首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
全球多地蛇绿岩型地幔橄榄岩和铬铁矿中发现微粒金刚石,并在中国西藏南部和俄罗斯乌拉尔北部的蛇绿岩铬铁矿中发现原位产出的金刚石,认为是地球上金刚石的一种新的产出类型,不同于金伯利岩型金刚石和超高压变质型金刚石。它们与呈斯石英假象的柯石英、高压相的铬铁矿和青松矿等高压矿物以及碳硅石和单质矿物等强还原矿物伴生,指示蛇绿岩中的这些矿物组合形成于深度150~300 km或者更深的地幔。金刚石具有很轻的C同位素组成(δ13C-18‰~-28‰),并出现多种含Mn矿物和壳源成分包裹体。研究认为它们曾是早期深俯冲的地壳物质,达到>300 km深部地幔或地幔过渡带后,经历了熔融并产生新的流体,后者在上升过程中结晶成新的超高压、强还原矿物组合,通过地幔对流或地幔柱作用被带回到浅部地幔,由此建立了一个俯冲物质深地幔再循环的新模式。蛇绿岩型地幔橄榄岩和铬铁矿中发现金刚石等深部矿物,质疑了蛇绿岩铬铁矿形成于浅部地幔的已有认识,引发了一系列新的科学问题,提出了新的研究方向。   相似文献   

2.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   

3.
蛇绿岩型金刚石和铬铁矿深部成因   总被引:5,自引:0,他引:5  
地球上的原生金刚石主要有3种产出类型,分别来自大陆克拉通下的深部地幔金伯利岩型金刚石、板块边界深俯冲变质岩中超高压变质型金刚石,和陨石坑中的陨石撞击型金刚石。在全球5个造山带的10处蛇绿岩的地幔橄榄岩或铬铁矿中均发现金刚石和其他超高压矿物的基础上,我们提出地球上一种新的天然金刚石产出类型,命名为蛇绿岩型金刚石。认为蛇绿岩型金刚石普遍存在于大洋岩石圈的地幔橄榄岩中,并提出蛇绿岩型金刚石和铬铁矿的深部成因模式。认为早期俯冲的地壳物质到达地幔过渡带(410~660 km深度)后被肢解,加入到周围的强还原流体和熔体中,当熔融物质向上运移到地幔过渡带顶部,铬铁矿和周围的地幔岩石以及流体中的金刚石等深部矿物一并结晶,之后,携带金刚石的铬铁矿和地幔岩石被上涌的地幔柱带至浅部,经历了洋盆的拉张和俯冲阶段,最终在板块边缘就位。  相似文献   

4.
The origin of diamonds in the lava and ash of the recent Tolbachik eruption of 2012–2013 (Kamchatka) is enigmatic. The mineralogy of the host rocks provides no evidence for the existence of the high pressure that is necessary for diamond formation. The analysis of carbon isotope systematics showed a similarity between the diamonds and dispersed carbon from the Tolbachik lava, which could serve as a primary material for diamond synthesis. There are grounds to believe that the formation of Tolbachik diamonds was related to fluid dynamics. Based on the obtained results, it was suggested that Tolbachik microdiamonds were formed as a result of cavitation during the rapid movement of volcanic fluid. The possibility of cavitation-induced diamond formation was previously theoretically substantiated by us and confirmed experimentally. During cavitation, ultrahigh pressure is generated locally (in collapsing bubbles), while the external pressure is not critical for diamond synthesis. The conditions of the occurrence of cavitation are rather common in geologic processes. Therefore, microdiamonds of such an origin may be much more abundant in nature than was supposed previously.  相似文献   

5.
Mineral inclusions of corundum are reported from diamonds from alluvial deposits of tributaries of the Rio Aripuanã, Juina, Brazil. We present the first recorded occurrence of sapphire as an inclusion in diamond and expand on the database of ruby and white corundum inclusions. Ruby inclusions are found to occur both as isolated and touching grains with aluminous pyroxene and associated with ferropericlase. Mineral chemistry and phase relations place the origin of such ruby-bearing diamonds within the lower mantle at 770 km. Mineral associations indaving other corundum inclusions were not observed; hence, their depth of origin is less certain.

