首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
罗战友  夏建忠  吴李泉  刘薇 《岩土力学》2006,27(Z2):403-406
软土地区常采用坑内土体加固来达到控制围护结构内力的目的。以弹性地基梁法为基础建立了基坑的有限元模型,利用模型分析了坑内土体的加固深度及程度对围护结构内力的影响。结果表明,围护结构的内力随加固深度及程度的增大而减小,而且还存在着临界加固深度及程度。因此,合理地确定加固深度及程度既能保证基坑安全,又能够节省工程造价。  相似文献   

2.
卢晓峰  丁勇春 《岩土力学》2007,28(Z1):682-686
不同开挖宽度与深度比条件下基坑围护结构与周围土体的变形特性将发生变化。采用二维有限元方法分析了不同开挖宽度与深度比(L/D)条件下无支撑悬臂开挖基坑的变形性状,详细探讨了开挖宽度与深度比对地表沉降、地表水平位移、坑底隆起、坑底水平位移及围护结构侧向变形的影响。计算结果表明:在基坑开挖深度不变的条件下,地表沉降量、坑底隆起量及坑底水平位移量均随L/D的增加呈非线性增长,开始增长迅速,当L/D达一定值后,数值几乎不再变化;地表水平位移量随L/D的增加先减小后增大;围护结构侧向变形随L/D的增加逐步由顶端内倾型过渡到整体向坑内移动的顶端外倾型。L/D越大,围护结构的整体侧向位移越大。  相似文献   

3.
深厚软土区的基坑工程,常因被动区侧向抗力不足而导致竖向支护结构变形和位移过大甚至发生踢脚失稳,通常需要对被动区土体进行加固以改善坑底软弱土层的嵌固条件,从而加强对支护桩、墙的变形位移的控制。结合大量实际工程,对悬臂支护基坑坑底最优加固深度和宽度提出一种拟合方法计算,以不同深度和宽度的加固效果进行数值模拟对比分析,并结合工程实例,进一步研究被动区土体加固机理和加固设计优化思路,为类似工程提供参考。  相似文献   

4.
潘春宇 《地质与勘探》2024,60(2):356-366
“地下复合支撑”是通过在基坑坑底布置加固水泥土将坑底工程桩与基坑支护桩墙相连形成复合受力体。基坑开挖时,复合受力体共同受力抵抗变形,有效控制围护结构变形并抑制坑底土体隆起。本文提出“地下复合支撑”概念及其设计理论,分析坑底加固面积置换率、固化剂掺量、加固深度等关键设计参数对基坑变形的影响,为“地下复合支撑”投入工程实践提供设计依据和理论参考。基于工程实例,针对原支护体系给出地下复合支撑的优化设计方案,验证新型复合支撑的可行性,体现其对基坑围护结构水平位移和坑底隆起变形控制的优势。同时,按照优化设计方案可以减少基坑内支撑的道数,具有安全性和经济性。  相似文献   

5.
现有基坑相关研究主要关注土方开挖过程引起的变形,认为围护结构变形起点是土方第1次开挖。然而,一些工程实测表明,基坑开挖前降水阶段即可引起围护结构及周边地层发生厘米级的变形。显然,未考虑开挖前变形的基坑监测数据将低估基坑施工的环境效应。为了研究基坑开挖前降水引发基坑变形的机制,开展了室内模型试验,对基坑开挖前降水过程进行了缩尺精细化模拟。通过微型降水井的设置与调控,模型试验真实再现了实际基坑降水过程中井流效应对围护结构受力变形的影响。试验过程中发现,随着降水的进行,坑外降水漏斗不断扩展,围护结构悬臂式侧移及坑外拱肩式地面沉降也随之产生。另外,降水导致墙前水压力明显减小,并诱发墙前侧向总压力重分布(以减小为主),围护结构为此发生指向坑内的悬臂式运动以寻求新的受力平衡,并通过墙后土体损失诱发坑外地层变形。  相似文献   

