首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
蒸发盐矿物流体包裹体能够将结晶卤水中的嗜盐菌包裹起来,并随着盐类沉积而将其封闭保存起来。在矿物流体包裹体的缺氧、密闭、低营养的极端环境中,一些古代的嗜盐菌经历数万年,甚至数百万年仍然保持活性。对石盐流体包裹体中古嗜盐菌的发现、分离和鉴定历史进行详细综述,系统论述古嗜盐菌引发的地质学家和微生物学家的长期论战,提出该领域存在的问题,并展望未来的研究方向。蒸发盐矿物流体包裹体古嗜盐菌的研究需要重视蒸发盐岩的岩相学和沉积环境分析,并遵循严格的微生物学实验策略。古嗜盐菌的未来研究应重点关注石膏、钙芒硝、天然碱等蒸发盐矿物,着眼于识别和鉴定更古老的古嗜盐菌,探究古嗜盐菌的生存机制。  相似文献   

2.
迄今为止,人类已经通过火星轨道探测器、火星着陆器及火星漫游车在火星上发现了碳酸盐、硫酸盐及氯化物等一 系列的盐类矿物,尽管整体上火星盐类矿物组合与地球上基本一致,但在许多细节方面还是和地球上有所不同。文中首先 对于火星盐类认知的现状作了简要综述;基于地球火星蒸发盐沉积及成盐作用规律的对比,预测火星表面及次表面可能存 在着广泛分布的钾盐;此外,发现火星轨道伽玛光谱仪所获的火星表面 K 的分布与火星表面已探测到的氯化物的分布有比 较强的相关性,喻示火星表面氯化物沉积地区的卤水浓度已经接近或达到钾盐形成的条件,同时指出这些地区存在钾盐的 可能性很大。  相似文献   

3.
郭佩  李长志 《古地理学报》2022,24(2):210-225
中国是一个多盐湖国家,然而盐湖研究主要集中于分析湖水化学性质、盐类物质来源和盐矿资源开发等,对盐类矿物沉积特征和埋藏成岩改造研究较少,造成从蒸发岩角度去理解古代盐湖盆地的油气富集规律较为困难。在广泛阅读国内外大型盐湖文献的基础上,笔者介绍了盐湖分类方案和蒸发岩中盐类矿物的主要成因类型,并总结了中国陆相含油气盆地中常见的硫酸盐、氯化物、含钠碳酸盐和硼酸盐的沉积—成岩过程及其古环境和古气候意义。同时,尝试利用盐湖沉积最新研究成果去探讨中国含油气盆地蒸发岩研究中存在争议或值得关注的问题,得出: (1)深部热液可为湖泊输送大量元素离子,但要在湖泊环境下富集大量蒸发岩,则(半)干旱气候和蒸发浓缩作用是前提条件;(2)易溶蒸发岩(如石盐)在沉积中心单层厚度大,而在斜坡—边缘区缺失,这是季节性气温变化和温跃层浮动引发“中心聚集效应”的结果;(3)温度可影响蒸发岩中盐类矿物溶解度、晶体结构形态和发育深度,而部分无水盐类矿物在常温常压下却无法结晶,这一现象可用来指示古地温和地层埋藏史;(4)碳酸盐型盐湖中的Na-碳酸盐种类可指示大气CO2浓度和古温度。  相似文献   

4.
郭佩  李长志 《古地理学报》1999,24(2):210-225
中国是一个多盐湖国家,然而盐湖研究主要集中于分析湖水化学性质、盐类物质来源和盐矿资源开发等,对盐类矿物沉积特征和埋藏成岩改造研究较少,造成从蒸发岩角度去理解古代盐湖盆地的油气富集规律较为困难。在广泛阅读国内外大型盐湖文献的基础上,笔者介绍了盐湖分类方案和蒸发岩中盐类矿物的主要成因类型,并总结了中国陆相含油气盆地中常见的硫酸盐、氯化物、含钠碳酸盐和硼酸盐的沉积—成岩过程及其古环境和古气候意义。同时,尝试利用盐湖沉积最新研究成果去探讨中国含油气盆地蒸发岩研究中存在争议或值得关注的问题,得出: (1)深部热液可为湖泊输送大量元素离子,但要在湖泊环境下富集大量蒸发岩,则(半)干旱气候和蒸发浓缩作用是前提条件;(2)易溶蒸发岩(如石盐)在沉积中心单层厚度大,而在斜坡—边缘区缺失,这是季节性气温变化和温跃层浮动引发“中心聚集效应”的结果;(3)温度可影响蒸发岩中盐类矿物溶解度、晶体结构形态和发育深度,而部分无水盐类矿物在常温常压下却无法结晶,这一现象可用来指示古地温和地层埋藏史;(4)碳酸盐型盐湖中的Na-碳酸盐种类可指示大气CO2浓度和古温度。  相似文献   

