首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report new petrological, phase equilibria modeling, and fluid inclusion data for pelitic and mafic granulites from Rundv?gshetta in the highest-grade region of the Neoproterozoic Lützow-Holm Complex(LHC),East Antarctica, and provide unequivocal evidence for fluid-rock interaction and high-temperature metasomatism in the presence of brine fluid. The studied locality is composed dominantly of well-foliated pelitic granulite(K-feldspar+quartz+sillimanite+garnet+ilmenite) with foliation-parallel bands and/or layers of mafic granulite(plagioclase+orthopyroxene+garnet+ilmenite+quartz+biotite). The boundary between the two lithologies is defined by thin(about 1 -20 cm in thick) garnet-rich layers with a common mineral assemblage of garnet+plagioclase+quartz+ilmenite+biotite ? orthopyroxene. Systematic increase of grossular and decrease of pyrope contents in garnet as well as decreasing Mg/(Fe+Mg) ratio of biotite from the pelitic granulite to garnet-rich rock and mafic granulite suggest that the garnet-rich layer was formed by metasomatic interaction between the two granulite lithologies. Phase equilibria modeling in the system NCKFMASHTO demonstrates that the metasomatism took place at 850 -860℃, which is slightly lower than the peak metamorphism of this region, and the modal abundance of garnet is the highest along the metapeliteemetabasite boundary(up to 40%), which is consistent with the field and thin section observations. The occurrence of brine(7.0 -10.9 wt.% Na Cleqfor ice melting or 25.1 -25.5 wt.% NaC leqfor hydrohalite melting) fluid inclusions as a primary phase trapped within plagioclase in the garnet-rich layer and the occurrence of Cl-rich biotite(Cl = 0.22 -0.60 wt.%) in the metasomatic rock compared to that in pelitic(0.15 -0.24 wt.%) and mafic(0.06-0.13 wt.%) granulites suggest infiltration of brine fluid could have given rise to the high-temperature metasomatism. The fluid might have been derived from external sources possibly related to the formation of major suture zones formed during the Gondwana amalgamation.  相似文献   

2.
In the southeastern margin of the North China Craton, high-pressure (HP) granulite facies meta-basic rocks exposed as bands or lenses in the Precambrian metamorphic basement (e.g. Bengbu) and as xenoliths in Mesozoic intrusions (e.g. Jiagou) are characterized by the assemblage garnet + clinopyroxene + plagioclase + quartz + rutile ± Ti-rich hornblende. Cathodoluminescence imaging and mineral inclusions reveal that most zircon from the three dated samples displays distinct core-mantle-rim structures. The cores show typical igneous zircon characteristics and give ages of 2.5–2.4 Ga, thus dating the protolith of the metabasites. The mantles formed at granulite facies conditions as evidenced by inclusions of the HP granulite mineral assemblage garnet + clinopyroxene + rutile + plagioclase + quartz ± hornblende and Ti-rich biotite and yield ages of 1839 ± 31, 1811 ± 19 and 1800 ± 15 Ma. An inclusion-free rim yields an age of 176 ± 2 Ma with the lower Th/U ratio of 0.02. The geochronological and preliminary petrological data of this study suggest that the lower crust beneath the southeastern margin of the North China Craton formed at 2.5–2.4 Ga and underwent HP granulite facies metamorphism at c. 1.8 Ga. This HT-HP metamorphic event may be ascribed to large-scale crustal heating and thickening related to mantle-derived magma underplating at the base of the lower crust, as evidenced by widespread extension, rifting and related mafic magma emplacement in the North China Craton during this period. The age of 176 ± 2 Ma most likely records the late amphibolite facies retrogression occurring during exhumation.  相似文献   

