首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pseudo-binary system Mg3Al2Si3O12–Na2MgSi5O12 modelling the sodium-bearing garnet solid solutions has been studied at 7 and 8.5 GPa and 1,500–1,950°C. The Na-bearing garnet is a liquidus phase of the system up to 60 mol% Na2MgSi5O12 (NaGrt). At higher content of NaGrt in the system, enstatite (up to ∼80 mol%) and then coesite are observed as liquidus phases. Our experiments provided evidence for a stable sodium incorporation in garnet (0.3–0.6 wt% Na2O) and its control by temperature and pressure. The highest sodium contents were obtained in experiments at P = 8.5 GPa. Near the liquidus (T = 1,840°C), the equilibrium concentration of Na2O in garnet is 0.7–0.8 wt% (∼6 mol% Na2MgSi5O12). With the temperature decrease, Na concentration in Grt increases, and the maximal Na2MgSi5O12 content of ∼12 mol% (1.52 wt% Na2O) is gained at the solidus of the system (T = 1,760°С). The data obtained show that most of natural diamonds, with inclusions of Na-bearing garnets usually containing <0.4 wt% Na2O, could be formed from sodium-rich melts at pressures lower than 7 GPa. Majoritic garnets with higher sodium concentrations (>1 wt% Na2O) may crystallize at a pressure range of 7.0–8.5 GPa. However the upper pressure limit for the formation of naturally occurring Na-bearing garnets is restricted by the eclogite/garnetite bulk composition.  相似文献   

2.
The configurational heat capacity, shear modulus and shear viscosity of a series of Na2O–Fe2O3–Al2O3–SiO2 melts have been determined as a function of composition. A change in composition dependence of each of the physical properties is observed as Na2O/(Na2O + Al2O3) is decreased, and the peralkaline melts become peraluminous and a new charge-balanced Al-structure appears in the melts. Of special interest are the frequency dependent (1 mHz–1 Hz) measurements of the shear modulus. These forced oscillation measurements determine the lifetimes of Si–O bonds and Na–O bonds in the melt. The lifetime of the Al–O bonds could not, however, be resolved from the mechanical spectrum. Therefore, it appears that the lifetime of Al–O bonds in these melts is similar to that of Si–O bonds with the Al–O relaxation peak being subsumed by the Si–O relaxation peak. The appearance of a new Al-structure in the peraluminous melts also cannot be resolved from the mechanical spectra, although a change in elastic shear modulus is determined as a function of composition. The structural shear-relaxation time of some of these melts is not that which is predicted by the Maxwell equation, but up to 1.5 orders of magnitude faster. Although the configurational heat capacity, density and shear modulus of the melts show a change in trend as a function of composition at the boundary between peralkaline and peraluminous, the deviation in relaxation time from the Maxwell equation occurs in the peralkaline regime. The measured relaxation times for both the very peralkaline melts and the peraluminous melts are identical with the calculated Maxwell relaxation time. As the Maxwell equation was created to describe the timescale of flow of a mono-structure material, a deviation from the prediction would indicate that the structure of the melt is too complex to be described by this simple flow equation. One possibility is that Al-rich channels form and then disappear with decreasing Si/Al, and that the flow is dominated by the lifetime of Si–O bonds in the Al-poor peralkaline melts, and by the lifetime of Al–O bonds in the relatively Si-poor peralkaline and peraluminous melts with a complex flow mechanism occurring in the mid-compositions. This anomalous deviation from the calculated relaxation time appears to be independent of the change in structure expected to occur at the peralkaline/peraluminous boundary due to the lack of charge-balancing cations for the Al-tetrahedra.  相似文献   

3.
4.
Compressibility of perovskite-structured Ca3Al2Si3O12 grossular (GrPv) was investigated at high pressure and high temperature by means of angle-dispersive powder X-ray diffraction using a laser-heated diamond anvil cell. We observed the Pbnm orthorhombic distortion for the pure phase above 50 GPa, whereas below this pressure, Al-bearing CaSiO3 perovskite coexists with an excess of corundum. GrPv has a bulk modulus (K 0 = 229 ± 5 GPa; \(K_{0}^{{\prime }}\) fixed to 4) almost similar to that reported for pure CaSiO3 perovskite. Its unit-cell volume extrapolated to ambient conditions (V 0 = 187.1 ± 0.4 Å3) is found to be ~2.5 % larger than for the Al-free phase. We observe an increasing unit-cell anisotropy with increasing pressure, which could have implications for the shear properties of Ca-bearing perovskite in cold slabs subducted into the Earth’s mantle.  相似文献   