5.
在中国西藏扎布耶盐湖中首次发现大面积天然嗜盐藻类和嗜盐细菌,已鉴定有衣藻属(Chlamydomonas)和杜氏藻(Dunaliella salina)、杆状和球状嗜盐细菌。该类嗜盐生物发育于干寒区的窗钾碱性高盐生态环境。菌、藻活动几乎贯穿到湖盆沉积的全过程,在盐湖成矿过程中起了不容忽视的作用,并具有重要的指相意义。建议用综合观点研究成盐环境地质生态学。它将是一门研究成盐环境生物活动与地质环境间的相互作用及其地质成矿意义的科学。  相似文献   

6.
大浪滩盐矿床已定名的24种盐类矿物中,钾镁盐矿物占13种。光卤石为其中主要钾矿物,已富集成钾矿层。本文在对盐矿物分布规律及沉积物地球化球研究的基础上,阐明了盐湖演化发展规律及钾矿层与其他盐矿物的形成机理。  相似文献   

7.
在盐湖沉积演化过程中,钾镁盐在盐类矿物沉积的中晚期才开始结晶析出。因此,研究含盐系地层中盐类矿物的沉积地球化学特征,不仅可以从侧面获取岩盐的沉积物物质来源和成盐期古卤水蒸发浓缩程度等地球化学信息,而且可以直接揭示古盐湖期钾盐富集趋势及规律。目前,除在江陵凹陷的古近系沙市组等含盐系内发现了富钾卤水外,还在中-南部的钻孔盐矿盐岩中,发现了微量钾石盐和钾石膏,这些说明该凹陷古近纪具有成钾潜力。本文通过对SK3井蒸发岩特征研究及岩芯中K、Mg、Cl、Br离子含量与Br×103/Cl系数的垂向变化分析,揭示古盐湖浓缩演化与钾盐富集趋势,进一步揭示该层段沉积时期及所在凹陷古盐湖卤水钾的富集程度。  相似文献   

8.
中国盐湖科学技术研究的若干进展与展望   总被引:19,自引:0,他引:19  
我国拥有得天独厚的盐湖资源,分布于北半球盐湖带欧亚盐湖亚带东部,主要分布在现代降水量500mm/a的范围内。本文对中国盐湖科学技术60年来取得的若干进展进行初步梳理。1.在盐湖沉积与古气候、古环境研究方面:提出了各种盐类矿物的古气候转换指标。柴达木西部-塔里木东部氯化物型-硫酸盐型沉积区为我国第四纪以来干旱成盐中心,历经了6次以上的向外干旱(成盐)扩张期;提出青藏高原第四纪晚期存在5次泛湖高湖面;2.在盐湖成矿与成盐成钾理论研究方面:首编青藏高原湖泊水化学分带图(1/250万),揭示了青藏高原盐湖水化学类型由南往北、由碳酸盐-氯化物型分布规律及其相应成盐成矿专属性;发现几个大型陆相钾盐矿床,提出了高山深盆成盐模式、链式多级中浅盐湖成矿模式、多级湖盆深盆成盐模式、砂砾型含钾卤水成矿模式以及"隔代承袭成钾"等新认识,建立和发展了"陆相成钾"理论认识;发现青海大柴旦湖钠硼解石-柱硼镁石矿床、西藏扎仓茶卡柱硼镁石-库水硼镁石矿床、聂尔错库水硼镁石矿床等新类型镁硼酸盐(锂)矿床,进而提出冷冻稀释成硼理论新认识。3.自主研发出的"反浮选冷结晶工艺"生产氯化钾自控系统,使察尔汗盐湖钾盐达到300万吨/年KCl产量,形成了名牌钾肥产品。成功研发了罗布泊120万吨/年硫酸钾成套技术,建成世界最大的硫酸钾生产装置,2015年产量达160万吨,以上为我国钾肥生产作出了重大贡献。在自主研发的"冬储卤-冷冻-日晒-分离-盐梯度太阳池积热沉锂"创新技术支撑下,在西藏高原海拔4421米的扎布耶盐湖建成了世界海拔最高的锂盐产业,也是我国首条年产5000吨碳酸锂的盐湖提锂基地。4.根据盐水域发育大面积杜氏藻等嗜盐菌藻、盐沼带和盐碱地繁衍多种盐生植物的盐境生态特点,提出"盐湖农业"("盐土农业")农业新概念,发展盐境绿色产业提供新的理念和技术支持。最后,为今后盐类科学发展方向,提出了深绿科技与产业研发方向,随着盐类科学技术的发展,将会促进新的边缘交叉学科盐类学(Salinology)的发展和日臻完善。  相似文献   

