首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Pindos ophiolite complex, located in the northwestern part of continental Greece, hosts various chromite deposits of both metallurgical (high-Cr) and refractory (high-Al) type. The Pefki chromitites are banded and sub-concordant to the surrounding serpentinized dunites. The Cr# [Cr/(Cr?+?Al)] of magnesiochromite varies between 0.75 and 0.79. The total PGE grade ranges from 105.9 up to 300.0?ppb. IPGE are higher than PPGE, typical of mantle hosted ophiolitic chromitites. The PGM assemblage in chromitites comprises anduoite, ruarsite, laurite, irarsite, sperrylite, hollingworthite, Os-Ru-Ir alloys including osmium and rutheniridosmine, Ru-bearing oxides, braggite, paolovite, platarsite, cooperite, vysotskite, and palladodymite. Iridarsenite and omeiite were also observed as exsolutions in other PGM. Rare electrum and native Ag are recovered in concentrates. This PGM assemblage is of great petrogenetic importance because it is significantly different from that commonly observed in podiform mantle-hosted and banded crustal-hosted ophiolitic chromitites. PGE chalcogenides of As and S are primary, and possibly crystallized directly from a progressively enriched in As boninitic melt before or during magnesiochromite precipitation. The presence of Ru-bearing oxides implies simultaneous desulfurization and dearsenication processes. Chemically zoned laurite and composite paolovite-electrum intergrowths are indicative of the relatively high mobility of certain PGE at low temperatures under locally oxidizing conditions. The PGM assemblage and chemistry, in conjunction with geological and petrologic data of the studied chromitites, indicate that it is characteristic of chromitites found within or close to the petrologic Moho. Furthermore, the strikingly different PGM assemblages between the high-Cr chromitites within the Pindos massif is suggestive of non-homogeneous group of ores.  相似文献   

2.
1 Introduction The association of massive Fe-Ni-Cu sulfides andchromite is a very unusual feature of podiformchromitites occurring in mantle tectonites of ophioliticcomplexes. It has only been described in theSoutheastern Desert, Egypt, where sulfides a…  相似文献   

3.
The Degdekan and Gol’tsovsky gold-quartz deposits are located in the southeastern Yana-Kolyma gold belt. The orebodies occur as quartz veins hosted in metaterrigenous rocks and cut by postmineral basic-intermediate dikes. It was established that metamorphism of sulfides and gangue quartz was restricted to a few centimeters off the dike contact. According to sulfide geothermometers, the metamorphic temperatures close to the contact of dikes attained 700°C at the Degdekan deposit and were no higher than 491°C at the Gol’tsovsky deposit. The formation of the forbidden assemblage of quartz and loellingite and its fine-grained texture indicate that the thermal effect on the Degdekan ore was short-term. The prolonged heating of the ore at the Gol’tsovsky deposit gave rise to the aggradation recrystallization of quartz and the formation of equilibrium sulfide aggregates that show only insignificant differences in composition from the primary phases. The average homogenization temperature of primary and pseudosecondary fluid inclusions is 206 ± 40°C in the unmetamorphosed veins and 257 ± 33°C in the metamorphosed veins. The salinity of fluids in the primary and pseudosecondary inclusions in quartz veins of both types varies from 0.5 to 14.0 wt % NaCl equiv. The melting temperature of liquid CO2 in the carbon dioxide inclusions, ranging from ?57.0 to ?60.8°C, suggests an admixture of CH4 and/or N2. The unmetamorphosed quartz veins were formed at a fluid pressure varying from 0.7 to 1.3 kbar, while quartz veins at the contact with dikes crystallized at a pressure of 0.8–1.5 kbar. The results of gas chromatography showed the presence of CO2 and H2O, as well as N2 and CH4. The average bulk of volatiles contained in the fluid inclusions in quartz from the metamorphosed veins is 1.5–2 times lower than in the unmetamorphosed veins; this proportion is consistent with the occurrence of decrepitated gas inclusions in the heated quartz.  相似文献   

