首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
浊积砂体一直是人们关注的焦点。随着含油气盆地勘探程度的不断增高,"九五"以来,陆相含油气区逐渐进入以隐蔽油气藏为主要目标的勘探阶段,深水浊积砂体作为油气的储集层,成为石油地质领域的一个研究热点,其中,浊积砂体的类型划分和形成机制尤其是人们关注的焦点。本文介绍了浊流及相关重力流的有关概念,对浊流沉积研究进展及现状作了简介,最后对湖盆浊积砂体多种分类方案作了详细的阐述,并以山东济阳坳陷发育的浊积岩为例偿试湖相浊积砂体的分类,总结归纳了湖相浊积砂体的类型、识别标志和分布规律。  相似文献   

2.
三角洲前缘滑塌浊积体形成过程模拟   总被引:20,自引:1,他引:20  
三角洲前缘滑塌浊积体是断陷盆地内一类重要的岩性油气藏。通过室内水槽实验模拟了不同条件下三角洲前缘滑塌浊积体的形成过程。实验结果表明,触发机制是三角洲前缘发生滑塌和形成浊积体的前提,它包括地震、波浪等外界触发机制,也包括前缘砂体自身重力所产生的压实沉陷等。其中地震作用可以破坏三角洲前缘的稳定性,形成液化滑塌浊积体和断阶滑塌浊积体。波浪作用可以侵蚀浪基面附近的三角洲前缘砂体,并在回流作用下携带至最大浪基面之下再沉积,沉积过程中形成小型浊积体。无外界触发机制作用下主河道入水口处的砂体在重力作用下向下部泥岩压实沉陷,也可形成滑塌浊积体。浊积体迁移的动力主要是滑塌砂体自身的重力,其中的断阶滑塌浊积体还受到后续叠置体的碰撞力,因此其可以移动更远的距离。  相似文献   

3.
鲍玛序列的多解性   总被引:1,自引:0,他引:1       下载免费PDF全文
鲍玛序列作为浊积岩的识别标志被广泛认可,但随着对深水沉积过程认识的深入,鲍玛序列逐渐被重新认识。近年来对深水沉积物重力流的研究发现:鲍玛序列不是浊流的唯一产物,深水环境中其它沉积过程也可形成鲍玛序列。因此,在野外识别浊积岩的过程中,要慎重使用鲍玛序列进行判别。  相似文献   

4.
埕岛低凸起东斜坡东营组主要油藏的沉积成因为深水沉积。综合岩心、测井、地震资料,从储层发育背景和沉积过程及响应,探讨砂体成因类型、分布规律及连通关系。研究认为:东营组深水储层为砂质碎屑流、泥质碎屑流、浊流等多种重力流沉积,并受牵引底流改造。层序发育的不同阶段,发育斜坡水下扇和滑塌水下扇。低位体系域时期,洪水携带坡上风化剥蚀及垮塌的陆源碎屑物,以点源供给,因坡度获得加速度,泥石流在下倾、渐宽、底平的水下洼槽内,侧向搬动和长流程迁移,受湖水稀释和砂泥分异作用,析出纯净砂岩,形成砂质碎屑流辫状沟道,此类砂体多层叠置,呈拼合状储层结构。高位体系域时期,沉积坡折处进积型扇三角洲沉积失稳而滑塌,以线源供给,块体流渗入湖水,颠簸滑行、离解、重力分异而密度分层,形成以砂质碎屑流为主的水道、浊流为主的浊积舌和受牵引底流改造过的浊积席状砂,这种砂体孤立于泥岩中呈馅饼状储层结构。斜坡水下扇砂体有序分布,砂体规模大且连片;而滑塌水下扇砂体随机分布,砂体数量多、厚度变化大且不连片。  相似文献   

5.
华庆地区位于晚三叠世鄂尔多斯盆地湖盆沉积中心,长6油层组沉积复杂,具有多物源控制、深水沉积的特征。主要沉积类型可划分为半深湖—深湖沉积、重力流沉积及深水三角洲沉积。不同流态的流体在不同阶段和位置可以相互转化、相伴出现。在湖退背景下长6发育厚层砂体,成因复杂,主要包括深水三角洲砂体、滑塌砂体、砂质碎屑流砂体和浊积砂体等类型。其中三角洲砂体发育各种交错层理;滑塌砂体多顶底突变,发育滑动面;砂质碎屑流沉积颗粒大小混杂,含泥岩撕裂屑;浊积砂体通常为正粒序,或呈块状。从平面上分析,东北物源控制区主要为进积的三角洲砂体、滑塌砂体夹浊积砂体;西部、西南物源影响区主要为浊积砂体、滑塌和砂质碎屑流砂体;混源区和东北物源体系的前端主要为砂质碎屑流砂体、滑塌砂体和浊积砂体。  相似文献   