Compositions of corundum samples were characterised by electron and ion microprobe. Given the scarcity of literature data, corundum samples from a variety of other geological settings were also analysed. Samples comprised corundums associated with granitic emplacement, metasomatism, amphibolite-facies and granulite-facies rocks, gem and industrial synthetic origins and carmine-coloured corundums recovered from kimberlite drill cores.

In addition to variable amounts of Cr, Fe, Ti, Mg and Si, measurable quantities of other transition elements and high field strength elements were also detected. Corundums from similar geological settings show very similar compositions and are easily distinguishable from other settings. Irrespective of locality, rubies from Norwegian, Tanzanian and Kenyan amphibolite-facies rocks are compositionally indistinguishable. Additionally, corundums from metasomatised zones associated with contact metamorphism from Arizona and Japan were very similar, particularly characterised by unusually high abundance of mobile Zr and Nb (tens of ppm). All Juina inclusions are particularly distinguishable from other corundums by high concentrations of Ni (18–171 ppm weight), typically at least an order of magnitude enriched over the same corundum varietal types from elsewhere. Furthermore, the sapphire inclusion exhibited much larger ratios of Ga and Ge to HFSE elements compared to otherwise similar samples, and ruby inclusions are distinguished by high Mg/Fe ratios (0.27–1.56 by weight). Compositional differences between inclusions in diamonds and corundums from other settings in addition to corundum's physical and chemical durability suggest that with the employment of rapid identification tools such as energy dispersive spectrometry (EDS) and laser-ICPMS, corundum has promise as an indicator of diamond prospectivity.  相似文献   


6.
西藏罗布莎蛇绿岩的地幔橄榄岩和铬铁矿中发现金刚石和特殊矿物群引发了新的问题,罗布莎地幔橄榄岩含特殊地幔矿物是不是一个孤立的特殊现象,或这是一个普遍存在的规律?显然,这是一个至关重要的问题.本文报道在雅鲁藏布江缝合带西段,距离罗布莎1000km以远的普兰蛇绿岩的地幔橄榄岩中发现与罗布莎类似的金刚石和特殊地幔矿物群.普兰的地幔橄榄岩体主体为方辉橄榄岩,含少量的纯橄岩和二辉橄榄岩,研究表明,属典型MOR型亏损地幔橄榄岩.通过分选,在657kg的地幔橄榄岩大样中发现了金刚石和碳硅石等30余种矿物的特殊矿物群,包括自然铬、自然铁和自然锌等强还原条件下形成的单质元素矿物.该矿物群与罗布莎地幔橄榄岩和铬铁矿中发现的特殊矿物群十分相似,表明罗布莎的地幔橄榄岩不是雅鲁藏布江缝合带中的一个特例.结合在俄罗斯乌拉尔Ray-Iz铬铁矿中发现类似的矿物群,以及世界其他地区的有关阿尔卑斯型地幔橄榄岩中金刚石的报道,认为蛇绿岩地幔橄榄岩中可能普遍含有金刚石,并将蛇绿岩地幔橄榄岩中产出的金刚石归为一种新的金刚石产出类型,即蛇绿岩型金刚石,不同于金伯利岩型金刚石和超高压变质带中产出的变质金刚石类型.  相似文献   

7.
ABSTRACT

The preservation of metastable diamond in ultrahigh-pressure metamorphic (UHPM) complexes challenges our understanding of the processes taking place during exhumation of these subduction zone complexes. The presence of diamonds in UHPM rocks implies that diamonds remained metastable during exhumation, and within thermodynamic stability of graphite for an extended period. This work studies the influence of pressure on the surface graphitization rate of diamond monocrystals in carbonate systems to understand the preservation of microdiamond during exhumation of UHP subduction complexes. Experiments were performed with 2–3 mm synthetic diamond monocrystals at 2–4 GPa in СаСО3 (1550°С) and К2СО3 (1450°С) melts using a high-pressure multi-anvil apparatus. The highest rate of surface graphitization took place at 2 GPa; diamond crystals were almost completely enveloped by a graphite coating. At 4 GPa, only octahedron-shaped pits formed on flat {111} diamond crystal faces. Our results demonstrate that the surface graphitization rate of diamonds in the presence of carbonate melts at 1450–1550°C increases with decreasing pressure. Decreased pressure alone can graphitize diamond regardless of exhumation rate. Metastable diamond inclusions survive exhumation with little or no graphitization because of excess pressure up to 2 GPa acting on them, and because inclusions are protected from interaction with C-O-H fluid.  相似文献   