9.
西藏当雄错盐湖卤水冬季日晒蒸发实验研究   总被引:7,自引:0,他引:7  
伍倩  郑绵平  乜贞  卜令忠 《地质学报》2013,87(3):433-440
西藏当雄错盐湖位于藏北高原腹地西南侧,其水化学类型属典型的中度碳酸盐型,具有很好的工业开发前景和价值.自然蒸发是盐田日晒工艺的应用基础工作,本文基于室内卤水等温蒸发实验的相关结果,在当雄错湖区现场开展了盐湖卤水冬季日晒蒸发实验,通过考察碳酸盐型盐湖卤水在现场低温条件下自然蒸发过程中液相各元素的富集规律以及矿物的结晶析盐规律,分析了锂、硼、钾等元素的集散行为,并根据卤水蒸发过程中的元素富集、蒸失水量、盐类析出顺序、矿物组合以及物化性质的变化探索了盐类分离的控制条件.以Na+,K+/CO2-3,SO2-4,Cl--H2O五元体系(25℃)介稳相图为参考依据,绘制了当雄错盐湖卤水冬季日晒蒸发的结晶析盐路线.实验结果表明,当雄错盐湖卤水在冬季日晒蒸发过程中依次析出石盐、泡碱、天然碱、硼砂、钾石盐和扎布耶石,另有少量芒硝和泡碱等低温产物会提前析出或被母液夹带析出,利用冬季低温蒸发可制取富锂卤水,蒸发后期的母卤还可用于提取硼砂和钾石盐等矿物资源.实验结果为下一步开展盐田工程设计及制卤工艺操作提供了必要的基础数据,同时也为碳酸盐型盐湖卤水的综合利用和开发提供了理论支持.  相似文献   

10.
全球性的构造运动末期一般伴着海退和干旱的气候环境,而蒸发岩沉积与大地构造条件紧密相关。中亚卡拉库姆盆地、阿富汗_塔吉克盆地、塔里木盆地自晚侏罗世至中新世以来至少发生了3次大规模海侵_海退旋回,每次海侵_海退均受特提斯构造事件控制。卡拉库姆盆地、阿富汗_塔吉克盆地为晚侏罗世—早白垩世蒸发岩沉积、塔里木盆地的莎车次级盆地为晚白垩世—古新世蒸发岩沉积,库车次级盆地为古新世—中新世蒸发岩沉积,形成特提斯构造域自西向东蒸发岩沉积时代逐渐变新的盐湖链。中亚及塔里木盐湖链在海侵_海退旋回的控制下,至少发生5次大规模的蒸发岩沉积,发育2种不同的蒸发岩沉积序列,分别对应3次海退期蒸发岩沉积序列及2次断续海侵期蒸发岩沉积序列,具体为晚侏罗世晚期(海退期)卡拉库姆盆地、阿富汗_塔吉克盆地蒸发岩沉积;早白垩世—晚白垩世早期(断续海侵期)阿富汗_塔吉克盆地蒸发岩沉积;晚白垩世晚期(海退期)莎车次级盆地蒸发岩沉积;古新世—中新世(断续海侵期)莎车次级盆地、库车次级盆地蒸发岩沉积;中新世晚期—上新世早期(海退期)库车次级盆地蒸发岩沉积。塔里木与中亚古盐湖发育受控于特提斯构造事件及海侵_海退旋回,而海侵_海退旋回又控制2种不同的蒸发岩沉积序列。蒸发岩沉积序列、古盐湖演化阶段、蒸发岩物质来源、沉积环境决定了盐类矿物沉积类型(单一化学岩型、陆缘碎屑岩_化学岩型),卡拉库姆盆地、阿富汗_塔吉克盆地盐类矿物与塔里木盆地相比,种类简单,反映了盆地化学岩与陆源碎屑_化学岩沉积的区别及后期构造运动对盐类矿物种类的主控作用。  相似文献   