6.
珠江口盆地恩平凹陷文昌组浊积体含油气性分析   总被引:5,自引:0,他引:5  
岩性油气藏是目前油气勘探开发的重要方向和热点研究领域。珠江口盆地恩平凹陷古近系文昌组发育一厚300余米、面积约140 km2的浊积砂体,其上下岩性均为深湖—半深湖相暗色细粒沉积物。文昌组是该盆地最主要的烃源岩,具有形成岩性油气藏的物质条件。以地震资料为主,结合地质和测井等综合技术,对该浊积体的含油气性进行了综合分析。研究表明,浊积体具有低频振幅能量增强、高频振幅能量降低的特点;同时AVO异常,在浊积体下部表现出同相轴下拉现象。EP17 3 1井钻遇该浊积体边缘,在浊积砂体深度(4 552~4 642 m)出现异常高压。这些特点都是含油气的表现。因此,该浊积砂体是有利的勘探目标,也是该区获得油气勘探开发重大突破的希望所在。  相似文献   

7.
鄂尔多斯盆地西峰油田三叠系延长组浊流沉积及成因模式   总被引:9,自引:3,他引:9  
鄂尔多斯盆地西峰油田三叠系延长组发育典型的浊流沉积体。本文通过对西峰油田延长统野外露头的观察和室内岩心的描述与分析,根据钻井、测井资料,识别出了层状浊积岩、浊流水道、辫状浊流水道。槽状充填浊积岩以及滑塌浊积岩等浊流微相。并基于浊流的两种形成机制(洪水 沉积物→浊流和滑塌沉积物 水→浊流)和沉积动力学原理在该区建立了陆相湖盆浊流沉积模式,即洪水型浊流成因模式和滑塌型浊流成因模式,在此基础上探讨了浊流沉积对构造环境的沉积响应,认为构造背景在宏观上控制了浊积砂体的时空展布,鄂尔多斯盆地该时期的前陆发展演化特征构筑了其浊流沉积地层层序的充填特色。  相似文献   

8.
深水沉积理论的深入研究发现,传统的浊流沉积理论如鲍玛序列、浊积扇、浊积岩相等可能需要重新解释,对浊流理论的质疑推动着深水沉积理论的发展。通过对浊流沉积研究历史及当前研究现状的梳理,探讨了浊流及相关重力流沉积理论的新观点。  相似文献   

9.
深海沉积理论发展及其在油气勘探中的意义   总被引:14,自引:2,他引:12  
深海沉积理论的进展主要涉及“鲍玛序列”、浊流、砂质碎屑流和深海层序地层四方面。以Shanmugam为代表认为:“鲍玛序列”并非唯一浊流产物,可含有砂质碎屑流、浊流、内潮汐、内波、等深流多种流体作用的结果;过去识别的“鲍玛序列”A段有浊流也有相当部分是砂质碎屑流成因,B—D段交错层理则是底层牵引流沉积产生的;只有浊流的沉积物才能称为浊积岩;“高密度浊流”是指砂质碎屑流而不是浊流;浊流是一种有牛顿流和紊乱状态的沉积物重力流;浊积岩没有复杂的颗粒悬浮层和碎石浮层,不发育逆粒序。Shanmugam等关于“鲍玛序列”这一新解是深海沉积学理论的一个进步。深海牵引流过去数十年取得了较大进步,但理论与实践脱节。深海层序地层是深海沉积理论进展的另一个方面,层序界面类型、体系域沉积有自身的独特性:层序界面至少存在斜坡侵蚀面、低水位下超面和水下沉积间断面三种;当沉积背景以陆源碎屑为主时,LST主要为盆底扇,TST和早期HST表现为非钙质远洋沉积,晚期HST一般不发育;当碳酸盐沉积为沉积背景时,LST主体为碎屑流和跨塌蹦落沉积或淡水透镜体,TST和早期HST为钙质细粒沉积,晚期HST可能存在有较小规模的钙屑海底扇。建议慎重解释“鲍玛序列”,审视“浊积扇”理论,废弃“浊积扇”概念,加强深海牵引流沉积机理方面的研究;LST浊积砂体、砂质碎屑流形成的块状不规则砂体、深海牵引流砂体可在深海储层预测方面具有巨大潜势,深海沉积作用及其过程的精细研究在指导深海油气勘探方面将会发挥越来越为重要的作用。  相似文献   