8.
蛇绿岩型金刚石产在地幔橄榄岩和铬铁矿中,是新建立的金刚石产出类型,不同于产在金伯利岩和超高压变质岩中的金刚石。全球已在21个蛇绿岩中发现了该类金刚石,含金刚石的蛇绿岩主要分布在特提斯造山带、乌拉尔- 中亚造山带、日高变质岩带和北美克拉马斯- 阿卡特兰造山带。本文梳理了含金刚石蛇绿岩的全球分布和地质背景以及蛇绿岩中超高压-强还原矿物与其它壳幔矿物组合的特征,讨论了已有的含金刚石铬铁矿和地幔橄榄岩的四种成因机制。金刚石和伴生的超高压-强还原矿物组合产在不同时代的造山带蛇绿岩中,不仅仅揭示了金刚石在蛇绿岩中普遍存在,需要重新思考蛇绿岩和铬铁矿的成因以及它们形成的地质构造背景,还证实了蛇绿岩地幔橄榄岩和铬铁矿是地球深部矿物重要的储存库,为认识地球深部的物质组成和物理化学环境,以及深部物质运移的轨迹和动力学过程等提供了天然样品。  相似文献   

9.
In the Ladakh–Zanskar area, relicts of both ophiolites and paleo-accretionary prism have been preserved in the Sapi-Shergol mélange zone. The paleo-accretionary prism, related to the northward subduction of the northern Neo-Tethys beneath the Ladakh Asian margin, mainly consists of tectonic intercalations of sedimentary and blueschist facies rocks. Whole rock chemical composition data provide new constraints on the origin of both the ophiolitic and the blueschist facies rocks. The ophiolitic rocks are interpreted as relicts of the south Ladakh intra-oceanic arc that were incorporated in the accretionary prism during imbrication of the arc. The blueschist facies rocks were previously interpreted as oceanic island basalts (OIB), but our new data suggest that the protolith of some of the blueschists is a calc-alkaline igneous rock that formed in an arc environment. These blueschists most likely originated from the south Ladakh intra-oceanic arc. This arc was accreted to the southern margin of Asia during the Late Cretaceous and the buried portion was metamorphosed under blueschist facies conditions. Following oceanic subduction, the external part of the arc was obducted to form the south Ladakh ophiolites or was incorporated into the Sapi-Shergol mélange zone. The incorporation of the south Ladakh arc into the accretionary prism implies that the complete closure of the Neo-Tethys likely occurred by Eocene time.  相似文献   

10.
在进行1:25万墨脱幅地质调查中,笔者首次在波密地区发现和填绘出了帕隆藏布残留蛇绿混杂岩带。帕窿藏布残留蛇绿混杂岩呈串珠状产出于花岗岩类侵入岩中,其岩石组合为橄揽辉石岩、辉石岩、辉长岩、辉长辉绿岩、辉绿岩、石英岩和大理岩,局部可见条带状硅质岩。上述组分之间的相互关系表明,蛇绿岩在花岗岩类岩石侵入之前发生过构造混杂和变形。根据沉积岩所记录的盆地演化过程、蛇绿岩的Rb-Sr年龄值以及残留蛇绿混杂岩带两刨花岗岩类岩石的特征和生成时代综合分析认为:帕隆藏布残留蛇绿混杂岩带形成于石炭-二叠纪的弧间盆地中,至少在晚三叠纪之前出现洋壳,在消减过程中向北俯冲并在中侏罗世之前闭合(弧-弧碰撞)。  相似文献   