11.
The knowledge of Martian salts has gone through substantial changes during the past decades. In the 70th of last century, Viking landers have noticed the existence of salts on Mars. Several salt species have been suggested from then on, such as sulfates and chlorides. However, their origin was a mystery due to the lack of observations. The recent explorations and related studies at the beginning of this century revealed that the crustal composition of Mars is similar to that of Earth, and it was hypothesized that almost one third of Martian surface was covered by oceans and lakes in the early stage of Mars. The huge water bodies may have dissolved a large quantity of ions from Martian primary rocks during the whole Noachian and Hesperian epoch. After the enormous drought event happened during the late Hesperian and the early Amazonian, these dissolved ions have formed huge salts deposits and most of them were preserved on Mars until today. To date, carbonates, sulfates, chlorides have all been detected by orbital remote sensing and by landers and rovers. However, the salt mineral assemblages on Mars seems to have some differences from those on Earth, e.g., rich in sulfates and lack of massive carbonates. To explain this difference, we propose that most of the surface carbonates precipitated from the ancient oceans may have been dissolved by the later ubiquitous acidic fluids originated from the global volcanism in the Hesperian era, and formed the enormous sulfate deposits as detected, and this hypothesis seems to be supported by the evidence that most of the sulfate deposits distribute around the Tharsis volcanic province while the survived carbonates located far from it. This process can release most of the carbon on Mars to the atmosphere in the form of CO2 and then be erased by the late heavy bombardments, which might have profound influence on the climate change happened in the Hesperian age. The positive correlation between the GRS results of the potassium distributions and the distribution of chlorides on Mars, together with the high Br concentration measured from the evaporate sediments at two Mars exploration rover landing sites, indicate that the brines in the regions where the chlorides deposited may have reached the stage for potassium salts deposition, thus we propose for the first time that potassium salts deposits might be prevalent in these regions.  相似文献   

12.
Continental evaporites are deposits that originate from the evaporation of saline waters in the low areas of saline lakes from all continents, except Europe, and mainly consist of chloride, sulphate and potash minerals. In recent years, the discovery on the Martian surface of hydrated salt minerals, including sulphates and chlorides, interpreted as deriving from the desiccation of preexisting large bodies of water, such as lakes, has provided further convincing evidence of liquid water activity on the surface of Mars and, consequently, it has reinforced the plausibility of finding life. Because evaporites require short‐term aqueous processes for their formation, they can trap and preserve over geologic times a biological record made up of halophilic extremophiles—such as microalgae, bacteria, and their remains—that recent research on Earth has shown to be characterized by unexpectedly high biodiversity. This record may consist of varying types of fossils, including morphological fossils, chemofossils and biominerals. As a consequence, continental evaporite environments and their saline deposits are now a primary target for the near future astrobiology missions devoted to the search for fossil Martian life. Lacustrine evaporite deposits and minerals have, therefore, been identified as primary targets for the NASA–ESA joint programme of the Mars sample return, planned for the end of the current decade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
《International Geology Review》2012,54(12):2132-2147
The geological, geophysical, and geochemical evidence for the existence of potassium salt deposits in lower Cambrian evaporites along the southern margins of the Siberian Craton are considered. Simultaneous uplift and deposition of the evaporites is demonstrated, at least in the Kan-Tas Basin. This explains the absence of potassium salts on the anticlinal ridges, where exploratory drilling has so far been carried out. Exploratory drilling for potassium salts should be carried out in the structural basins or on the flanks of anticlines. Promising locations for such drilling are on the Troitskii-Mikhailov anticline, north of the city of Kansk. — Auth.  相似文献   