5.
Two synthetic series of spinels, MgCr2O4–Fe2+Cr2O4 and MgCr2O4–MgFe2 3+O4 have been studied by Raman spectroscopy to investigate the effects of Fe2+ and Fe3+ on their structure. In the first case, where Fe2+ substitutes Mg within the tetrahedral site, there is a continuous and monotonic shift of the Raman modes A1g and Eg toward lower wavenumbers with the increase of the chromite component into the spinel, while the F2g modes remain nearly in the same position. In the second series, for low Mg-ferrite content, Fe3+ substitutes for Cr in the octahedral site; when the Mg-ferrite content nears 40 %, a drastic change in the Raman spectra occurs as Fe3+ starts entering the tetrahedral site as well, consequently pushing Mg to occupy the octahedral one. The Raman spectral region between 620 and 700 cm?1 is associated to the octahedral site, where three peaks are present and it is possible to observe the Cr–Fe3+ substitution and the effects of order–disorder in the tetrahedral site. The spectral range at 500–620 cm?1 region shows that there is a shift of modes toward lower values with the increase of the Mg-ferrite content. The peaks in the region at 200–500 cm?1, when observed, show little or negligible Raman shift.  相似文献   

6.
The thermoelastic parameters of synthetic Mn3Al2Si3O12 spessartine garnet were examined in situ at high pressure up to 13 GPa and high temperature up to 1,100 K, by synchrotron radiation energy dispersive X-ray diffraction within a DIA-type multi-anvil press apparatus. The analysis of room temperature data yielded K 0 = 172 ± 4 GPa and K 0  = 5.0 ± 0.9 when V 0,300 is fixed to 1,564.96 Å3. Fitting of PVT data by means of the high-temperature third-order Birch–Murnaghan EoS gives the thermoelastic parameters: K 0 = 171 ± 4 GPa, K 0  = 5.3 ± 0.8, (?K 0,T /?T) P  = ?0.049 ± 0.007 GPa K?1, a 0 = 1.59 ± 0.33 × 10?5 K?1 and b 0 = 2.91 ± 0.69 × 10?8 K?2 (e.g., α 0,300 = 2.46 ± 0.54 × 10?5 K?1). Comparison with thermoelastic properties of other garnet end-members indicated that the compression mechanism of spessartine might be the same as almandine and pyrope but differs from that of grossular. On the other hand, at high temperature, spessartine softens substantially faster than pyrope and grossular. Such softening, which is also reported for almandine, emphasize the importance of the cation in the dodecahedral site on the thermoelastic properties of aluminosilicate garnet.  相似文献   

7.
8.
In order to determine the mechanisms of formation and properties of natural hydrosilicate liquids (HSLs), which are formed during the transition from magmatic to hydrothermal mineral formation in granitic pegmatites and rare-metal granites, the formation of HSLs was experimentally studied in the Na2O-SiO2-H2O, Na2O-Al2O3-SiO2-H2O, and Na2O-K2O-Li2O-Al2O3-SiO2-H2O systems at 600°C and 1.5 kbar. It was shown that the sequential extension of composition does not suppress HSL formation in the systems and expands the stability field of this phase. However, HSLs formed in extended chemical systems have different structure and properties: the addition of alumina induces some compression of the structure of the silicate framework of HSLs, which results in a decrease in water content in this phase and probably hinders the reversibility of its dehydration. It was demonstrated that HSL can be formed by the coagulation of silica present in a silica-oversaturated alkaline aqueous fluid. It was supposed that the HSL formed during this process has a finely dispersed structure. It was argued that anomalous enrichment in some elements in natural HSLs can be due to their sorption by the extensively developed surface of HSL at the moment of its formation.  相似文献   