10.
在前人研究基础上,结合最新研究成果,以深水砂岩形成为线索,讨论重力流沉积砂岩成因机制以及后期底流改造作用,分析争议问题,探讨解决方法,并揭示油气勘探意义。重力流沉积砂岩成因机制复杂,将浊流严格定义为紊流支撑,悬浮沉降的重力流,有利于砂岩成因机制解释及砂体分布预测。具有正粒序构造的砂岩为浊流成因,块状砂岩和逆粒序砂岩为砂质碎屑流成因。浊流砂岩沉积在平面上向四周散开,形成朵叶状砂体,碎屑流砂岩沉积沿流体搬运方向展布,形成舌状砂体。重力流沉积受后期底流改造而形成含牵引流构造的砂岩,但牵引流构造不是底流改造砂体所特有的标志,需结合砂体分布特征及沉积环境加以鉴别。水道内重力流沉积受底流影响,天然堤不对称发育,水道发生单向迁移,砂体平面展布范围变大,但砂体垂向厚度变小。同时,受底流改造的天然堤之间会形成局部负向地形,为后期水道、朵体有利沉积场所,易形成连续垂向叠置砂体。深水砂岩预测需将重力流沉积和底流改造结合起来。  相似文献   

11.
在介绍鄂尔多斯盆地吴堡地区延长组长6段沉积特征的基础上,探讨了该储层物性特征、浊积岩特征、浊积岩分布规律及其对油藏的影响,明确了浊流沉积的石油地质意义。结果表明:鄂尔多斯盆地吴堡地区长6段以发育长石砂岩为主,填隙物成分有方解石、绿泥石、白云母以及少量的石英加大、长石加大等,砂岩储集层孔隙结构具有很强的非均质性;吴堡地区长6期湖盆沉降趋于稳定,是三角洲的高建设时期;多水系、多物源的三角洲前缘沉积为深湖浊积扇沉积提供了充足的物质基础;在吴堡地区东北部三角洲前缘水下分流河道前端发育深湖浊积扇沉积,可区分出中心微相和边缘微相两个沉积微相带,其中浊积扇中心微相以细砂岩、粉砂岩与暗色泥岩呈砂泥互层;从平面上看,浊积岩砂体非均质性在侧向上逐渐变弱,砂体底部发育厚度较大、成熟度较高的暗色湖相沉积的烃源岩,深湖相的暗色泥岩含有丰富的烃源岩,而浊积岩砂体是由深湖相的暗色泥岩构成,孔渗物性好的区域易于形成良好的上倾尖灭的透镜状岩性油藏。  相似文献   

12.
鄂尔多斯晚三叠世湖盆异重流沉积新发现   总被引:15,自引:4,他引:11  
水下重力流沉积作为重要的油气储层,已成为当前学术研究和油气工业共同关注的焦点.在鄂尔多斯盆地南部延长组长7~长6油层组深湖相沉积中,发现一种不同于砂质碎屑流沉积和滑塌浊积岩的重力流成因砂岩.其沉积特征为一系列向上变粗的单元(逆粒序层)和向上变细的单元(正粒序层)成对出现;每一个粒序层组合内部的泥质含量变化(高-低-高)与粒度变化一致;上部正粒序层与下部逆粒序层之间可见层内微侵蚀界面;砂岩与灰黑色纯泥岩、深灰色粉砂质泥岩互层;粉砂质泥岩层内也表现出类似的粒度变化特征.通过岩芯观察和薄片鉴定,认为该岩石组合形成于晚三叠世深湖背景下的异重流(hyperpycnal flow)沉积.其沉积产物--hyperpycnite(异重岩?)以发育逆粒序和层内微侵蚀面而区别于其它浊积岩,逆粒序代表洪水增强期的产物,上部的正粒序层为洪水衰退期的沉积,逆粒序-正粒序的成对出现代表一次洪水异重流事件沉积旋回;层内微侵蚀面是洪峰期流速足以对同期先沉淀的逆粒序沉积层侵蚀造成的.鄂尔多斯盆地延长组异重岩的发现,不仅为探索陆相湖盆环境下的异重流沉积提供了一个范例,而且对于深水砂体成因研究、储层预测和油气勘探具有理论和现实意义.  相似文献   

