首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 105 毫秒
1.
鲁西大井头地区自然重砂中的金刚石及其找矿指示矿物发现已久,然而找矿工作尚未能取得实质性突破。本文从金刚石找矿指示矿物角度入手,在研究该地区指示矿物晶体形貌特征和化学成分特征的基础上,通过对比大井头地区自然重砂与大井头岩体中的指示矿物特征、大井头地区与其它地区金伯利岩、钾镁煌斑岩中的指示矿物特征后得出:大井头地区既存在金刚石指示矿物,又含有金刚石母岩指示矿物,是鲁西金刚石找矿的有利地区;第四系自然重砂中的指示矿物类型和所占比重与大井头岩体较为一致,认为第四系中的指示矿物由大井头岩体供源;大井头岩体含有较大比重的榴辉岩相指示矿物,如G4组镁铝- 铁铝榴石和绿辉石,且其中金刚石多为Ib型,表现出与蒙阴地区金刚石原生矿不同的特征,认为大井头岩体为穿越金刚石生成区边部、并携带了其中特征性矿物成分的钾镁煌斑岩。结合大井头周边地区发现的三处重砂矿物异常和多个可疑岩体,依据钾镁煌斑岩集群分布的特点,认为大井头及周边地区是新区、新类型金刚石找矿的优质靶区,建议今后找矿方向和工作重点向钾镁煌斑岩型金刚石原生矿转移。  相似文献   

2.
大井头岩体为郯庐断裂带西侧首个发现的含金刚石钾镁煌斑岩。笔者对其中的金刚石进行了激光拉曼和傅里叶可变红外光谱研究。其激光拉曼和红外光谱特征研究表明,测试的6颗金刚石可分为1a型和Ⅰb型2类,部分Ⅰb型金刚石叠加有Ⅰa型金刚石所特有的1 175cm-1或1 182cm-1吸收谱峰。根据测试金刚石的外貌特征和Ⅰb型初生金刚石向1a型金刚石转换的机制,认为大井头钾镁煌斑岩中的金刚石并非岩浆结晶成因,而是金刚石于地幔中率先形成,其后被超深源岩浆携带至地表,应属地幔捕掳晶成因。结合大井头地区优越的构造地质条件、金刚石重砂矿物异常及多处钾质超基性岩、火山角砾岩体的出露,认为该地区有望成为鲁西地区第四金刚石原生矿带。  相似文献   

3.
山东平邑大井头地区金刚石与伴生矿物来源的新认识   总被引:1,自引:0,他引:1  
在山东省平邑县大井头地区进行金刚石原生矿普查时选获大量金刚石及伴生矿物,且分布范围较小,铬铁矿异常属于致矿异常,金刚石及伴生矿物并非来自已知的金刚石原生矿区.通过对大井头地区大量资料的深入研究,认为该地区具有金刚石成矿的地质条件,存在金刚石的原生矿物,并对原生矿及相关岩石的赋存状态提出新的认识.  相似文献   

4.
辽宁省金自然重砂异常在区域上区带性分布特征明显,在空间分布上划分6个区带.它们受较大规模的构造、赋矿地层、构造岩浆岩带等条件控制.自然重砂异常的形成受控于地质条件、矿物本身的物理化学性质,并与地形、地貌、水文等自然条件有关,但最重要的影响因素是金矿床的空间分布.重砂异常在空间上与原生矿体或含矿岩体密切相关,远较原生矿或含矿岩体范围大.可以利用重砂异常评定一个区域的含矿性和成矿特征,指导找原生矿和砂矿.  相似文献   

5.
董钟斗 《安徽地质》2021,31(1):14-18,22
安徽宿州栏杆地区含金刚石的岩体是通过验证地磁异常而发现的.该地区钻孔资料显示含金刚石岩体均为基性辉绿岩,但含矿层与磁异常并非完全一一对应.文章结合钻孔与磁测资料就含金刚石岩体与磁异常的关系进行了分析,认为通过磁异常找矿是该区寻找金刚石的有效途径,但同时应注意对非磁性含金刚石岩体的研究.  相似文献   