3.
The Yelapa-Chimo Metamorphic Complex forms part of the Jalisco Block in western Mexico and exposes a wide range of Early Cretaceous metamorphic rocks;such as paragneiss,orthogneiss,amphibolites,and migmatites.However,the pressure-temperature(P-T)conditions of metamorphism and partial melting remain poorly studied in the region.To elucidate metamorphic P-T conditions,phase equilibrium modelling was applied to two sillimanite-garnet paragneisses,one amphibole-orthogneiss,and one amphibolite.Sillimanite-garnet paragneisses exhibit a lepidoblastic texture with a biotite+sillimanite+kyanite+garnet+quartz+plagioclase+K-feldspar mineral assemblage.Amphibole-orthogneiss and amphibolite display a nematoblastic texture with an amphibole+(1)plagioclase+quartz+(1)titanite assemblage and an amphibole+(2)plagioclase+(2)titanite+ilmenite retrograde mineral assemblage.Pseudosections calculated for the two sillimanite-garnet paragneiss samples show P-T peak conditions at~6-7.5 kbar and~725-740℃.The results for amphibole-orthogneiss and the amphibolite yield P-T peak conditions at~8.5-10 kbar and~690-710℃.The mode models imply that metasedimentary and metaigneous units can produce up to~20 vol%and~10 vol%of melt,respectively.Modelling within a closed system during isobaric heating suggests that melt compositions of metasedimentary and metaigneous units are likely to have direct implications for the petrogenesis of the Puerto Vallarta Batholith.Our new data indicate that the Yelapa-Chimo Metamorphic Complex evolved through a metamorphic gradient between~23-33℃km^-1and the metamorphic rocks formed at depths between~22 km and~30 km with a burial rate of~2.0 km Ma^-1.Finally,the P-T data for both metasedimentary and metaigneous rocks provide new constraints on an accretionary framework,which is responsible for generating metamorphism and partial melting in the YelapaChimo Metamorphic Complex during the Early Cretaceous.  相似文献   

4.
We report here the occurrence of pink sapphires in association with a variety of gemstones from the Trivandrum Granulite Block south of the Achankovil Shear Zone in southern India. The mineralization is associated with pegmatites or veins emplaced within granulite facies aluminous supracrustals. The sapphires show near-pure A1,0, composition (98.43-99.48 wt.%) with traces of Cr, O, (0.02-0.12 wt.%) and FeO (0.01-0.12 wt.%). The available radiometric age of 513-2 Ma for gem quality zircon associated with pink sapphire in the Melankode locality confirms that the mineralization is of late Pan-African age. Pink sapphires have been widely reported from a number of localities in southern Madagascar including Betroka, Illakaka, Antranondambo and Ambossary. Sapphires of various hues also occur in the Ratnapura gem district in the southwestern part of Sri Lanka. The pink sapphire occurrences in southern Madagascar and southern Kerala provide strong evidence for India-Madagascar juxtaposition in the Gondwana assembly with the Ranotsara Shear Zone in southern Madagascar extending into the Achankovil Shear Zone in southern India.  相似文献   

5.
K. Sajeev  M. Santosh  H.S. Kim 《Lithos》2006,92(3-4):465-483
The Kodaikanal region of the Madurai Block in southern India exposes a segment of high-grade metamorphic rocks dominated by an aluminous garnet–cordierite–spinel–sillimanite–quartz migmatite suite, designated herein as the Kodaikanal Metapelite Belt (KMB). These rocks were subjected to extreme crustal metamorphism during the Late Neoproterozoic despite the lack of diagnostic ultrahigh-temperature assemblages. The rocks preserve microstructural evidence demonstrating initial-heating, dehydration melting to generate the peak metamorphic assemblage and later retrogression of the residual assemblages with remaining melt. The peak metamorphic assemblage is interpreted to be garnet + sillimanite + K-feldspar + spinel + Fe–Ti oxide + quartz + melt, which indicates pressure–temperature (P–T) conditions around 950–1000 °C and 7–8 kbar based on calculated phase diagrams. A clockwise P–T path is proposed by integrating microstructural information with pseudosections. We show that evidence for extreme crustal metamorphism at ultrahigh-temperature conditions can be extracted even in the cases where the rocks lack diagnostic ultrahigh-temperature mineral assemblages. Our approach confirms the widespread regional occurrence of UHT metamorphism in the Madurai Block during Gondwana assembly and point out the need for similar studies on adjacent continental fragments.  相似文献   