4.
黄阳  邓浩 《地球科学》2020,45(12):4604-4616
铬铁矿矿物包裹体可以记录其成岩成矿时物理化学条件(温度、压力等)、化学成分演化、熔/流体富集活动规律等关键信息.然而传统的二维分析方法无法全面获取形态微小、成分复杂的包裹体信息.通过聚焦离子束-透射电镜(FIB-TEM)联用对华北克拉通遵化豆荚状铬铁矿中矿物包裹体进行观察测试,在三维空间上发现包裹体的矿物种类丰富(硅酸盐、铂族、碳酸盐等),矿物形态复杂多变,且包裹体矿物中发育位错、部分开放晶界/相界、熔流体痕迹等显微-超显微结构.因此综合矿物种类、形态、显微结构等信息推断遵化铬铁矿具有复杂的形成条件和演化过程.   相似文献   

5.
The study focuses on analysis of primary and secondary fluid inclusions present in quartz veins hosted in the phyllites to explore the stress and temperature conditions at the time of formation of metasediment sequences of the of Parsoi Formation, central India. The results reveal the two-phase liquid-rich fluid inclusions that indicate that the intrusions of quartz veins in phyllite may have taken place between the temperature from 168.8°C to 256.3°C with an average of 205.55°C from a magmatic moderately saline fluid (3.7 to 18.29 wt. % NaCl equiv.). The final ice-melting temperatures ranges from -14.6°C to -2.2°C which indicate that the aqueous fluids are mainly H2O-NaCl. The density distribution of fluid inclusions rich in liquid H2O only are unimodel and low in natures and appears to be entrapped between pressure 1.666 to 2.125 kbar at depth of 200m. The study supports epithermal nature of fluid inclusions. The characteristic of fluid inclusions along with lithological and structural peculiarities, nature of structural features may be helpful in exploring the future potential zone of gold mineralization in similar types of area.  相似文献   

6.
似层状铬铁矿床长期以来被认为是岩浆分异成因,但近年来有学者提出其中个别产在蛇绿岩中。本文选择北京放马峪似层状铬铁矿床中纯橄岩、辉橄岩和辉石岩中不同类型的含铬尖晶石进行了电子探针分析。研究表明,岩浆早期的纯橄岩和辉橄岩中的铬尖晶石富铬(Cr2O3平均43.32%),而岩浆晚期辉石的结晶消耗了大量Cr3+,由于氧逸度的升高,在辉石岩的单斜辉石中出溶贫铬的铬磁铁矿(Cr2O3平均10.32%)和富铝尖晶石(Cr2O3平均15.77%)。与世界上不同类型铬尖晶石的矿物化学特征进行对比,可以认为放马峪铬铁矿床是产在阿拉斯加型岩体中的早期岩浆矿床,而与蛇绿岩无关。本文对放马峪铬铁矿床成因和成矿专属性的限定,为这类镁铁-超镁铁岩体的铬、铜镍、铂族元素的找矿勘查提供了依据。  相似文献   

7.
维拉斯托铅锌矿床发育在大兴安岭南段西坡成矿带内。矿区出露的岩浆岩主要为石英闪长岩、花岗闪长岩以及碱性花岗岩等;矿体严格受断裂构造控制,属典型的热液脉型矿床。矿床的热液期可划分为3个阶段:Ⅰ石英-毒砂-黄铁矿阶段、Ⅱ多金属硫化物-石英阶段和Ⅲ石英-碳酸盐阶段。流体包裹体研究表明,维拉斯托矿床矿石主要发育气液两相、富CH_4以及含CH_4-CO_2的包裹体。Ⅰ阶段3种类型包裹体均发育,Ⅱ阶段以气液两相和含CH_4-CO_2的包裹体为主,Ⅲ阶段仅发育气液两相包裹体。Ⅰ阶段包裹体均一温度范围为243.1℃~398.5℃,盐度为4.8%~12%NaCleqv;Ⅱ阶段均一温度为190.0℃~331.1℃,盐度为3.5%~9.1%NaCleqv;Ⅲ阶段均一温度范围为180.0℃~240.0℃,盐度范围为3.7%~6.7%NaCleqv,显示成矿流体具有中温、低盐度和低密度的特点;激光拉曼光谱分析包裹体气相成分主要为CO_2、CH_4和H_2O。氢、氧同位素分析结果表明成矿流体具有岩浆水和大气降水的混合特征;硫同位素结果显示成矿物质具有深源的特点。综合分析认为,矿床的形成与燕山期中酸性岩浆活动密切相关,深部岩浆在上升过程中与下渗的大气降水发生混合,导致矿物质在近东西向的"S"型压扭性断裂中沉淀并富集成矿。  相似文献   