9.
Summary The thermodynamic properties of garnets in the system (Fe2+, Mn2+, Mg, Ca)3A12Si3O12 are reviewed. The thermodynamic properties of the three end-member garnets pyrope, almandine and grossular, including their volume, enthalpy of formation, entropy, compressibility and thermal expansion have been well determined. For spessartine enthalpy of formation and heat capacity at low temperatures are needed. Pyrope's unusual behavior in some of its properties is probably related to the presence of the small, light Mg cation, which has a large anisotropic thermal vibration. The thermodynamic mixing properties of the six binaries are also discussed. Good volume of mixing data exist now for all of the binaries, but much work is still required to determine the enthalpies and third-law vibrational entropies of mixing. It is shown that the magnitude of the positive deviations in the volumes of mixing is related to the volume difference between the two end-member components. It is probable that excess entropies, if present, originate at low temperatures below 200 K. Recent29Si NMR experiments have demonstrated the presence of short-range ordering (SRO) of Ca and Mg in pyrope-grossular solid solutions. Short-range order will have to be considered in new models describing the entropies of mixing. Its possible presence in all garnet solid solutions needs to be examined. The mixing properties of pyrope-grossular garnets, which are the best known for any garnet binary, can, in part, be described by the Quasi-Chemical approximation, which gives insight into the microscopic interactions which determine the macroscopic thermodynamic mixing properties. Microscopic properties are best investigated by spectroscopic and computational approaches. Hard mode IR measurements on binary solid solutions show that the range of local microscopic structural distortion is reflected in the macroscopic volumes of mixing. The nature of The contents of this contribution was presented at the IMA Meeting in Toronto in August, 1998. It precedes issues of Mineralogy and Petrology containing thematic sets of IMApapers strain tiields and site relaxation needs to be studied in order to obtain a better understanding of the solid-solution process and energetics in garnet. Critical areas for future experimentation are also addressed.[/p]
Eine kritische Zusammenstellung und Analyse der thermodynamischen Daten der (Fe2+, Mn2+, Mg, Ca)3Al2Si3O12 granate
Zusammenfassung In dieser Studie werden die thermodynamischen Eigenschaften der Granate im System (Fe2+,Mn2+, Mg, Ca)3Al2Si3O12 kritisch zusammengestellt. Die thermodynamischen Eigenschaften der drei Endglied-Granate Pyrop, Almandin und Grossular, einschließlich ihrer Volumina, Bildungswärmen, Entropien, Kompressibilitäten und thermischen Ausdehnungen wurden bereits hinreichend gut bestimmt. Dagegen müssen die Bildungswärme und Tieftemperatur-Wärmekapazität von Spessartin noch gemessen werden. Die Eigenschaften des Pyrops sind wahrscheinlich mit den großen anisotropen Schwingungen des kleinen, leichten Mg-Kations verbunden. Die thermodynamischen Mischungseigenschaften der sechs binären Mischkristallreihen werden ebenfalls diskutiert. Während die Mischungs-Volumendaten der binären Mischreihen gut bekannt sind, müssen ihre Mischungs-Enthalpien und Standard-Mischungsentropien noch ermittelt werden. Es wurde gezeigt, daß die Größe der positiven Exzeß-Volumina mit dem Volumen-Unterschied der zwei Endglied-Komponenten der jeweiligen Mischreihe verknüpft ist. Es ist wahrscheinlich, daß Exzeß-Entropien, wenn vorhanden, erst bei Tieftemperaturen unter 200 K auftreten. Neue29Si NMR-Experimente belegen, daß in Pyrop-Grossular-Mischkristallen Nahordnung von Mg und Ca vorliegt. Der Effekt der Nahordnung muß in künftigen thermodynamischen Modellen berücksichtigt werden. Hieraus ergibt sich die Notwendigkeit, alle Granat-Mischreihen auf mögliche Nahordnung hin zu untersuchen. Die Mischungseigenschaften der Pyrop-Grossular-Mischreihe, die von sämtlichen Granat-Mischreihen am besten bestimmt wurden, können teilweise mit dem Quasi-Chemical-Model beschrieben werden. Dieses Modell ermöglicht die Beschreibung der mikroskopischen Wechselwirkungen, die die makroskopischen thermodynamischen Eigenschaften bestimmen. Mikroskopische Eigenschaften werden am besten mit spektroskopischen Messungen und theoretischen Berechnungen untersucht. Hard-mode IR-Spektroskopie-Messungen an binären Mischreihen zeigen, daß die lokalen mikroskopischen strukturellen Verzerrungen in den makroskopischen Mischungs-Volumina widergespiegelt werden. Die Art der Spannungsfelder und Platz-Relaxationen muß detaillierter untersucht werden, um ein besseres Verständnis des Mischkristall-Bildungsprozsses und der Energetik der Granate zu erreichen. Darüber hinaus werden wichtige künftige Forschungsgebiete diskutiert.