13.
Turbidity currents are turbulent, sediment‐laden gravity currents which can be generated in relatively shallow shelf settings and travel downslope before spreading out across deep‐water abyssal plains. Because of the natural stratification of the oceans and/or fresh water river inputs to the source area, the interstitial fluid within which the particles are suspended will often be less dense than the deep‐water ambient fluid. Consequently, a turbidity current may initially be denser than the ambient sea water and propagate as a ground‐hugging flow, but later reverse in buoyancy as its bulk density decreases through sedimentation to become lower than that of the ambient sea water. When this occurs, all or part of the turbidity current lofts to form a buoyant sediment‐laden cloud from which further deposition occurs. Deposition from such lofting turbidity currents, containing a mixture of fine and coarse sediment suspended in light interstitial fluid, is explored through analogue laboratory experiments complemented by theoretical analysis using a ‘box and cloud’ model. Particular attention is paid to the overall deposit geometry and to the distributions of fine and coarse material within the deposit. A range of beds can be deposited by bimodal lofting turbidity currents. Lofting may encourage the formation of tabular beds with a rapid pinch‐out rather than the gradually tapering beds more typical of waning turbidity currents. Lofting may also decouple the fates of the finer and coarser sediment: depending on the initial flow composition, the coarse fraction can be deposited prior to or during buoyancy reversal, while the fine fraction can be swept upwards and away by the lofting cloud. An important feature of the results is the non‐uniqueness of the deposit architecture: different initial current compositions can generate deposits with very similar bed profiles and grading characteristics, highlighting the difficulty of reconstructing the nature of the parent flow from field data. It is proposed that deposit emplacement by lofting turbidity currents is common in the geological record and may explain a range of features observed in deep‐water massive sands, thinly bedded turbidite sequences and linked debrites, depending on the parent flow and its subsequent development. For example, a lofting flow may lead to a well sorted, largely ungraded or weakly graded bed if the fines are transported away by the cloud. However, a poorly sorted, largely ungraded region may form if, during buoyancy reversal, high local concentrations and associated hindered settling effects develop at the base of the cloud.  相似文献   

14.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   

15.
Sediment waves are commonly observed on the sea floor and often vary in morphology and geometry according to factors such as seabed slope, density and discharge of turbidity currents, and the presence of persistent contour currents. This paper documents the morphology, internal geometry and distribution of deep‐water (4000 to 5000 m) bedforms observed on the sea floor offshore eastern Canada using high‐resolution multibeam bathymetry data and seismic stratigraphy. The bedforms have wavelengths of >1 km but fundamentally vary in terms of morphology and internal stratigraphy, and are distinguished into three main types. The first type, characterized by their long‐wavelength crescentic shape, is interpreted as net‐erosional cyclic steps. These cyclic steps were formed by turbidity currents flowing through canyons and overtopping and breaching levées. The second type, characterized by their linear shape and presence on levées, is interpreted as net‐depositional cyclic steps. These upslope migrating bedforms are strongly aggradational, indicating high sediment deposition from turbidity currents. The third type, characterized by their obliqueness to canyons, is observed on an open slope and is interpreted as antidunes. These antidunes were formed by the deflection of the upper dilute, low‐density parts of turbidity currents by contour currents. The modelling of the behaviour of these different types of turbidity currents reveals that fast‐flowing flows form cyclic steps while their upper parts overspill and are entrained westward by contour currents. The interaction between turbidity currents and contour currents results in flow thickening and reduced sediment concentration, which leads to lower flow velocities. Lower velocities, in turn, allow the formation of antidunes instead of cyclic steps because the densiometric Froude number (Fr′) decreases. Therefore, this study shows that both net‐erosional and net‐depositional cyclic steps are distributed along channels where turbidity currents prevail whereas antidunes form on open slopes, in a mixed turbidite/contourite system. This study provides insights into the influence of turbidity currents versus contour currents on the morphology, geometry and distribution of bedforms in a mixed turbidite–contourite system.  相似文献   