6.
Osumilite is reported in Palaeoproterozoic Al–Mg‐rich granulites from the Khanfous area (Tekhamalt, In Ouzzal, Hoggar, Algeria). The main peak assemblages are osumilite + sapphirine + biotite + orthopyroxene + sillimanite and osumilite + orthopyroxene + sillimanite + quartz ± biotite (±K‐feldspar) in silica‐deficient and silica‐saturated granulites respectively. Osumilite coexists with F‐rich biotite (XF ≈ 0.6). The observed microstructures, the mass balance of metamorphic reactions and P–T pseudosections modelled for bulk‐rock and reaction‐microdomain compositions indicate a clockwise P–T metamorphic evolution at ultrahigh temperatures, without substantial post‐peak deformation. The peak P–T conditions recorded by the osumilite‐bearing assemblages are 8.5–9.0 kbar and 930–980 °C. During retrogression, osumilite was partially or totally replaced by fine‐grained pseudomorphs of cordierite + orthopyroxene + K‐feldspar + quartz at ~7 kbar and ~850 °C. This study confirms that osumilite can occur only in Mg‐rich metamorphic rocks that experienced ultrahigh‐temperature metamorphism under anhydrous conditions. In the presence of a hydrous fluid, it is replaced, even at high temperatures, by cordierite‐bearing assemblages. This important feature explains the rarity of osumilite in granulite facies rocks and its common replacement by cordierite + orthopyroxene + K‐feldspar + quartz pseudomorphs. The peak conditions suggest that a delamination of the lithospheric mantle underneath the In Ouzzal crust brought the asthenosphere close to the Mohorovi?i? discontinuity.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987112001314   总被引:4,自引:0,他引:4  
As one of the areas where typical late Archean crust is exposed in the Eastern Block of the North China Craton, the northern Laioning Complex consists principally of tonalitic-trondhjemitic-granodioritic (TTG) gneisses, massive granitoids and supracrustal rocks. The supracrustal rocks, named the Qingyuan Group, consist of interbedded amphibolite, hornblende granulite, biotite granulite and BIF. Petrological evidence indicates that the amphibolites experienced the early prograde (M1), peak (M2) and post-peak (M3) metamorphism. The early prograde assemblage (M1) is preserved as mineral inclusions, represented by actinotite + hornblende + plagioclase + epidote + quartz + sphene, within garnet porphyroblasts. The peak assemblage (M2) is indicated by garnet + clinopyroxene + hornblende + plagioclase + quartz + ilmenite, which occur as major mineral phases in the rock. The post-peak assemblage (M3) is characterized by the garnet + quartz symplectite. The P–T pseudosections in the NCFMASHTO system constructed by using THERMOCALC define the P–T conditions of M1, M2 and M3 at 490–550 °C/<4.5 kbar, 780–810 °C/7.65–8.40 kbar and 630–670 °C/8.15–9.40 kbar, respectively. As a result, an anticlockwise P–T path involving isobaric cooling is inferred for the metamorphic evolution of the amphibolites. Such a P–T path suggests that the late Archean metamorphism of the northern Liaoning Complex was related to the intrusion and underplating of mantle-derived magmas. The underplating of voluminous mantle-derived magmas leading to metamorphism with an anticlockwise P–T path involving isobaric cooling may have occurred in continental magmatic arc regions, above hot spots driven by mantle plumes, or in continental rift environments. A mantle plume model is favored because this model can reasonably interpret many other geological features of late Archean basement rocks from the northern Liaoning Complex in the Eastern Block of the North China Craton as well as their anticlockwise P–T paths involving isobaric cooling.  相似文献   

8.
We report U-Pb electron microprobe ages for zircon and monazite from two granitic plutons from southern India, the Vattamalai granite within the Palghat-Cauvery Shear Zone system and the Pathanapuram granite within the Achankovil Shear Zone. A zircon grain from the Vattamalai granite has a core age of 693±132 Ma and is surrounded by a thick overgrowth with an age of 504±104 Ma. Monazites from the Vattamalai granite show a small range of ages between 500-520 Ma. PbO vs. ThO2* plots of the monazites define a precise isochron age of 517±6.7 Ma (MSWD = 0.25). The oldest zircons in the Pathanapuram pluton are in the range 961-1149 Ma, with younger overgrowths at ~540-560 Ma. Monazite cores from the granite lie in the range of 526-574 Ma, whereas rims and bright overgrowths range from 506-539 Ma. These monazites define two linear arrays in PbO vs. ThO2* plots with cores yielding an isochron age of 550±25 Ma (MSWD = 0.58) and the rims defining an age of 515±15 Ma (MSWD = 0.68).The age data from the granite plutons indicate multiple thermal imprints in southern India with the latest orogeny during the Late Neoproterozoic-Cambrian (Pan-African). The older zircon cores up to 1149 Ma from the Pathanapuram pluton suggest inherited components of late Mesoproterozoic age, caught up within the granite magma. However, the dominant 570-520 Ma ages obtained from both zircons and monazites closely compare with similar ages for magmatism and metamorphism from throughout the East African Orogen. Late Neoproterozoic-Cambrian felsic magmatism occurred along both the Palghat-Cauvery Shear System and the Achankovil Shear Zone, indicating that these shears were active at this time and may have served as pathways for the emplacement of magmas generated at depth. The magmatism represents part of the various collisional-extensional episodes that marked the final amalgamation of the Gondwana supercontinent.  相似文献   