6.
张飞  李镜培  孙长安  沈广军  李飞 《岩土力学》2016,37(10):2825-2832
针对软土地区基坑底土层为饱和软黏土的情况,设计了狭长深基坑的抗隆起离心模型试验,分析不同开挖深度和水位条件下的基坑围护墙弯矩、土压力分布、水平位移以及基坑隆起稳定破坏机制。基于离心模型试验的基本参数和工况,建立了有限元数值模型,分析试验工况基坑的抗隆起稳定性与破坏状态,并进行对比验证。试验结果表明:随着开挖深度和坑外水位的增加,坑底软土层产生向上的隆起变形,当隆起变形较大时,围护墙由于坑内土体侧向约束的减弱,底部产生较大的向坑内的水平位移,同时导致支撑轴力增大,基坑最终表现出围护墙绕某道支撑点向坑内的转动踢脚破坏。数值计算结果表明:随着坑外水位的升高,基坑抗隆起稳定性安全系数逐渐减小,当发生抗隆起稳定破坏时,基坑底产生较大的隆起位移,破坏机制与离心模型试验结果相同。  相似文献   

7.
考虑土体硬化的基坑开挖性状及隆起稳定性分析   总被引:1,自引:1,他引:0       下载免费PDF全文
基坑开挖过程中,土体应力路径、卸载回弹再压缩特性与简单加载或卸载不同,采用常规的理想弹塑性模型模拟基坑开挖,得到的围护墙位移、坑内土体回弹以及坑外沉降较大。分析了基坑开挖不同区域土体的性状,采用土体硬化模型模拟基坑开挖的卸载与土体硬化行为,结合工程算例,对比土体硬化模型和理想弹塑性模拟以及实测的围护结构土压力、围护墙水平位移和坑外土体沉降,并利用强度折减法分析基坑的稳定性。计算结果表明,考虑土体硬化的HS模型有限元方法能体现土体卸载再加载与开挖的特性,所得土压力、围护结构水平位移以及基坑抗隆起稳定性符合软土地区基坑工程的实践。  相似文献   

8.
以北京通州某深基坑工程为例,分析基坑开挖卸荷、基坑锚杆施工、基底CFG桩和抗拔桩施工对基坑围护结构和周边环境的影响。结果表明:基坑围护结构及基坑周边地表随着基坑的开挖、围护锚索和基坑内工程桩的施工出现典型的先上浮后沉降的趋势,应力重新分布现象明显。具体表现为基坑开挖卸荷初期引发围护结构及基坑周边地表上浮,随着基坑开挖深度的增加,在基坑侧向位移和基坑锚索竖向分力作用下,围护结构及基坑周边地表开始下沉;在基坑槽底施工CFG桩和抗拔桩削弱了护坡桩嵌固区被动土压力,基坑降水导致土体有效应力增加,产生附加固结沉降,在基坑地下水渗流的联合作用下,围护结构及基坑周边地表呈现二次加速下沉;基坑开挖和基础桩施工对桩顶水平位移和锚索轴力影响较小。根据分析结果,建议类似基坑增加嵌固深度、调整被动土压力区打桩顺序,将有利于围护结构及基坑周边环境变形控制。  相似文献   

9.
刘念武  龚晓南  俞峰  房凯 《岩土力学》2014,35(8):2293-2298
具有内支撑结构的围护系统在基坑边角处具有更大的系统刚度,使得基坑边角附近处土体的位移小于距离边角较远处土体的位移,即基坑的变形问题表现出空间特性。为了更好地研究L/He(L为沿基坑纵向方向上的距离;He为开挖深度)、开挖深度等因素对空间效应的影响,量测了两个狭长形地铁车站深基坑不同位置处土体的侧向位移、土体沉降等。通过对现场监测资料的分析发现,边角效应能够减小侧向位移的平面应变比,灌注桩围护结构、SMW工法桩围护结构和地下连续墙在边角附近处的平面应变比(PSR)分别为0.50、0.61和0.72。当平面应变比(PSR)接近于1.00时,对应的L/He值分别为2.50、6.00和4.00。随着L/He值的增大,土体的纵向最大沉降呈先增大后保持稳定的趋势。随开挖深度的增加,边角效应的影响范围呈增大的趋势。在基坑纵向沉降的空间效应中,灌注桩围护结构、SMW工法桩围护结构的土体最大沉降值达到稳定时对应的L/He值分别为2.50和5.20。土体沉降和侧向位移的空间效应有一定的相关性。  相似文献   