11.
准噶尔、天山和北山52个蛇绿岩的地质特征、地球化学性质和同位素年代学资料系统集成研究表明它们可以分为14条蛇绿(混杂)岩带。绝大多数蛇绿岩呈"岩块+基质"的混杂岩型式沿重要断裂带(构造线)线状分布,少数蛇绿岩以构造岩片叠置方式面状产出。混杂岩的基质有蛇纹岩(碳酸盐化蛇纹岩)和糜棱岩化细碎屑岩两类,岩块既有地幔橄榄岩、基性杂岩和基性火山岩等蛇绿岩组分,也有其它非蛇绿岩组分岩石。堆晶岩出露局限,典型席状岩墙群没有发育。这些蛇绿岩可归类为SSZ(Supra-Subduction Zone)和MORB(Mid-Ocean Ridge)两种类型,前者玄武岩具大离子亲石元素(LILE)富集和高场强元素(HFS)亏损特征,后者不显示该特点;洋岛玄武岩(OIB)既可出现在SSZ型蛇绿混杂岩中,也可为MORB型的组成部分;SSZ型蛇绿混杂岩辉长岩和玄武岩比MORB型具有相对更富集的Sr-Nd同位素组成,但部分形成于弧后(间)盆地的SSZ型蛇绿岩与MORB型一致,具有近亏损地幔的Sr-Nd同位素组成。已确认的最老蛇绿岩为西准噶尔572 Ma玛依勒,次之为北山542~527 Ma月牙山—洗肠井和西准噶尔531 Ma唐巴勒,最年轻蛇绿岩为325 Ma北天山巴音沟和321 Ma北山芨芨台子。根据蛇绿岩证据,结合近年来中亚造山带古地磁、岩浆岩、高压—超高压变质岩和构造地质方面的进展,可以推断埃迪卡拉纪末期—早寒武世,古亚洲洋已达到一定规模宽度,发育洋岛和洋内弧;早古生代时期,多岛洋格局发育至鼎盛期,一系列弧地体分别归属哈萨克斯坦微陆块周缘的科克切塔夫—天山—北山线性弧、成吉思弧、巴尔喀什—西准噶尔弧体系和西伯利亚南部大陆边缘弧体系;晚古生代时期,古亚洲洋于石炭纪末期闭合,增生杂岩和弧地体组成哈萨克斯坦拼贴体系和蒙古拼贴体系两个巨型山弯构造。  相似文献   

12.
A suite of 80 macrodiamonds recovered from volcaniclastic breccia of Wawa (southern Ontario) was characterized on the basis of morphology, nitrogen content and aggregation, cathodoluminescence (CL), and mineral inclusions. The host calc-alkaline lamprophyric breccias were emplaced at 2.68–2.74 Ga, contemporaneously with voluminous bimodal volcanism of the Michipicoten greenstone belt. The studied suite of diamonds differs from the vast majority of diamond suites found worldwide. First, the suite is hosted by calc-alkaline lamprophyric volcanics rather than by kimberlite or lamproite. Second, the host volcanic rock is amongst the oldest known diamondiferous rocks on Earth, and has experienced regional metamorphism and deformation. Finally, most diamonds show yellow-orange-red CL and contain mineral inclusions not in equilibrium with each other or their host diamond. The majority of the diamonds in the Wawa suite are colorless, weakly resorbed, octahedral single crystals and aggregates. The diamonds contain 0–740 ppm N and show two modes of N aggregation at 0–30 and 60–95% B-centers suggesting mantle storage at 1,100–1,170°C. Cathodoluminescence and FTIR spectroscopy shows that emission peaks present in orange CL stones do not likely result from irradiation or single substitutional N, in contrast to other diamonds with red CL. The diamonds contain primary inclusions of olivine (Fo92 and Fo89), omphacite, orthopyroxene (En93), pentlandite, albite, and An-rich plagioclase. These peridotitic and eclogitic minerals are commonly found within single diamonds in a mixed paragenesis which also combines shallow and deep phases. This apparent disequilibrium can be explained by effective small-scale mixing of subducted oceanic crust and mantle rocks in fast “cold” plumes ascending from the top of the slabs in convergent margins. Alternatively, the diamonds could have formed in the pre-2.7–2.9 Ga cratonic mantle and experienced subsequent alteration of syngenetic inclusions related to host magmatism and ensuing metamorphism. Neither orogenic nor cratonic model of the diamond origin fully explains all of the observed characteristics of the diamonds and their host rocks. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
A coherent ophiolitic complex of pyroxenite, serpentinite, metagabbro, mafic volcanics, felsic volcanics and sediments crops out in NW Maine, adjacent to the Chain Lakes massif. The complex (here informally referred to as the Boil Mountain ophiolitic complex) is about 500 m.y. old. The volcanic sequence is not typical of ophiolites in that it contains a large proportion of felsic volcanics. The mafic volcanics are divided into two geochemical groups. A stratigraphically lower group is depleted in Ti, Zr, Y, Cr and REE contents similar to basalts from supra-subduction zone ophiolites. An upper mafic group has trace element contents similar to normal mid-ocean ridge basalts. The felsic volcanics are mostly rhyolitic and similar to low-K rhyolites found in the forearc of the Marianas trench and in an island arc sequence in the Klamath Mountains, California. The flat REE patterns of the felsic volcanic rocks are similar to those found in siliceous rocks in the Oman ophiolite. The presence of thick sequences of felsic volcanics, the abundance of pyroxenite, the low Ti, Zr and REE contents of some mafic rocks, the flat REE patterns of the felsic volcanics, and the composition of clinopyroxene all suggest the complex was formed in the vicinity of a subduction zone. The complex may be correlated with ophiolitic fragments in the eastern part of the Dunnage Zone in Newfoundland, rather than the main ophiolite belt of the western Appalachians.  相似文献   