9.
New pseudosection modelling was applied to better constrain the P–T conditions and evolution of glaucophane‐bearing rocks in the Tamayen block of the Yuli belt, recognized as the world's youngest known blueschist complex. Based on the predominant clinoamphibole, textural relationships, and mineral compositions, these glaucophane‐bearing high‐P rocks can be divided into four types. We focused on the three containing garnet. The chief phase assemblages are (in decreasing mode): amphibole + quartz + epidote + garnet + chlorite + rutile/titanite (Type‐I), phengite + amphibole + quartz + garnet + chlorite + epidote + titanite + biotite + magnetite (Type‐II), and amphibole + quartz + albite + epidote + garnet + rutile + hematite + titanite (Type‐III). Amphibole exhibits compositional zoning from core to rim as follows: glaucophane → pargasitic amphibole → actinolite (Type‐I), barroisite → Mg‐katophorite/taramite → Fe‐glaucophane (Type‐II), glaucophane → winchite (Type‐III). Using petrographic data, mineral compositions and Perple_X modelling (pseudosections and superimposed isopleths), peak P–T conditions were determined as 13 ± 1 kbar and 550 ± 40 °C for Type‐I, 10.5 ± 0.5 kbar and 560 ± 30 °C for Type‐II (thermal peak) and 11 ± 1 kbar and 530 ± 30 °C for Type‐III. The calculations yield higher pressures and temperatures than previously thought; the difference is ~1–6 kbar and 50–200 °C. The three rock types record similar P–T retrograde paths with clockwise trajectories; all rocks followed trajectories with substantial pressure decrease under near‐isothermal conditions (Type‐I and Type‐III), with the probable exception of Type‐II where decompression followed colder geotherms. The P–T paths suggest a tectonic environment in which the rocks were exhumed from maximum depths of ~45 km within a subduction channel along a relative cold geothermal gradient of ~11–14 °C km?1.  相似文献   

10.
《Precambrian Research》2006,144(3-4):278-296
The evolution of the basement of southern Madagascar north and south of the Ranotsara shear zone was investigated using (U + Th)/Pb electron probe monazite age dating in combination with petrographic constraints. Several monazite grains show a stepwise progression of younger ages towards the rim indicating partial and complete resetting during tectonic, metamorphic and/or fluid events. The oldest ages, ranging from 630–2400 Ma, occur relatively rare in relic cores. A first, clear age-population is dated at 550–560 Ma. Most ages fall in two populations at 420–460 and 490–500 Ma, which in some samples overlap in error. We interprete these ages as dating low-pressure and high-temperature metamorphism. We have also clear evidence for Carboniferous (300–310 Ma) monazite overgrowth rims, which can not directly be related to macroscopic structures or metamorphic parageneses. In combination with literature data, we propose that the observed monazite age populations are related to Gondwana amalgamation and subsequent rifting events during the break up of Gondwana. Our study confirms that only the electron or ion microprobe yields sufficient spatial resolution to date individual shells of multiple zoned monazites in the polymetamorphic basement of Madagascar.  相似文献   

11.
Petrological evidence is provided for anatexis of ultrahigh‐pressure (UHP) metamorphic quartzite in the Sulu orogen. Some feldspar grains exhibit elongated, highly cuspate shapes or occur as interstitial, cuspate phases constituting interconnected networks along grain boundaries. Elongated veinlets composed of plagioclase + quartz ± K‐feldspar also occur in grain boundaries. These features provide compelling evidence for anatexis of the UHP quartzite. Zircon grains from impure quartzite are all metamorphic growth with highly irregular shape. They contain inclusions of coesite, jadeite, rutile and lower pressure minerals, including multiphase solid inclusions that are composed of two or more phases of muscovite, quartz, K‐feldspar and plagioclase. All zircon grains exhibit steep REE patterns, similar U–Pb ages and Hf isotope compositions with a weighted mean of 218 ± 2 Ma. Most grains have similar δ18O values of ?0.6 to 0.1‰, but a few fall in the range ?5.2 to ?4.3‰. Thus, these grains would have grown from anatectic melts at various pressures. Zircon O isotope differences indicate that anatectic melts were derived from different sources with contrasting O isotopes, but similar Hf isotopes, that is, one from the quartzite itself and the other probably from the country‐rock granitic gneiss. Zircon grains from pure quartzite contain relict magmatic cores and significant metamorphic overgrowths. Domains that contain eclogite facies minerals exhibit flat HREE patterns, no Eu anomalies and concordant U–Pb ages of c. 220 Ma. Similar U–Pb ages are also obtained for domains that contain lower pressure minerals and exhibit steep REE patterns and marked negative Eu anomalies. These observations indicate that zircon records subsolidus overgrowth at eclogite facies conditions but suprasolidus growth at lower pressures. Zircon enclosed by garnet gave consistent U–Pb ages of c. 214 Ma. Such garnet is interpreted as a peritectic product of the anatectic reaction that involves felsic minerals and possibly amphibole and titanite. The REE patterns of epidote and titanite also record multistage growth and metasomatism by anatectic melts. Therefore, the anatexis of UHP metamorphic rocks is evident during continental collision in the Triassic.  相似文献   