10.
基坑全过程开挖及邻近地铁隧道变形实测分析   总被引:1,自引:0,他引:1  
丁智  张霄  金杰克  王立忠 《岩土力学》2019,40(Z1):415-423
根据邻近已运营地铁隧道的基坑工程监测数据,对基坑开挖全阶段施工过程的深层土体侧向位移与邻近地铁隧道变形之间的规律展开研究,探讨基坑开挖的施工危险节点与重点影响区域。研究发现,基坑开挖前期围护结构施工和降水均对地层和邻近地铁产生了不容忽视的初始位移影响,围护结构长时间无支撑暴露是基坑侧移快速增长的危险时段;基坑开挖具有空间效应,中部侧向变形要大于边角,且单向开挖易造成后挖区土体的位移场和应力场叠加,引起邻近隧道的最大变形向后挖区偏移;基坑开挖深度与邻近地铁埋深相近时,隧道结构产生显著的水平位移和“横鸭蛋”式收敛变形,竖向位移波动不大;深层土体侧移曲线表现为“阶梯鼓肚形”,土体最大水平位移与隧道变形在小范围内呈线性关系,但随着侧移量的增大,隧道变形发生偏离拟合曲线的超线性增长,在工程中应值得关注。  相似文献   

11.
地铁车站基坑围护结构变形监测与数值模拟   总被引:5,自引:0,他引:5  
刘杰  姚海林  任建喜 《岩土力学》2010,31(Z2):456-461
以某城市大型地铁车站基坑为研究背景,对基坑围护结构及其变形监测方案进行了设计,并对基坑围护结构变形的现场监测数据进行了分析,重点分析了基坑施工过程中围护结构的水平变形随基坑开挖深度和时间的变化规律。建立了弹塑性有限元模型,并对地铁车站深基坑开挖进行施工仿真模拟计算,将获得的围护结构变形结果与监测结果进行了对比分析,再引用多种围护形式对基坑变形进行敏感性因素分析。结果表明:钢支撑+围护桩的围护形式对基坑土体的侧向变形有较好的限制作用,有限元数值计算结果与现场实测结果比较一致,有限元计算的结果是可信的,改变钢支撑的施作位置对限制基坑的侧向变形有重要作用。随着围护桩入土深度的增大,土体向基坑内侧变形的趋势有所减缓。  相似文献   

12.
许海勇  陈龙珠  刘全林 《岩土力学》2013,34(8):2323-2328
桩锚支护结构在基坑和边坡围护工程中有着广泛的应用,设计阶段对支护结构的水平变形作出准确预测意义重大。根据国内多地基坑工程围护墙变形实测结果,建立桩锚支护结构水平位移的计算模型和计算假定,计算基坑围护墙在各外力作用下的变形,利用弹性叠加法得出桩锚支护结构围护墙深层水平位移表达式,联立锚杆刚度方程求解出其中的参数,最终得到水平位移的简化计算结果。该简化算法适用于围护墙底变形较小的桩锚支护结构计算,通过温州某基坑工程实例对比,围护墙变形计算结果与实测数据较为吻合,验证了该简化算法的适用性。  相似文献   

13.
张戈  毛海和 《岩土力学》2016,37(5):1467-1474
为了预测地铁深基坑开挖阶段围护结构的变形特性,从围护结构综合刚度的角度研究了软土地区地铁深基坑的围护结构设计方法。鉴于Clough综合刚度模型存在诸多缺陷,提出了新的MVSS综合刚度模型,其包含了围护墙(桩)刚度、基坑深度、支撑刚度、支撑水平及竖向间距、地基加固等多个变量,反映了基坑围护结构的整体属性。从有限元计算及地铁基坑实测变形等角度验证了MVSS综合刚度合理性,并建立了地铁深基坑围护结构侧向变形与基坑围护综合刚度之间的函数算式。该算式为基坑围护结构的变形预测提供了新的思路与方法。基坑围护结构最大侧向变形与基坑MVSS综合刚度呈递减函数关系,但当其MVSS综合刚度增大至一定程度后,其继续增大对基坑围护结构变形的进一步控制效果甚微。  相似文献   