With 11 Figures  相似文献   

10.
We define and calibrate a new model of molar volume as a function of pressure, temperature, ordering state, and composition for spinels in the supersystem (Mg, Fe2+)(Al, Cr, Fe3+)2O4 ? (Mg, Fe2+)2TiO4. We use 832 X-ray and neutron diffraction measurements performed on spinels at ambient and in situ high-P, T conditions to calibrate end-member equations of state and an excess volume model for this system. The effect on molar volume of cation ordering over the octahedral and tetrahedral sites is captured with linear dependence on Mg2+, Al3+, and Fe3+ site occupancy terms. We allow standard-state volumes and coefficients of thermal expansion of the end members to vary within their uncertainties during extraction of the mixing properties, in order to achieve the best fit. Published equations of state of the various spinel end members are analyzed to obtain optimal values of the bulk modulus and its pressure derivative, for each explicit end member. For any spinel composition in the supersystem, the model molar volume is obtained by adding excess volume and cation order-dependent terms to a linear combination of the five end-member volumes, estimated at pressure and temperature using the high-T Vinet equation of state. The preferred model has a total of 9 excess volume and order-dependent parameters and fits nearly all experiments to within 0.02 J/bar/mol, or better than 0.5 % in volume. The model is compared to the current MELTS spinel model with a demonstration of the impact of the model difference on the estimated spinel-garnet lherzolite transition pressure.  相似文献   

11.
The thermal stability of sideronatrite, ideally Na2Fe3+(SO4)2(OH)·3(H2O), and its decomposition products were investigated by combining thermogravimetric and differential thermal analysis, in situ high-temperature X-ray powder diffraction (HT-XRPD) and Fourier transform infrared spectroscopy (HT-FTIR). The data show that for increasing temperature there are four main dehydration/transformation steps in sideronatrite: (a) between 30 and 40 °C sideronatrite transforms into metasideronatrite after the loss of two water molecules; both XRD and FTIR suggest that this transformation occurs via minor adjustments in the building block. (b) between 120 and 300 °C metasideronatrite transforms into metasideronatrite II, a still poorly characterized phase with possible orthorhombic symmetry, consequently to the loss of an additional water molecule; X-ray diffraction data suggest that metasideronatrite disappears from the assemblage above 175 °C. (c) between 315 and 415 °C metasideronatrite II transforms into the anhydrous Na3Fe(SO4)3 compound. This step occurs via the loss of hydroxyl groups that involves the breakdown of the [Fe3+(SO4)2(OH)] 2? chains and the formation of an intermediate transient amorphous phase precursor of Na3Fe(SO4)3. (d) for T > 500 °C, the Na3Fe(SO4)3 compound is replaced by the Na-sulfate thenardite, Na2SO4, plus Fe-oxides, according to the Na3Fe3+(SO4)3 → 3/2 Na2(SO4) + 1/2 Fe2O3 + SOx reaction products. The Na–Fe sulfate disappears around 540 °C. For higher temperatures, the Na-sulfates decomposes and only hematite survives in the final product. The understanding of the thermal behavior of minerals such as sideronatrite and related sulfates is important both from an environmental point of view, due to the presence of these phases in evaporitic deposits, soils and sediments including extraterrestrial occurrences, and from the technological point of view, due to the use of these materials in many industrial applications.  相似文献   

12.
The solubility of water in coexisting enstatite and forsterite was investigated by simultaneously synthesizing the two phases in a series of high pressure and temperature piston cylinder experiments. Experiments were performed at 1.0 and 2.0 GPa at temperatures between 1,100 and 1,420°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on orientated single crystals of each phase. Phase water contents were estimated using the calibration of Libowitzky and Rossman (Am Mineral 82:1111–1115, 1997). Enstatite crystals, synthesized in equilibrium with forsterite and an aqueous phase at 1,350°C and 2.0 GPa, contain 114 ppm H2O. This is reduced to 59 ppm at 1,100°C, under otherwise identical conditions, suggesting a strong temperature dependence. At 1,350°C and 1.0 GPa water solubility in enstatite is 89 ppm, significantly lower than that at 2.0 GPa. In contrast water solubility in forsterite is essentially constant, being in the range 36–41 ppm for all conditions studied. These data give partition coefficients in the range 2.28–3.31 for all experiments at 1,350°C and 1.34 for one experiment at 1,100°C. The incorporation of Al2O3 in enstatite modifies the OH stretching spectrum in a systematic way, and slightly increases the water solubility.  相似文献   