14.
Fluid inclusions trapped in ancient evaporites can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the minerals formed. Entombed in the fluid inclusions in evaporites, some of these halophilic microbes remain viable for at least tens of thousands of years and possibly for hundreds of millions of years, even under high salinity, low oxygen, high radiation, low nutrient concentration. This review presents the scientific history of discovery, isolation, and culture of ancient halophilic microbes in halite fluid inclusions. We elucidated the controversy associated with the ancient halophilic microbes between geologists and geomicrobiologists. Major concerns and future perspectives on halophiles research were proposed. We emphasized that lithofacies analysis and depositional environment determination on evaporites are prerequisites before any microbiological survey, and rigorous biological protocol must be obeyed at all retrieval procedures for ancient microorganisms. We suggested that future study related to ancient halophilic microbes should focus on other evaporites such as gypsum, glauberite, and trona, characterize and identify older halophiles; clarify metabolic mechanism for longevity of ancient microorganisms.  相似文献   

15.
The evaporites on the Khorat Plateau comprise one of the largest potash deposits in the world, and their origin has long been a controversial problem. Based on boron isotope measurements from borate as a good indicator to distinguish marine and nonmarine evaporites, the borates of potash layers were identified and the results were used to indicate the source of evaporites in the study area as representative of the whole Khorat Plateau. The results show that the main borates include boracite and hilgardite. The boracites occur as crystals and ooids with minor amounts of hilgardite aggregates. The range of δ11B values is from +21.30‰ to +32.94‰ (averaging +29.74‰) and falls in the range of marine borates. The δ11B values in the potash layer are seemingly variable because of the influence of fluvial influx when salts were precipitating. Although the composition of seawater has possibly been modified, the evidence from boron isotopic composition implies that the evaporites in the study area or in the whole Khorat Plateau are marine deposits.  相似文献   

16.
老挝万象盆地蕴含着丰富的钾资源,是研究古蒸发岩和古海水形成演化的热点地区之一.老挝万象盆地含盐建造包含3个蒸发岩?碎屑岩沉积韵律,而钾镁盐矿赋存在下盐段顶部.通过对老挝通芒钾盐矿区钾镁盐矿层的硼酸盐矿物的提取,发现在成钾晚期硼酸盐矿物有方硼石单晶和鲕粒方硼石两种形式.钻孔中方硼石单晶含量较少,而鲕粒方硼石分布较多且基本...  相似文献   

17.
  1. In the Earth history not a system probably comprises so many evaporites than Triassic. They are not restricted to such or such protoocean but cover huge epicontinental cratonic plateforms with very finely bedded deposits as well as they fill rifts located in very diversified geodynamic areas. The first condition in order that such deposits can exist is a severe aridity.
  2. Triassic corresponds to an extraordinary transgression in the sense of a new onlap of the sedimentary realm, a reconquest of ancient areas by new deposits, however their facies may be. In that general setting evaporites are themselves remarkably transgressive and from two points of view a) they sometimes onlap directly — that is to say without any basal detritic intercalation — different terms of peneplaned basement, b) these evaporites often succeed Permian emersion or continental detritic deposits of lower parts of Triassic. They extract their salts from Ocean. They often underlie pure marine Jurassic facies. For all these reasons evaporites appear as the first emissaries of oceanic realm and so as the first witnesses of a marine transgression.
  3. Evaporites occur in Triassic, particularly in the Middle East, North Africa, on the two present margins of North Atlantic, on Western and Northern Europe, etc. The whole constitutes a huge saline ring round the western part of Triassic Tethysian sea. In that area, on the less tectonized plateforms a grandiose facies distribution pattern appears clearly: going farther from open sea in a centrifugal way, there are salts more and more soluble, until detritic deposits from continent. The pellicular sheets of water which covered the large plateforms resulting from late permian peneplanation should be favourable to modification of chemism, very gradual and at last very total, producing a geographical distribution of salt deposits. The most probable mover of these “floods” could be a very likely multiphase rise of eustatic level, the effects of which we cannot imagine because they occured on plateforms unknown in the geography of recent world. Effects of local morphology which induced a pecular distribution of salts can modify the general plateform distribution pattern.
  相似文献   