14.
基坑变形监测现场试验研究   总被引:1,自引:0,他引:1  
结合浙江省桐乡市中虹天地商住楼基坑变形监测项目,研究了基坑沉桩挤土作用,分析了边长40cm方桩沉桩时,120倍桩径处地表仍有微弱隆起变形,以及基坑周边民住房的不均匀沉降变化特征。基坑开挖过程中,围护结构的受力状态发生改变,导致围护结构产生上浮现象。基坑土体水平位移随开挖深度增加逐渐变大,且在土体蠕变作用下,水平位移量仍会有所增加。大气降水导致基坑内外地下水位差变大,增加围护结构的侧压力。支撑轴力受混凝土凝固收缩、温差以及钢筋、混凝土之间的差异徐变影响,支撑轴力计算时需进行修正。  相似文献   

15.
杨校辉  朱彦鹏  郭楠  黄雪峰 《岩土力学》2014,35(Z2):185-197
为研究深大复杂基坑桩锚支护结构内力演化规律和受荷特性,以总面积约为16×104 m2、最大开挖深度为26 m的基坑工程为依托,在支护桩和锚杆钢筋上预埋钢筋计,分别对基坑开挖过程中和桩头侧向加载、不同工况锚杆拉拔过程中桩的内力和锚杆内力进行监测。结果表明:(1)随着基坑的开挖,悬臂阶段3根支护桩外侧桩身应力呈拉-压-拉变化,内侧桩身应力呈压-拉变化;同一测点钢筋应力逐渐增大,最大值位置略微下移,应力零点出现的位置随桩长的不同而不同。单支点阶段随着基坑暴露时间的增加,外露桩身应力增大,桩身钢筋应力峰值出现在开挖面附近区域,嵌固段桩身应力变化复杂且应力零点比悬臂阶段出现的早。两支点阶段桩身钢筋应力变化更复杂,主要受基坑开挖时间和预应力锚杆的张拉锁定等因素的影响。(2)支护桩、锚杆支护结构设计需考虑其最大允许变形量;满足锚固长度临界值要求后,自由段越长,锚固效果越好,锚固段越短越经济。(3)在未施加拉力和不同拉力作用过程中,锚杆受力发生重分布,与以往土质或岩质基坑认识不同。(4)锚杆侧摩阻力中性点和潜在滑移面的出现与移动是一致的,可用于确定基坑潜在滑移面位置和锚杆临界长度。  相似文献   

16.
韩同春  谢灵翔  刘振 《岩土力学》2018,39(12):4404-4412
坑中坑在基坑工程实践中普遍存在,使得基坑底部土体成为有限土体,因此,常规的建立在半无限空间土体假定上的朗肯土压力理论对于坑中坑条件下的基坑不再适用。基于极限平衡理论和平面滑裂面假定,考虑土体黏聚力和滑动土体不同的形状,推导了4种情况下被动土压力的计算公式,并给出了滑裂面剪切破坏角的数学表达式。通过算例,计算了不同内坑位置条件下被动土压力的大小和变化趋势。结果表明,滑裂面剪切破坏角是与土体内摩擦角、黏聚力、计算深度、内坑大小及位置有关的变量,内坑的存在将降低围护结构上的被动土压力,且存在一个内坑影响最不利位置,此时的被动土压力值最小。成果为基坑围护设计中被动土压力的计算提供了理论基础。  相似文献   

17.
某软土深基坑险情分析与处理   总被引:1,自引:0,他引:1  
黄广龙  张枫  卫敏  方乾 《岩土力学》2009,30(6):1735-1746
介绍一软土地区深基坑由于超挖引起基坑险情的工程实例。该基坑土层分布以淤泥质粉质黏土为主,为典型的长江漫滩地质条件,具有一定的代表性。基坑土方开挖期间,由于地下室方案调整,基坑深度加深,而未按设计要求对支护进行事先加固,导致基坑出现险情。通过对比前后不同挖深条件下支护结构的内力及变形,分析了险情产生的原因,并依据实测支护结构和周边环境的变形,针对基坑出现的问题提出有效的处理措施,从而保证了基坑的安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号