6.
杨光忠 《地质论评》2018,64(2):450-456
本文根据贵定平伐地区水系砂矿金刚石和泥盆系碎屑岩金刚石信息,结合黔东钾镁煌斑岩乃至华北地台金刚石成矿于奥陶纪(末)的时间域,贵州地史演化特征和此时都匀运动的地质构造格架,综合分析认为,仍处海相沉积建造进程中的黔东有一系列(含金刚石)钾镁煌斑岩侵入,作为上扬子地台中相对刚性的黔中隆起块体,应更利于钾镁煌斑岩型甚至金伯利岩型金刚石的成矿,贵定平伐泥盆系碎屑岩金刚石或许就是来源于黔中隆起区原生金刚石矿的剥蚀扩散补给,并因此相伴形成碎屑岩区水系砂矿金刚石及其指示矿物的重砂异常。  相似文献   

7.
贵州东南部含金刚石钾镁煌斑岩找矿远景区预测   总被引:3,自引:0,他引:3  
王亮 《地质与勘探》2012,48(4):775-783
[摘 要]钾镁煌斑岩是金刚石的成矿母岩、组成岩筒的基本物质。基于区内区域重磁异常分布特征,以北部镇远马坪及周边县域(施秉、三穗、雷山、剑河、麻江)出露的钾镁煌斑岩和南部从江一带镶嵌的基性-超基性岩为线索及岩体露头上的重磁场异常特征响应值为标尺,与地表出现的金刚石原生矿、砂矿、指示矿物、重砂异常分布为依据,圈定了数个基性-超基性岩体(带),结合物探资料推断的岩浆岩带、火山机构、板块结合带、深大断裂带以及地质矿产资料,共划分了6 个金刚石找矿远景区。预测在台江-剑河-锦屏-黎平一线,出现的1 处大型重磁(航磁环状异常)正异常分布区为区内金刚石找矿的重要靶区和找到具有工业价值金刚石原生矿的重点突破口,这里(G3 异常区)极有可能是破解贵州原生金刚石找矿瓶颈的福地,是揭示金刚石矿床赋矿岩筒神秘面纱的有利地段。  相似文献   

8.
童潜明 《湖南地质》1996,15(1):5-11
沅水流域分布4个金刚石砂矿床,供给金刚石砂矿的含金刚石岩体具多期多源特点。该流域前白垩系暴露区的含金刚石岩体在第三纪末和第四纪初遭受强烈剥蚀保存较好的含金刚石岩体可能隐伏在沅麻、常桃盆地红层及洞庭湖区第四系之下,这些地区应成为原生金刚石找矿远景区,因此要采用新的找矿手段和方法。  相似文献   

9.
山东费县大井头地区金刚石原生矿找矿前景探讨   总被引:1,自引:0,他引:1  
山东费县大井头地区第四系中金刚石及其指示矿物分布异常丰富,并且具有较高的集中度;该区的加里东期超基性火山碎屑岩、沉火山碎屑岩及其他一些岩石中均有金刚石和(或)指示矿物存在;该地区的铬铁矿异常属于矿致异常。研究证明该区第四系中金刚石指示矿物与当地的相关岩体关系密切;加里东期超基性火山碎屑岩某些特征与火山口相金伯利岩十分相似。大井头地区所处的构造位置有利于金刚石成矿,具有良好的找矿前景,值得进一步研究探索。  相似文献   

10.
诸多迹象表明,敖市金刚石异常为一浓集异常,且叠加在一辉石重砂异常之上,显示出强烈的近源补给特征,其补给源极有可能是具工业价值的金刚石原生矿.鉴于湘黔金刚石成矿区内已知的含金刚石钾镁煌斑岩及其相关岩体的同位素年龄值均在375~475 Ma范围,其成矿期显然属加里东晚期,而紧邻敖市异常尚有后加里东盖层残留,作为幔源火山作用...  相似文献   