13.
This study was conducted to determine the phytotoxicity of 6 nm γ-Fe2O3 nanoparticles (IONPs) in terms of root elongation and the physiological performance of rice plants. Rice seeds (Oryza sativa L. var. Koshihikari) exposed to IONPs at 500, 1,000 and 2,000 mg/L, had a significantly higher root elongation than the control and its bulk counterparts (IOBKs), indicating that the effect can be nanospecific. In a 14-week greenhouse pot experiment, the CO2 assimilation rate in IOBK and IONP-treated pots (500 and 1,000 mg/pot) decreased over time, with the decline (maximum 42.5 %) being less pronounced for IONPs, indicating that the effect cannot be inferred from the toxicity of nanoscale size iron oxide. Excessive adsorption of IONPs onto soil colloids with subsequent low water extractable iron was responsible for the unremarkable phytotoxic nature of IONPs in the rice plants. Amendment of IONPs coated with 20 mmol citric acid (IONPs-Cit) significantly diminished the CO2 assimilation rate and the decrease was similar to its bulk counterpart (IOBKs-Cit). However, maximum shoot growth inhibition (37 %) was associated with the application of IOBKs-Cit. It was concluded that massive accumulations of Fe plaque on the root surfaces of IOBKs-Cit treatments due to a decline in the pH of rhizoplane soils compared to the IONPs-Cit treatments were responsible for the remarkable shoot growth reduction. This study provided evidence of the phytotoxicity of γ-Fe2O3 nanoparticles, demonstrating the lower toxicity of nanosized iron oxide compared to a microsized preparation under reductive conditions.  相似文献   

14.
15.
Summary Crystals of K2[Co2(SeO3)3]-2H2O and K2[Ni2(SeO3)3]-2H2O were synthesized under low-hydrothermal conditions. Their structures were determined using single crystal X-ray data up to sin / = 0.7Å-1. [Space group P63/m; a = 9.091(3),9.016(2)Å; c = 7.562(2), 7.476(2)Å; Z = 2; RW = 1.6, 2.5%]. The investigations confirmed that K2[Co2(SeO3)3].2H2O and K2[Ni2(SeO3)3]-2H2O represent the first selenites belonging to the zemannite structure type, a framework structure with wide channels running parallel [0001]. In both compounds four maxima were clearly located in the channel by Fourier summations and attributed to two K atoms and two H2O molecules, each with an occupancy factor of 1/6; a possible ordering scheme (full occupancy) with local symmetry 1 and [6]-coordinated K atoms could be derived for the channel atoms.Zusammenfassung Kristalle von K2[Co2(SeO3)3]-2H2O und K2[Ni2(SeO3)3]-2H2O wurden unter niedrig-hydrothermalen Bedingungen synthetisiert. Die Strukturen wurden unter Verwendung von Einkristallröntgendaten bis sin /= 0.7Å-1 bestimmt. [Raumgruppe P63/m; a = 9.091(3), 9.016(2)Å; c = 7.562(2), 7.476(2)Å; Z = 2; RW = 1.6, 2.5%] Die Untersuchungen bestätigten, daß K2[Co2(SeO3)3] - 2H2O und K2 [Ni2(SeO3)3] - 2H2O als erste Selenite dem Strukturtyp des Zemannits angehören, einer Gerüststruktur mit weiten, parallel [0001] verlaufenden Kanälen. In beiden Verbindungen wurden im Kanal vier Maxima durch Fourier-Summationen eindeutig lokalisiert und zwei Kalium-atomen sowie zwei H2O Molekülen, jeweils mit einem Besetzungsfaktor von 1/6, zugeschrieben. Für die Kanalatome konnte ein möglicher Ordnungszustand (volle Besetzung) mit lokaler Symmetrie 1 und [6]-koordinierten Kaliumatomen abgeleitet werden.
Selenite des Zemannittyps: Kristallstrukturen von K2[Co2(SeO3)3] - 2H2O und K2[Ni2(SeO3)3]-2H2O