14.
近期,在珠宝市场上的一件"黑白钻"首饰中发现混有黑色合成碳硅石,该情况应引起国内外各珠宝检测机构的足够重视。采用宝石显微镜、红外光谱仪和拉曼光谱仪等测试方法对黑色合成碳硅石样品做了较详细测试与分析。结果显示,放大检查可见黑色合成碳硅石的表面粗糙,棱角圆钝,并伴有各种生长缺陷,部分可见残留的单晶硅;黑色合成碳硅石的红外反射光谱非常特征,且其拉曼散射光谱也缺失钻石位于1 332cm-1处的特征峰,可与黑色钻石相区别。  相似文献   

15.
Diamond crystals 0.05–0.2 mm (rarely up to 0.7 mm) in size were found in lavas of the Tolbachik fissure eruption (TFE, Kamchatka, 2012–2013). The TFE basaltic lavas with diamonds in the pores are similar in chemical composition to the lavas of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka, 1975–1976); however, the basalts of the new eruption contain slightly more SiO2 and higher Fe relative to those of GTFE. Basalts of both eruptions are close in trace element composition. The diamonds were identified using electron microscopy and X-ray diffraction. The crystals, as a rule, represent a combination of cubes and octahedrons, with rare rhombododecahedrons. The TFE diamond has a typical cubic cell with a cube edge a = 3.574 Å and belongs to the spatial group of Fd-3m. The X-ray diffraction pattern of some grains contain reflexes with fractional indices, which indicate the twinning of the diamond along the plane {111}, which is confirmed by crystal morphological analysis. The TFE diamond was formed at the early stage of eruption with typical intense gaseous-pyroclastic jets to a height of 250 m and more. The finding of diamonds in fresh products of basaltic eruption of an active volcano may be considered as evidence of its magmatic source. Such numerous (hundreds) diamond grains in lavas of the active volcano were found for the first time in the world.  相似文献   

16.
连东洋  杨经绥  刘飞  吴魏伟 《地球科学》2019,44(10):3409-3453
金刚石由于其独特的物理化学性质,在经济生产与科学研究中均具有重要价值.金刚石形成于地球大于150 km的深度范围内,是人类可以获得的来自地球深部地幔乃至核幔边界的最直接的样品,因此可以为研究地球深部物质组成和物理化学条件提供重要的素材.金刚石由碳元素组成,还含有微量的杂质元素(如氮、硼、氢、氧等),其中氮和硼元素对于划分金刚石的晶体结构类型发挥着重要的作用.根据金刚石的产出类型,金刚石可以划分为幔源型、超高压变质型、陨石相关型以及蛇绿岩型金刚石.全球约百分之一的幔源型金刚石含有包裹体,对这些包裹体的研究显示,金刚石主要来源于地球150~200 km深度的岩石圈地幔.这些含有包裹体的金刚石中,仅有1%的金刚石来自于地球深部的软流圈、地幔过渡带、下地幔、甚至核幔边界.我国的金刚石产出类型多样,但是,目前仅山东蒙阴、辽宁复县的金伯利岩矿床以及湖南沅水的砂矿具有经济价值.蛇绿岩型金刚石是近年来金刚石研究领域取得的重要进展,该类型金刚石分布在全球多个造山带不同时代、不同构造属性的蛇绿岩地幔橄榄岩和铬铁矿中,被认为是一种新的金刚石的产出类型.相对于其他国家和地区的金刚石的研究,我国的金刚石领域的研究程度相对较低,缺乏对金刚石结构、化学组成以及包裹体组成的系统研究,制约了对我国金刚石成因的认识,限制了我国的金刚石的找矿工作.因此,亟需结合先进的分析手段对我国的金刚石及其围岩做进一步的研究,以期揭示金刚石的形成过程,为金刚石的找矿提供理论基础.   相似文献   