11.
The enigmatic appearance of cuboctahedral diamonds in ophiolitic and arc volcanic rocks with morphology and infrared characteristics similar to synthetic diamonds that were grown from metal solvent requires a critical reappraisal. We have studied 15 diamond crystals and fragments from Tolbachik volcano lava flows, using Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), synchrotron X-ray fluorescence (SRXRF) and laser ablation inductively coupled plasma mass-spectrometry (LA-ICP-MS). FTIR spectra of Tolbachik diamonds correspond to typical type Ib patterns of synthetic diamonds. In TEM films prepared using focused ion beam technique, we find Mn-Ni and Mn-Si inclusions in Tolbachik diamonds. SRXRF spectra indicate the presence of Fe-Ni and Fe-Ni-Mn inclusions with Cr, Ti, Cu, and Zn impurities. LA-ICP-MS data show variable but significantly elevated concentrations of Mn, Fe, Ni, and Cu reaching up to 70 ppm. These transition metal concentration levels are comparable with those determined by LA-ICP-MS for similar diamonds from Tibetan ophiolites. Mn-Ni (+Fe) solvent was widely used to produce industrial synthetic diamonds in the former USSR and Russia with very similar proportions of these metals. Hence, it appears highly probable that the cuboctahedral diamonds recovered from Kamchatka arc volcanic rocks represent contamination and are likely derived from drilling tools or other hard instruments. Kinetic data on diamond dissolution in basaltic magma or in fluid phase demonstrate that diamond does not form under the pressures and temperature conditions prevalent within the magmatic system beneath the modern-day Klyuchevskoy group of arc volcanoes. We also considered reference data for inclusions in ophiolitic diamonds and compared them with the composition of solvent used in industrial diamond synthesis in China. The similar inclusion chemistry close to Ni70Mn25Co5 for ophiolitic and synthetic Chinese diamonds scrutinized here suggests that most diamonds recovered from Tibetan and other ophiolites are not natural but instead have a synthetic origin. In order to mitigate further dubious reports of diamonds from unconventional tectonic settings and source rocks, we propose a set of discrimination criteria to better distinguish natural cuboctahedral diamonds from those produced synthetically in industrial environments and found as contaminants in mantle- and crust-derived rocks.  相似文献   

12.
连东洋  杨经绥  刘飞  吴魏伟 《地球科学》2019,44(10):3409-3453
金刚石由于其独特的物理化学性质,在经济生产与科学研究中均具有重要价值.金刚石形成于地球大于150 km的深度范围内,是人类可以获得的来自地球深部地幔乃至核幔边界的最直接的样品,因此可以为研究地球深部物质组成和物理化学条件提供重要的素材.金刚石由碳元素组成,还含有微量的杂质元素(如氮、硼、氢、氧等),其中氮和硼元素对于划分金刚石的晶体结构类型发挥着重要的作用.根据金刚石的产出类型,金刚石可以划分为幔源型、超高压变质型、陨石相关型以及蛇绿岩型金刚石.全球约百分之一的幔源型金刚石含有包裹体,对这些包裹体的研究显示,金刚石主要来源于地球150~200 km深度的岩石圈地幔.这些含有包裹体的金刚石中,仅有1%的金刚石来自于地球深部的软流圈、地幔过渡带、下地幔、甚至核幔边界.我国的金刚石产出类型多样,但是,目前仅山东蒙阴、辽宁复县的金伯利岩矿床以及湖南沅水的砂矿具有经济价值.蛇绿岩型金刚石是近年来金刚石研究领域取得的重要进展,该类型金刚石分布在全球多个造山带不同时代、不同构造属性的蛇绿岩地幔橄榄岩和铬铁矿中,被认为是一种新的金刚石的产出类型.相对于其他国家和地区的金刚石的研究,我国的金刚石领域的研究程度相对较低,缺乏对金刚石结构、化学组成以及包裹体组成的系统研究,制约了对我国金刚石成因的认识,限制了我国的金刚石的找矿工作.因此,亟需结合先进的分析手段对我国的金刚石及其围岩做进一步的研究,以期揭示金刚石的形成过程,为金刚石的找矿提供理论基础.   相似文献   

13.
The origin of diamonds in the lava and ash of the recent Tolbachik eruption of 2012–2013 (Kamchatka) is enigmatic. The mineralogy of the host rocks provides no evidence for the existence of the high pressure that is necessary for diamond formation. The analysis of carbon isotope systematics showed a similarity between the diamonds and dispersed carbon from the Tolbachik lava, which could serve as a primary material for diamond synthesis. There are grounds to believe that the formation of Tolbachik diamonds was related to fluid dynamics. Based on the obtained results, it was suggested that Tolbachik microdiamonds were formed as a result of cavitation during the rapid movement of volcanic fluid. The possibility of cavitation-induced diamond formation was previously theoretically substantiated by us and confirmed experimentally. During cavitation, ultrahigh pressure is generated locally (in collapsing bubbles), while the external pressure is not critical for diamond synthesis. The conditions of the occurrence of cavitation are rather common in geologic processes. Therefore, microdiamonds of such an origin may be much more abundant in nature than was supposed previously.  相似文献   