8.
As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam–scanning electron microscope (FIB–SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ±0.4°. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80°C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond–chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies.  相似文献   

9.
The high-K and high-Mg Panozero central-type intrusion is located on the shore of Lake Segozero, Central Karelia, and has an age of 2737 ± 10 Ma. Detailed mapping and petrological study showed that it was formed in three magmatic cycles that were separated by lamprophyre dikes. The first cycle is composed mainly of mafic rocks (layered complex: pyroxenites-honblendites-monzogabbro) and monzonites 1; the second cycle includes monzonites 2, and the third cycle comprises monzonites 3 and quartz monzonites. The massif is cut by numerous lamprophyre dikes and breccia zones. As compared to calc-alkaline series, the studied rocks are enriched in K, Ba, Sr, P, LREE, have high mg# (mg# = 0.5–0.65), and elevated contents of Cr and Ni. The parent composition of the layered complex was determined to be monzogabbro. Model calculations showed that the compositional variations of the Panozero Complex are consistent with the fractional crystallization of monzogabbro. The melts were fractionated in an intermediate chamber and during the flowing and crystallization of the magma. The parent melt of the intrusion was formed by the partial melting of mantle enriched in some LILE, LREE, and volatiles (CO2 and H2O). The volatile enrichment of the melt manifests itself in the mineral composition of the rocks, the presence of primary gas inclusions in apatite, and diverse structural features. The comparison of the rocks of the Panozero Massif with metasomatized mantle xenoliths in the variation diagrams for incompatible elements showed that the mantle source of the Panozero Complex was metasomatized by fluid consisting of H2O and CO2 of different origin.  相似文献   

10.
A great variety of platinum group mineral, sulfide and silicate inclusions in chrome spinel from Hochgrössen and Kraubath ultramafic massifs, and platinum group element contents of three different rock types have been investigated. Both ultramafic massifs are tectonically isolated bodies, variably serpentinized and metamorphosed (greenschist to lower amphibolite facies), and show ophiolitic geochemical affinities. The chromite from massive chromitites and disseminated in serpentinized dunites and serpentinites, exhibits compositional zonation as the result of alteration during serpentinization and metamorphism. Three distinctive alteration stages are indicated in the chrome-spinels from the Hochgrössen, whereas alteration is less significant in chromites from Kraubath: The core of chrome spinel represents the least altered part, surrounded by an inner rim characterized by slight compositional differences in Cr, Mn, Fe2+ and Al with respect to the core. The outer rim is formed by ferritchromite with a sharp boundary to the inner rim and shows a significant decrease of Al, Mg, Cr and increase of Fe2+, Fe3+ and Ni compared to the core. Two different groups of inclusions in chrome-spinel are present: the first group occurs within the chromite core, and comprises olivine, orthopyroxene, amphibole, sulfides and platinum-group minerals, i.e. dominated by Ru-Os-Ir-sulfides. The second group is formed by chlorite, serpentine, galena, pyrite, arsenopyrite, Pt-Pd-Rh-dominated sulfarsenides and sperrylite. In particular the abundance of Pt-Pd-Rh-sulfarsenides and arsenides is typical of both ultramafic massifs and is very unusual for chromitites from ophiolites. Morphology, paragenesis and chemical composition indicate a different origin for these two groups of inclusions. The first group is intimately related to the crystallisation of the chromite host. The second group of inclusions clearly displays a secondary formation during serpentinization and metamorphism, closely related to the alteration of chrome-spinel and the development of ferritchromite. The distribution patterns of the platinum group elements from massive chromitites, disseminated chrome-spinel bearing serpentinites and serpentinites exhibit variable enrichment of Rh, Pt and Pd, Rh, Pt for the Hochgrössen and Kraubath massifs, respectively. These results are in accordance with the occurrence and distribution of platinum-group mineral phases. A remobilisation of Pt, Pd, and Rh, together with Ni, Cu and possibly Fe as bisulfide and/or hydroxide complexes and deposition of metals by the reaction of the metal bearing hydrothermal fluid with chromite is proposed.  相似文献   