17.
Island arc elements and arc-related ophiolites   总被引:1,自引:0,他引:1  
All major structural elements in island arc systems, fore-arc, magmatic arc, back-arc basins and remnant arcs, are potential ophiolite sources, and those features that allegedly characterise ophiolites of ocean-ridge origin, sheeted dyke complexes, mantling pelagic rocks, hydrothermal metamorphism and associated mineralization, can also arise within arc settings. Age relations are critical in the interpretation of arc-related ophiolites. Remnants of oceanic lithosphere, identified by a pre-arc initiation age, are restricted to fore-arc, magmatic arc and remnant arc elements, as are ophiolite masses generated at the inception of underthrusting. The latter, apparently common in ancient fore-arc terrains, form in nascent arc systems in which the rate of role back of the subduction hinge exceeds the rate of convergence. Spreading occurs above a foundering slab resulting in some arc-like compositional features. In simple arc systems later ophiolitic rocks have formed either in the active back-arc basin or the magmatic arc. Only those ophiolites that have resided within or very close behind magmatic arcs should show calcalkaline or arc tholeiite magmatic affinities, or be intruded or overlain by these rocks. Volcanic-derived sediment or pelagic material may mantle ophiolites from all arc settings, but pelagic rocks will generally dominate in stratigraphic sequences above remnant arcs and on back-arc basin floors except adjacent to the magmatic arc. Ophiolites generated at major ocean ridges are unlikely to be immediately overlain by sediment with a significant volcanic component whereas such detritus may lie directly on arc-inception, arc and back-arc ophiolites. Some arc-derived ophiolites are preserved in their original tectonic position, others can be identified from their internal features, their relationship to other tectonic elements, and the nature of associated rocks.  相似文献   

18.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   

19.
For the first time, three-dimensional, high-resolution X-ray computed tomography (HRXCT) of an eclogite xenolith from Yakutia has successfully imaged diamonds and their textural relationships with coexisting minerals. Thirty (30) macrodiamonds (≥1 mm), with a total weight of just over 3 carats, for an ore grade of some 27,000 ct/ton, were found in a small (4 × 5 × 6 cm) eclogite, U51/3, from Udachnaya. Based upon 3-D imaging, the diamonds appear to be associated with zones of secondary alteration of clinopyroxene (Cpx) in the xenolith. The presence of diamonds with secondary minerals strongly suggests that the diamonds formed after the eclogite, in conjunction with meta-somatic input(s) of carbon-rich fluids. Metasomatic processes are also indicated by the non-systematic variations in Cpx inclusion chemistry in the several diamonds. The inclusions in the diamonds vary considerably in major- and trace-element chemistry within and between diamonds, and do not correspond to the minerals of the host eclogite, whose compositions are extremely homogeneous. Some Cpx inclusions possess +Eu anomalies, probably inherited from their crustal source rocks. The only consistent feature for the Cpx crystals in the inclusions is that they have higher K2O than the Cpx grains in the host.

The δ13C compositions are relatively constant at ?5% both within and between diamonds, whereas δ15N values vary from ?2.8% to ?15.8%. Within a diamond, the total N varies considerably from 15 to 285 ppm in one diamond to 103 to 1250 ppm in another. Cathodoluminescent imaging reveals extremely contorted zonations and complex growth histories in the diamonds, indicating large variations in growth environments for each diamond.

This study directly bears on the concept of diamond inclusions as time capsules for investigating the mantle of the Earth. If diamonds and their inclusions can vary so much within this one small xenolith, the significance of their compositions is a serious question that must be addressed in all diamond-inclusion endeavors.  相似文献   

20.
Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at 1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the wet peridotite solidus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号