14.
A suite of 80 macrodiamonds recovered from volcaniclastic breccia of Wawa (southern Ontario) was characterized on the basis of morphology, nitrogen content and aggregation, cathodoluminescence (CL), and mineral inclusions. The host calc-alkaline lamprophyric breccias were emplaced at 2.68–2.74 Ga, contemporaneously with voluminous bimodal volcanism of the Michipicoten greenstone belt. The studied suite of diamonds differs from the vast majority of diamond suites found worldwide. First, the suite is hosted by calc-alkaline lamprophyric volcanics rather than by kimberlite or lamproite. Second, the host volcanic rock is amongst the oldest known diamondiferous rocks on Earth, and has experienced regional metamorphism and deformation. Finally, most diamonds show yellow-orange-red CL and contain mineral inclusions not in equilibrium with each other or their host diamond. The majority of the diamonds in the Wawa suite are colorless, weakly resorbed, octahedral single crystals and aggregates. The diamonds contain 0–740 ppm N and show two modes of N aggregation at 0–30 and 60–95% B-centers suggesting mantle storage at 1,100–1,170°C. Cathodoluminescence and FTIR spectroscopy shows that emission peaks present in orange CL stones do not likely result from irradiation or single substitutional N, in contrast to other diamonds with red CL. The diamonds contain primary inclusions of olivine (Fo92 and Fo89), omphacite, orthopyroxene (En93), pentlandite, albite, and An-rich plagioclase. These peridotitic and eclogitic minerals are commonly found within single diamonds in a mixed paragenesis which also combines shallow and deep phases. This apparent disequilibrium can be explained by effective small-scale mixing of subducted oceanic crust and mantle rocks in fast “cold” plumes ascending from the top of the slabs in convergent margins. Alternatively, the diamonds could have formed in the pre-2.7–2.9 Ga cratonic mantle and experienced subsequent alteration of syngenetic inclusions related to host magmatism and ensuing metamorphism. Neither orogenic nor cratonic model of the diamond origin fully explains all of the observed characteristics of the diamonds and their host rocks. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
The Akluilak dike is a narrow lamprophyre intrusion of ultrapotassic composition that has yielded a large content of diamonds; it is the first multidiamond occurrence noted from the central Churchill Province. Xenocrysts of apatite containing monazite have been dated at 1832 ± 28 Ma, thus confirming the correlation with Christopher Island Formation volcanic and intrusive rocks. Only 1 or 2 diamonds per 1000 are greater than 0.5 mm, and the majority are less than 0.075 mm. They occur primarily as octahedra and tetrahexahedroids, but cubes, macles, aggregates, and fragments also are present. Their occurrence points to the presence of a “mantleroot-friendly” lithosphere, and confirms the “highly diamond prospective” nature of the area suggested by previous studies.  相似文献   

16.
S.H. Richardson  S.B. Shirey  J.W. Harris   《Lithos》2004,77(1-4):143-154
Major element and Re–Os isotope analysis of single sulfide inclusions in diamonds from the 240 Ma Jwaneng kimberlite has revealed the presence of at least two generations of eclogitic diamonds at this locality, one Proterozoic (ca. 1.5 Ga) and the other late Archean (ca. 2.9 Ga). The former generation is considered to be the same as that of eclogitic garnet and clinopyroxene inclusion bearing diamonds from Jwaneng with a Sm–Nd isochron age of 1.54 Ga. The latter is coeval with the 2.89 Ga subduction-related generation of eclogitic sulfide inclusion bearing diamonds from Kimberley formed during amalgamation of the western and eastern Kaapvaal craton near the Colesberg magnetic lineament.

The Kimberley, Jwaneng, and Premier kimberlites are key localities for characterizing the relationship between episodic diamond genesis and Kaapvaal craton evolution. Kimberley has 3.2 Ga harzburgitic diamonds associated with creation of the western Kaapvaal cratonic nucleus, and 2.9 Ga eclogitic diamonds resulting from its accretion to the eastern Kaapvaal. Jwaneng has two main eclogitic diamond generations (2.9 and 1.5 Ga) reflecting both stabilization and subsequent modification of the craton. Premier has 1.9 Ga lherzolitic diamonds that postdate Bushveld–Molopo magmatism (but whose precursors have Archean Sm–Nd model ages), as well as 1.2 Ga eclogitic diamonds. Thus, Jwaneng provides the overlap between the dominantly Archean vs. Proterozoic diamond formation evident in the Kimberley and Premier diamond suites, respectively. In addition, the 1.5 Ga Jwaneng eclogitic diamond generation is represented by both sulfide and silicate inclusions, allowing for characterization of secular trends in diamond type and composition. Results for Jwaneng and Kimberley eclogitic sulfides indicate that Ni- and Os-rich end members are more common in Archean diamonds compared to Proterozoic diamonds. Similarly, published data for Kimberley and Premier peridotitic silicates show that Ca-rich (lherzolitic) end members are more likely to be found in Proterozoic diamonds than Archean diamonds. Thus, the available diamond distribution, composition, and age data support a multistage process to create, stabilize, and modify Archean craton keels on a billion-year time scale and global basis.  相似文献   