Dedicated to Prof. Dr. Josef Zemann at the occasion of his 70th birthday

With 2 Figures  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):3077-3085
The effect of temperature on the adsorption of H+ onto corundum was investigated experimentally by conducting potentiometric titrations at 25, 30, 40, 50, 60 and 70°C. These titrations were used to determine apparent acidity constants, given by the product of an intrinsic adsorption constant and a coulombic term (Kiapp = Kiinte(−ΔZFΨ/RT)) at the above temperatures.First and second intrinsic acidity constants were determined using a constant capacitance model (CCM). These constants and the point of zero charge change linearly with inverse temperature. These data were used to determine thermodynamic constants for the proton adsorption reactions.In the coulombic term, only the capacitance and the surface charge change with temperature and both were determined with the titration data at the various temperatures. Results show that the change in capacitance can be predicted with changes in the dielectric constant of water with increasing temperature. At a given pH, changes in the surface charge with temperature can, in turn, be predicted with a linear regression.With the above model, apparent acidity constants of corundum (including the chemical and electrostatic interactions) can be predicted for any temperatures between 25 and 70°C and possibly higher. These apparent constants change over several orders of magnitude in this temperature range (mainly due to a change in the coulombic term) and small temperature changes could have a strong influence on the stability of surface complexes.  相似文献   

17.
Geology of Ore Deposits - CuMo3O10⋅H2O crystals have been obtained by hydrothermal synthesis as a result of reaction between (NH4)6Mo2O24⋅4H2O and Cu(CH3COO)2 at 220°C for 7 days....  相似文献   

18.
This study describes the adsorption features of cadmium on Fe2O3 and MnO2 in alkaline saline conditions. The adsorption reached equilibrium in 6 hours under alkaline conditions. The absorption of cadmium on Fe2O3 and MnO2 was consistent with Freundlich absorption isotherms, and the corresponding adsorption capacities were 16.3 and 16.7 mg·g-1, respectively. Moreover, the adsorption quantity of cadmium on Fe2O3 and MnO2 rose with increasing pH from acidic to neutral, and reached the maximum at pH= 9. The coexisting chlorides reduced the adsorption capacity of Fe2O3 and MnO2. The influence intensities of different cations follow the order of CaCl2>>KCl>NaCl. However, the influence of sodium salts on the capacities of Fe2O3 and MnO2 to adsorb cadmium appeared more complicated: the relatively low concentrations of sodium salts could reduce the adsorption capacity; with increasing concentrations of sodium salts, e.g. NaCl and NaNO3. The adsorption capacity decreased continually. Moreover, due to the competition adsorption and precipitation effects, the adsorption capabilities of Na2CO3, NaH2PO4 and Na2HSO4 could also be reduced and cadmium concentrations in the solution were reduced as well.  相似文献   

19.
Experiments ranging from 2 to 3 GPa and 800 to 1300 °C and at 0.15 GPa and 770 °C were performed to investigate the stability and mutual solubility of the K2ZrSi3O9 (wadeite) and K2TiSi3O9 cyclosilicates under upper mantle conditions. The K2ZrSi3O9–K2TiSi3O9 join exhibits complete miscibility in the P–T interval investigated. With increasing degree of melting the solid solution becomes progressively enriched in Zr, indicating that K2ZrSi3O9 is the more refractory end member. At 2 GPa, in the more complex K2ZrSi3O9–K2TiSi3O9–K2Mg6Al2Si6O20(OH)4 system, the presence of phlogopite clearly limits the extent of solid solution of the cyclosilicate to more Zr-rich compositions [Zr/(Zr + Ti) > 0.85], comparable to wadeite found in nature, with TiO2 partitioning strongly into the coexisting mica and/or liquid. However, at 1200 °C, with increasing pressure from 2 to 3 GPa, the partitioning behaviour of TiO2 changes in favour of the cyclosilicate, with Zr/(Zr + Ti) of the K2(Zr,Ti)Si3O9 phase decreasing from ∼0.9 to ∼0.6. The variation in the Ti content of the coexisting phlogopite is related to its degree of melting to forsterite and liquid, following the major substitution VITi+VI□=2VIMg. Received: 26 January 1999 / Accepted: 10 January 2000  相似文献   

20.
《Applied Geochemistry》2002,17(10):1305-1312
The effect of different drying conditions on the stability of NaNd(CO3)·6H2O and NaEu(CO3)·6H2O and the identity of the decomposition product have been investigated. The rate of decomposition and the nature of the altered phases are dependant on the drying conditions used. When the phases are oven dried at 120 °C, the decomposition is immediate and the phase completely alters to Nd2(CO3)3 or Eu2(CO3)3 respectively. Under less severe drying conditions, the Na rare earth carbonate phases alter to Nd2(CO3)3·8H2O and Eu2(CO3)3·8H2O over a period of 24–48 h, but they can be kept indefinitely in a water saturated environment. The implications for using Nd and Eu as actinide analogues are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号