11.
碎屑岩储层中次生孔隙的发育主要为长石、岩屑及胶结物等的溶蚀,而溶蚀强度与流体成分密切相关。塔里木盆地满西地区从上奥陶统—石炭系不同层位、不同地区碎屑岩样品中包裹体的均一温度有差异,分为3个均一温度区间。包裹体流体绝大部分为不成熟氧化性、酸性流体;不同井区、不同层段、不同类型砂岩包裹体的阴离子浓度变化较大,石英加大边中含的包裹体总体阴离子组成单一,浓度低,而方解石胶结物、石英胶结物中包裹体组成复杂,浓度变化很大。储层物性与HCO-3、CO2-3、Cl-离子浓度变化大致呈正相关关系,而与NO-3、SO2-4离子浓度关系不明显,甚至有相反的变化趋势;研究区有3期油气运移。  相似文献   

12.
工准噶尔库布苏金矿床岩脉与金矿成因关系的研究   总被引:4,自引:2,他引:2  
高怀忠  孙华山 《岩石学报》2000,16(4):595-601
库布苏金矿床的三个金矿带均产于闪长玢岩和花岗闪长斑岩内。为了研究这些岩脉与金矿的成因关系,测定了含金石英脉中英流体包裹体均一温度、成分、盐度和H2O的氢氧同位素,分析了含英脉和相关脉岩及围岩的稀土元素及微量元素,发现石英流体包裹体属有较高的均一温度、低盐度、富CO2的还原性流体,其阳离子组合为Ca^2+〉Na^+〉K^+或Na^+〉K^+〉Mg^2+,阴离子组合属Cl^1〉SO4^2-〉F^-型,  相似文献   

13.
The Neoarchean (ca. 2.75 Ga) Luanga Complex, located in the Carajás Mineral Province in Brazil, is a medium-size layered intrusion consisting, from base to top, of ultramafic cumulates (Ultramafic Zone), interlayered ultramafic and mafic cumulates (Transition Zone) and mafic cumulates (Mafic Zone). Chromitite layers in the Luanga Complex occur in the upper portion of interlayered harzburgite and orthopyroxenite of the Transition Zone and associated with the lowermost norites of the Mafic Zone. The stratigraphic interval that hosts chromitites (∼150 meters thick) consists of several cyclic units interpreted as the result of successive influxes of primitive parental magma. The compositions of chromite in chromitites from the Transition Zone (Lower Group Chromitites) have distinctively higher Cr# (100Cr/(Cr + Al + Fe3+)) compared with chromite in chromitites from the Mafic Zone (Upper Group Chromitites). Chromitites hosted by noritic rocks are preceded by a thin layer of harzburgite located 15–20 cm below each chromitite layer. Lower Cr# in chromitites hosted by noritic rocks are interpreted as the result of increased Al2O3 activity caused by new magma influxes. Electron microprobe analyses on line transverses through 35 chromite crystals indicate that they are rimmed and/or extensively zoned. The composition of chromite in chromitites changes abruptly in the outer rim, becoming enriched in Fe3+ and Fe2+ at the expense of Mg, Cr, Al, thus moving toward the magnetite apex on the spinel prism. This outer rim, characterized by higher reflectance, is probably related to the metamorphic replacement of the primary mineralogy of the Luanga Complex. Zoned chromite crystals indicate an extensive exchange between divalent (Mg, Fe2+) cations and minor to none exchange between trivalent cations (Cr3+, Al3+ and Fe3+). This Mg-Fe zoning is interpreted as the result of subsolidus exchange of Fe2+ and Mg between chromite and coexisting silicates during slow cooling of the intrusion. A remarkable feature of chromitites from Luanga Complex is the occurrence of abundant silicate inclusions within chromite crystals. These inclusions show an adjacent inner rim with higher Cr# and lower Mg# (100 Mg/(Mg + Fe2+)) and Al# (100Al/(Cr + Al + Fe3+)). This compositional shift is possibly due to crystallization from a progressively more fractionated liquid trapped in the chromite crystal. Significant modification of primary cumulus composition of chromite, as indicated in our study for the Luanga Complex, is likely to be common in non-massive chromitites and the rule for disseminated chromites in mafic intrusions.  相似文献   