16.
The Baxian depression is a typical half-graben located in the Jizhong sub-basin, north China. Commercial petroleum traps have been discovered in the Jizhong sub-basin. However, the 3rd and 4th members of the Shahejie Formation in this sub-basin have been poorly explored. These two members, belonging to the Lower Paleogene age, are buried deeply in the depression. Favorable petroleum reservoir conditions exist in such deep intervals of the half-graben due to the presence of different types and extent of deltas and turbidity fans in various areas. In fact, three types of turbidite fans are developed in the sag below the transitional belt on the eastern gentle slope. This work summarized three stratigraphic trap belts, i.e., the steep slope, gentle slope, and sag. On the steep slope, structural-stratigraphic traps with small-scale delta fronts and turbidite sandbodies are well developed. On the gentle slope, hydrocarbons generally accumulate in the large-scale delta front, onlapping beds and those sandbodies adjacent to unconformities. In the sag, petroleum trap models are typically characterized by pinched-out turbidite sandbodies. Stratigraphic traps were easily formed in turbidite fans below the eastern transitional belt. The petroleum traps that have already been discovered or predicted in the study area indicate that stratigraphic traps have favorable petroleum exploration potential in deeply buried areas (depth >5000 m) in a half-graben basin or depression.  相似文献   

17.
东营凹陷东部沙三段滑塌浊积砂体沉积特征   总被引:10,自引:0,他引:10  
通过地质、测井、地震及室内综合分析,总结了东营凹陷东部沙河街组三段滑塌浊积砂体的沉积特征,认为滑塌浊积砂体的发育与古代三角洲的进积作用密切相关,可进一步划分为 5种沉积微相;同时建立了该区滑塌浊积砂体的垂向序列和演化模式,分析了滑塌浊积砂体的分布规律,丰富和发展了陆相湖泊浊流沉积的理论和内容。   相似文献   

18.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

19.
通过岩芯及露头观察对鄂尔多斯盆地合水地区延长组长6段砂体沉积类型的识别、依据沉积组合对砂体结构进行分类、并结合测井响应特征刻画了砂体结构平面分布,综合分析了砂体结构平面差异的成因。结果显示,合水地区长6段主要为深水重力流沉积,可识别出砂质碎屑流和浊流两种不同的重力流沉积类型。两种重力流沉积砂体在纵向上复合叠置形成广泛分布的厚砂体,因组合关系及含油性不同,可分为3种砂体结构类型:多期砂质碎屑流叠加型、砂质碎屑流与浊流复合叠加型及多期浊流叠加型。砂体结构平面分布差异受湖盆底形、物源及供屑量和流体重复改造等因素影响,不同结构砂体平面上具有垂直物源轴线呈带状展布特征,在合水地区东北部和中部形成较为有利的砂体结构类型。  相似文献   

20.
Several Holocene turbidites can be correlated across much of Navy Fan through more than 100 sediment core localities. The uppermost muddy turbidite unit is mapped throughout the northern half of the fan; its volume, grain-size distribution and the maximum height of deposition on the basin slopes are known. These parameters can be related to the precise channel morphology and mesotopography revealed by deep-tow surveys. Thus there is sufficient information to estimate detailed flow characteristics for this turbidity current as it moved from fan valley to distal basin plain. On the upper fan, the gradient and the increasing downstream width of the channel and only limited flow overspill suggest that the flow had a Froude number close to 1.0. The sediment associated with the channel indicates friction velocities of about 0.06 m s?1 and flow velocities of about 0.75 m s?1. Using this flow velocity and channel dimensions, sediment concentration (~2×10?3) and discharge are estimated, and from a knowledge of the total volume of sediment deposited, the flow duration is estimated to be from 2 to 9 days. It is shown that the estimates of Froude number, drag coefficient, and sediment concentration are not likely to vary by more than a factor of 2. On the mid-fan, the flow was much thicker than the height of the surface relief of the fan and it spread rapidly. The cross-flow slope, determined from the horizontal extent of turbidite sediment, is used to estimate flow velocity, which is confirmed by consideration of both sediment grain size and rate of deposition. This again allows sediment concentration and discharge to be estimated. The requirements of flow continuity, entrainment of water during flow expansion, and observed sediment deposition provide checks on all these estimates, and provide an integrated picture of the evolution of the flow. The flow characteristics of this muddy turbidity current are well constrained compared to those for more sand-rich late Pleistocene and early Holocene turbidity currents on the fan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号