonatites xenoliths are LREE-enriched and significantly depleted in HREE. They exhibit similar smooth, subparallel REE pattern and steep slopes with (La/Sm) n of 6–10 and relative depletion in heavy rare earth elements (Lu = 3–10 chondrite). Initial 87Sr/86Sr ratios vary from 0.70409 to 0.70787, whereas initial 143Nd/144Nd ratios vary between 0.512603 and 0.512716 (εNd i between 2.8 and 3.6). 206Pb/204Pb i ratios vary between 18.4 and 18.76, 207Pb/204Pb i ratios vary between 15.34 and 15.63, whereas 208Pb/204Pb i varies between 38.42 and 39.05. Zircons grains extracted from the carbonatite have a mean age of 137 ± 1 Ma (95% confidence, MSWD = 0.49). This age correlates with large-scale tectonic events recorded in the early Indian Ocean at 140–160 Ma. Geochemical and isotopic signatures displayed by the Asseelah rocks can be accounted for by vein-plus-wall-rock model of Foley (1992) wherein veins are represented by phlogopite, carbonate and apatite and depleted peridotite constitutes the wall-rock. The carbonatite and aillikite magmatism is probably a distal effect of the breaking up of Gondwana, during and/or after the rift-to-drift transition that led to the opening of the Indian Ocean.  相似文献   

18.
Mantle xenoliths entrained in Quaternary alkaline basalts from the Turkana Depression in southern Ethiopia (the East Africa Rift) were studied for their geochemical and Sr–Nd–Pb isotopic compositions to constrain the evolution of the lithosphere. The investigated mantle xenoliths are spinel lherzolites in composition with a protogranular texture. They can be classified into two types: anhydrous and hydrous spinel lherzolites; the latter group characterized by the occurrences of pargasite and phlogopite. The compositions of whole-rock basaltic component (CaO = 3.8–5.6 wt%, Al2O3 = 2.5–4.1 wt%, and MgO = 34.7–38.1 wt%), spinel (Cr# = 0.062–0.117, Al2O3 = 59.0–64.4 wt%) and clinopyroxene (Mg# = 88.4–91.7, Al2O3 = 5.2–6.7 wt%) indicate that the lherzolites are fertile and have not experienced significant partial melting. Both types are characterized by depleted 87Sr/86Sr (0.70180–0.70295) and high 143Nd/144Nd (0.51299–0.51348) with wide ranges of 206Pb/204Pb (17.86–19.68) isotopic compositions. The variations of geochemical and isotopic compositions can be explained by silicate metasomatism induced by different degree of magma infiltrations from ascending mantle plume. The thermobarometric estimations suggest that the spinel lherzolites were derived from depths of 50–70 km (15.6–22.2 kb) and entrained in the alkaline magma at 847–1,052°C. Most of the spinel lherzolites from this study record an elevated geotherm (60–90 mW/m2) that is related to the presence of rising mantle plume in an active tectonic setting. Sm–Nd isotopic systematic gives a mean TDM model age of 0.95 Ga, interpreted as the minimum depletion age of the subcontinental lithosphere beneath the region.  相似文献   

19.
Fluid inclusions in garnet combined with element X-ray mapping, phase equilibrium modelling and conventional thermobarometry have been used to constrain the metamorphic evolution of metapelitic gneiss from the HP/UHP metamorphic terrane of Pohorje Mountains in the Eastern Alps, Slovenia. Retrograde PT trajectory from ~2.75 GPa and 780°C is constrained by the composition of matrix phengite (6.66 apfu Si) coexisting with garnet cores, kyanite and quartz. The intersection of the X Prp = 0.25 isopleth for the garnet with the upper stability boundary for K-feldspar in the matrix indicates near-isothermal decompression to ~0.9 GPa at 720°C. Temperatures over 650°C during this stage are corroborated by the high degree of ordering of graphite inclusions associated with Zn, Mg-rich staurolite and phlogopite in the Mg-rich (X Prp = 0.22–0.25) garnet cores. Majority of garnet porphyroblasts are depleted in Mg (down to X Prp = 0.09) and enriched in Mn (up to X Sps = 0.12) along cracks and at their margins. The associated retrograde mineral assemblage comprises Zn, Mg-poor staurolite, muscovite, biotite–siderophyllite, sillimanite and quartz. The onset of the retrogression and the compositional modification of the garnet porphyroblasts were accompanied by the addition of fluid-deposited graphite around older graphite inclusions, probably due to removal of water from a graphite-buffered COH fluid by dissolution in partial silicic melt. Instantaneous expulsion of water near the melt solidus (640°C, max. 0.45 GPa) caused dissolution of the graphite at redox conditions corresponding to 0.25–1.25 logfO2 units below the QFM buffer, giving rise to a H2O–CO2–CH4 fluid trapped in primary inclusions in Mn-rich, Mg-poor, almandine garnet that reprecipitated within the retrogressed domains. The absence of re-equilibration textures and consistent densities of the fluid inclusions reflect a near-isochoric cooling postdating the near-isothermal decompression. Bulk water content in the metapelite attained 2 wt% during this stage. The low-degree partial melting and extensive hydration due to the release of the internally derived, low-pressure aqueous fluids led to the reset of peak-pressure mineral assemblage.  相似文献   

20.
The ~545 Ma-old syn-collisional Otjimbingwe alkaline complex is composed of pyroxene-amphibole-biotite-bearing, mildly nepheline-normative to quartz-normative rocks ranging in composition from monzogabbro to monzonite, syenite and granite. The alkaline rocks have moderate to high SiO2 (50.5–73.0 wt%) and Na2O + K2O (5.1–11.5 wt%) and moderate to low MgO (6.6–0.2 wt%) concentrations. All samples have high large ion lithophile element (LILE: Ba up to 4600 ppm) and high-field-strength element contents (HFSE; Zr: 155–1328 ppm; Nb: 16–110 ppm; Ta: 1.4–7.1 ppm and Hf: 4–24 ppm) and have strongly fractionated LREE patterns ((La/Yb)N = 14–51). The most primitive members lack significant negative Eu anomalies. Mantle-normalized multi-element diagrams show depletion in Ba, Rb, Nb (Ta), P and Ti. The alkaline rocks have moderate radiogenic initial 87Sr/86Sr ratios (0.7061–0.7087) and unradiogenic initial ɛNd values (−3.9 to −6.1). This isotope signature, associated with high LREE/HFSE ratios indicates that the parental melts were generated in enriched portions of the shallow lithospheric mantle, which was probably affected by previous subduction zone processes. In addition, correlations between Sr and Nd isotopes indicate that some of these variations result from combined crustal assimilation and fractional crystallization (AFC) processes. A new model of flat subduction is presented that explains most of the unsolved problems in the orogenic evolution of the Damara orogen, namely (i) the absence of early intrusive rocks with a clear subduction zone setting, (ii) the absence of high-pressure rocks such as blueschists and eclogites, (iii) the unusual distribution of igneous rocks with a clear predominance of granite and granodiorite and (iv) the need for a asthenospheric window during a classical subduction to explain the high T/moderate P granulite facies conditions in the overriding plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号