14.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

15.
镁铁- 超镁铁岩是揭示地幔物质组成和壳幔相互作用的重要窗口,也是Ni- Cu- PGE- Cr等金属矿产资源的重要载体。不同的镁铁- 超镁铁岩体赋矿特征明显不同:蛇绿岩以产出铬铁矿床为特征,阿拉斯加型岩体主要赋含铂族元素(PGE)矿床,大型层状岩体则可同时产出铬铁矿床、PGE矿床和Cu- Ni硫化物矿床。这种成矿差异显然与赋矿岩体形成的构造背景、母岩浆经历的岩浆演化过程有关,但缺少关键控制因素的研究。前人对上述不同种类矿床的研究工作主要集中于地幔源区的部分熔融、上升过程中或岩浆房内的围岩混染和结晶分异等岩浆过程,而极少关注流体作用。近年来,实验岩石学和岩石地球化学的研究均表明幔源岩浆演化过程中的流体活动可能对成矿元素的富集迁移起到至关重要的作用,同时这些成矿元素的赋存状态和分配系数也在不断更新。厘清Cr和PGE在熔体演化——尤其是流体出溶过程中的地球化学行为,刻画并揭示其迁移富集、分离和再富集的成矿过程及控制因素,已成为当前岩浆矿床研究的热点。本文围绕富水流体与铬铁矿和PGE成矿关系的科学问题,总结了不同镁铁- 超镁铁岩体的成矿差异以及铬铁矿和PGE矿床成矿过程中的流体活动记录,提出流体性质和组分对铬铁矿和PGE迁移富集的控制作用,强调有必要开展蛇绿岩、大型层状镁铁- 超镁铁岩体和阿拉斯加型岩体的对比研究。  相似文献   

16.
Summary Carbonate aggregates in Late Cretaceous lamprophyre dikes of the northeastern Transdanubian Central Range (TCR) in Northwest Hungary have been classified into three genetic groups. Type-I dolomite + calcite ± magnesite aggregates have petrographic and geochemical features similar to ocelli described by other workers. Fluid inclusions in Type-I aggregates homogenize between 77 and 204 °C and are of hydrothermal origin. Type-II aggregates are characterized by a polygonal shape and are mostly dolomite. Based on their shape and primary fluid inclusions which homogenize between 95 and 172 °C, these carbonate aggregates are interpreted to fill vugs produced by the dissolution of olivine phenocrysts. Type-III carbonate aggregates show an irregular to polygonal shape and distinct compositional zonation and contain secondary aqueous fluid inclusions. Homogenization temperatures of fluid inclusions are below 104 °C, and zonation patterns suggest partial recrystallization. These carbonate aggregates are most likely xenoliths and xenocrysts from the wall rocks of the lamprophyre melt conduits.  相似文献   