17.
Magnesium-rich, calcium-poor, lilac coloured garnets have been found in the heavy mineral concentrate of the Finsch kimberlite pipe. Some of these garnets contain sufficient chromium to place them within the compositional field of the garnets previously only reported as inclusions in diamonds.These lilac garnets are considered to have formed in equilibrium with the minerals found as inclusions in diamond and hence with the diamond itself. Their presence in the kimberlite should be diagnostic of the presence of diamond, but it is not known if there is any quantitative relationship. The garnets are considered to have a deeper provenance than the magnesian garnets commonly found as xenocrysts in kimberlite and in garnet peridotite xenoliths. The mantle composition at their depths of origin must be more refractory in nature than the peridotite xenoliths. The garnets having a higher magnesium and chromium content, a higher Mg/Fe ratio and lower calcium, aluminium and titanium than those found in the xenoliths.  相似文献   

18.
Kimberlite-hosted diamond deposits of southern Africa: A review   总被引:4,自引:0,他引:4  
Following the discovery of diamonds in river deposits in central South Africa in the mid nineteenth century, it was at Kimberley where the volcanic origin of diamonds was first recognized. These volcanic rocks, that were named “kimberlite”, were to become the corner stone of the economic and industrial development of southern Africa. Following the discoveries at Kimberley, even more valuable deposits were discovered in South Africa and Botswana in particular, but also in Lesotho, Swaziland and Zimbabwe.A century of study of kimberlites, and the diamonds and other mantle-derived rocks they contain, has furthered the understanding of the processes that occurred within the sub-continental lithosphere and in particular the formation of diamonds. The formation of kimberlite-hosted diamond deposits is a long-lived and complex series of processes that first involved the growth of diamonds in the mantle, and later their removal and transport to the earth's surface by kimberlite magmas. Dating of inclusions in diamonds showed that diamond growth occurred several times over geological time. Many diamonds are of Archaean age and many of these are peridotitic in character, but suites of younger Proterozoic diamonds have also been recognized in various southern African mines. These younger ages correspond with ages of major tectono-thermal events that are recognized in crustal rocks of the sub-continent. Most of these diamonds had eclogitic, websteritic or lherzolitic protoliths.In southern Africa, kimberlite eruptions occurred as discrete events several times during the geological record, including the Early and Middle Proterozoic, the Cambrian, the Permian, the Jurassic and the Cretaceous. Apart from the Early Proterozoic (Kuruman) kimberlites, all of the other events have produced deposits that have been mined. It should however be noted that only about 1% of the kimberlites that have been discovered have been successfully exploited.In this paper, 34 kimberlite mines are reviewed with regard to their geology, mantle xenolith, xenocryst and diamond characteristics and production statistics. These mines vary greatly in size, grade and diamond-value, as well as in the proportions and types of mantle mineral suites that they contain. They include some of the world's richest mines, such as Jwaneng in Botswana, to mines that are both small and marginal, such as the Frank Smith Mine in South Africa. They include large diatremes such as Orapa and small dykes such as those mined at Bellsbank, Swartruggens and near Theunissen. These mines are all located on the Archaean Kalahari Craton, and it is apparent that the craton and its associated sub-continental lithosphere played an important role in providing the right environment for diamond growth and for the formation of the kimberlite magmas that were to transport them to the surface.  相似文献   

19.
新型广谱金刚石破碎岩石工具的研制   总被引:4,自引:0,他引:4       下载免费PDF全文
新型广谱金刚石钻头由钻头钢体和金刚石刀头组成。金刚石刀头由若干含金刚石孕镶层和纯合金层相间组成,该新型金刚石头破碎岩石是以金刚石破碎为主,以破碎穴效应为辅的方式进行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号