18.
王立成  刘成林  王延路 《矿床地质》2016,35(6):1243-1256
前陆盆地蕴藏有巨量的钾盐资源,而对于其内的钾盐矿床成因和模式还欠缺系统的总结。西班牙埃布罗盆地是由于伊比利亚和欧亚块体碰撞而形成的前陆盆地。始新世晚期(约36 Ma)海水完全从盆地退出后,在极端干旱气候作用下,由于碰撞造山导致盆地的封闭作用,在南比利牛斯前陆盆地系统的前渊带(即埃布罗盆地北部)形成了典型的厚层含钾石盐_光卤石的正常海相蒸发岩序列。后期受到构造挤压作用,钾盐地层以盐底劈的形式出露在背斜核部。埃布罗盆地钾盐成因是构造、气候和物源三者耦合作用的结果,与中国库车前陆盆地有很大的相似性。据此,作者建议可重点关注盆地南北盐丘地带苏维依组蒸发岩以及卤水的迁移方向。  相似文献   

19.
John K. Warren 《Earth》2010,98(3-4):217-268
Throughout geological time, evaporite sediments form by solar-driven concentration of a surface or nearsurface brine. Large, thick and extensive deposits dominated by rock-salt (mega-halite) or anhydrite (mega-sulfate) deposits tend to be marine evaporites and can be associated with extensive deposits of potash salts (mega-potash). Ancient marine evaporite deposition required particular climatic, eustatic or tectonic juxtapositions that have occurred a number of times in the past and will so again in the future. Ancient marine evaporites typically have poorly developed Quaternary counterparts in scale, thickness, tectonics and hydrology. When mega-evaporite settings were active within appropriate arid climatic and hydrological settings then huge volumes of seawater were drawn into the subsealevel evaporitic depressions. These systems were typical of regions where the evaporation rates of ocean waters were at their maximum, and so were centred on the past latitudinal equivalents of today's horse latitudes. But, like today's nonmarine evaporites, the location of marine Phanerozoic evaporites in zones of appropriate adiabatic aridity and continentality extended well into the equatorial belts.Exploited deposits of borate, sodium carbonate (soda-ash) and sodium sulfate (salt-cake) salts, along with evaporitic sediments hosting lithium-rich brines require continental–meteoric not marine-fed hydrologies. Plots of the world's Phanerozoic and Neoproterozoic evaporite deposits, using a GIS base, shows that Quaternary evaporite deposits are poor counterparts to the greater part of the world's Phanerozoic evaporite deposits. They are only directly relevant to same-scale continental hydrologies of the past and, as such, are used in this paper to better understand what is needed to create beds rich in salt-cake, soda-ash, borate and lithium salts. These deposits tend be Neogene and mostly occur in suprasealevel hydrographically-isolated (endorheic) continental intermontane and desert margin settings that are subject to the pluvial–interpluvial oscillations of Neogene ice-house climates. When compared to ancient marine evaporites, today's marine-fed subsealevel deposits tend to be small sea-edge deposits, their distribution and extent is limited by the current ice-house driven eustasy and a lack of appropriate hydrographically isolated subsealevel tectonic depressions.For the past forty years, Quaternary continental lacustrine deposit models have been applied to the interpretation of ancient marine evaporite basins without recognition of the time-limited nature of this type of comparison. Ancient mega-evaporite deposits (platform and/or basinwide deposits) require conditions of epeiric seaways (greenhouse climate) and/or continent–continent proximity. Basinwide evaporite deposition is facilitated by continent–continent proximity at the plate tectonic scale (Late stage E through stage B in the Wilson cycle). This creates an isostatic response where, in the appropriate arid climate belt, large portions of the collision suture belt or the incipient opening rift can be subsealevel, hydrographically isolated (a marine evaporite drawdown basin) and yet fed seawater by a combination of ongoing seepage and occasional marine overflow. Basinwide evaporite deposits can be classified by their tectonic setting into: convergent (collision basin), divergent (rift basin; prerift, synrift and postrift) and intracratonic settings.Ancient platform evaporites can be a subset of basinwide deposits, especially in intracratonic sag basins, or part of a widespread epeiric marine platform fill. In the latter case they tend to form mega-sulfate deposits and are associated with hydrographically isolated marine fed saltern and evaporitic mudflat systems in a greenhouse climatic setting. The lower amplitude 4 and 5th order marine eustatic cycles and the greater magnitude of marine freeboard during greenhouse climatic periods encourages deposition of marine platform mega-sulfates. Platform mega-evaporites in intracratonic settings are typically combinations of halite and sulfate beds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号