17.
蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据   总被引:1,自引:0,他引:1       下载免费PDF全文
铬铁矿作为蛇绿岩中的重要矿产,其成矿母岩浆性质及演化一直存在较大争议.铬铁矿的矿物包裹体同时或先于铬铁矿结晶,其成分和类别能很好地记录成矿母岩浆性质和演化过程.土耳其Pozant?-Karsant?蛇绿岩不同类型铬铁岩的铬铁矿中发现了多种类型包裹体:不含水硅酸盐矿物(如橄榄石和单斜辉石)、含水硅酸盐矿物(如角闪石和金云母)、复合型矿物包裹体(如蛇纹石、硅灰石和单斜辉石的复合型包裹体)和不常见矿物(如磷灰石、铂族元素硫化物).含水矿物包裹体的出现以及矿物的高Mg#特征(如橄榄石Fo=95.4~97.1;单斜辉石Mg#=92.0~99.9;角闪石Mg#=88.9~99.8)表明结晶铬铁矿的母岩浆具有富水、富Mg的特征.同时,除钙铬榴石和磷灰石的包裹体外,在铬铁矿中首次发现富Ca矿物方解石和硅灰石,其中方解石和菱镁矿以复合型包裹体形式产出,硅灰石则分布于蛇纹石矿物包裹体中.这些富Ca矿物的出现以及硅酸盐矿物的高CaO含量均揭示了铬铁岩母岩浆的富Ca特征.母岩浆中的Ca组分可能来源于俯冲板块中富Ca岩石/矿物的部分熔融,Ca离子的大量出现使得Cr3+在熔体中更加稳定,同时富Ca矿物的结晶促进了岩浆中Cr的进一步富集而利于铬铁矿的大量结晶沉淀.   相似文献   

18.
山东昌乐第三纪玄武岩中产有刚玉巨晶,内含丰富的原生和假次生流体包裹体和熔融包裹体。流体包裹体可分为CO2单相包裹体、H2O-CO2两相和三相包裹体。熔融包裹体类型复杂,其中富流体相包裹体可分为含CO2收缩气泡两相熔融包裹体和气-液-固多相熔融包裹体。诸类包裹体主要赋含在刚玉晶核外的“主体”部分,以CO2单相流体包裹体和两相熔融包裹体最为发育,并且不同类型包裹体常密切伴生,表明它们形成时流体发生了不混溶作用:出现熔浆相(富含挥发分)、气相(CO2为主)和富水相(H2O-CO2为主)等多相体系。激光拉曼分析结果显示,各类包裹体中的气体组分主要是CO2,另有不等量的N2和H2S,据此划分为纯CO2、CO2-N2、CO2-H2S和CO2-N2-H2S等气体组合类型,没有发现O2、CH4和H2等组分。此外,拉曼分析也证实了流体包裹体和熔融包裹体中存在H2O。上述资料表明,昌乐地区深部流体以CO2为主,同时包含H2O、N2和H2S在内的多种组分,这些流体组分也是刚玉母浆系统的重要成分。  相似文献   

19.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   

20.
黑龙江省铜山斑岩铜矿床流体包裹体研究   总被引:14,自引:4,他引:10  
武广  刘军  钟伟  朱明田  糜梅  万秋 《岩石学报》2009,25(11):2995-3006
铜山大型铜矿床位于小兴安岭西北部,是中亚-兴蒙造山带北东段最著名的斑岩型铜矿床之一,矿体产于加里东期花岗闪长岩和中奥陶世多宝山组安山岩、凝灰岩中,铜矿化与硅化-绢云母化关系密切.流体包裹体研究表明,铜山铜矿床主要发育气液两相包裹体、含CO_2包裹体和含子矿物多相包裹体.成矿流体在形成过程中经历了早、中、晚3个阶段的演化.成矿早阶段发育气液两相水溶液包裹体和少量含子矿物多相包裹体,均一温度介于420℃~>5500C之间,流体盐度介于13.72 wt%~59.76 wt%NaCl eqv之间;中阶段为铜山矿床的主成矿阶段,发育气液两相水溶液包裹体和含CO_2包裹体,均一温度为241℃~417℃,流体盐度介于2.96 wt%~14.04 wt%NaCl eqv之间,主成矿期成矿流体总体上属H_2O-CO_2-NaCl体系;晚阶段仅发育气液两相水溶液包裹体,均一温度为122℃~218℃,盐度介于3.71 wt%~15.96 wt%NaCl eqv之间,表明晚阶段有大气降水的混入.成矿早、中阶段的流体均为不混溶流体,流体沸腾作用是金属硫化物大量沉淀的主要机制.铜山矿床形成于陆缘弧环境.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号