12.
Metapelitic granulites from the Anosyen domain of southeastern Madagascar are exposed in three intercalated formations: the Amparihy, Bakika and Ihosy formations. Although mineralogically distinct from each other, the rocks from these formations show very similar bulk‐rock compositions when measured on a FeT basis. The preserved mineral assemblages thus do not reflect differences in the ratios of the main rock‐forming oxides (i.e. Al2O3:FeT:MgO), but instead reflect variations in the pre‐metamorphic oxidation state of the protolith rocks. These differences in oxidation state are manifested via differences in iron speciation – either Fe+2 or Fe+3. The relatively reduced rocks of the Amparihy Formation preserve the assemblage bi–sp–sill–g–cd, which contrasts markedly with the mostly garnet and spinel‐absent bi–cd–sill–mt assemblages preserved in the strongly oxidized rocks of the Ihosy Formation. Compositionally intermediate rocks of the Bakika Formation are garnet bearing, but sillimanite‐absent, and contain the assemblage sp–g–cd–mag. Modelling of these rocks in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O system suggests that they evolved along a heating and cooling P–T path with only limited decompression accompanying cooling on the retrograde path. Peak temperatures and pressures of ~880–920 °C and 6–6.5 kbar are inferred for the majority of the Anosyen domain, with slightly lower peak temperatures (~840 °C) estimated in the extreme northwest of the area. The high‐temperature and relatively low‐pressure nature of metamorphism suggests high geothermal gradients existed during orogenesis, which in southern Madagascar is related to the amalgamation of Gondwana (580–520 Ma). Although metamorphic temperatures may have been augmented via thermal advection from the emplacement of the syn‐ to post‐tectonic Ambalavao suite, the high geothermal gradients nevertheless suggest thin and consequently hot lithosphere existed prior to orogenesis.  相似文献   

13.
《地学前缘(英文版)》2019,10(6):2063-2084
The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana.The Ediacaran-Cambrian Ambalavao and Maevarano Suites in Madagascar were emplaced during the waning orogenic stages and consist of weakly deformed to undeformed plutonic rocks and dykes of mainly porphyritic granite but also gabbro,diorite and charnockite.U-Pb geochronological data date emplacement of the Ambalavao Suite to between ca.580 Ma and 540 Ma and the Maevarano Suite to between ca.537 Ma and522 Ma.Major and trace element concentrations are consistent with emplacement in a syn-to postcollisional tectonic setting as A-type(anorogenic) suites.Oxygen(δ~(18)O of 5.27‰-7.45‰) and hafnium(ε_(Hf)(t) of-27.8 to-12.3) isotopic data from plutons in the Itremo and Antananarivo Domains are consistent with incorporation of an ancient crustal source.More primitive δ~(18)O(5.27‰-5.32‰) andε_(Hf)(t)(+0.0 to+0.2) isotopic values recorded in samples collected from the Ikalamavony Domain demonstrate the isotopic variation of basement sources present in the Malagasy crust.The Hf isotopic composition of Malagasy zircon are unlike more juvenile Ediacaran-Cambrian zircon sou rces elsewhere in the East African Orogen and,as such,Madagascar represents a distinct and identifiable detrital zircon source region in Phanerozoic sedimentary provenance studies.Taken together,these data indicate that high-T crustal anatexis,crustal assimilation and interaction of crustal material with mantle-derived melts were the processes operating during magma emplacement.This magmatism was coeval with polyphase deformation throughout Madagascar during the amalgamation of Gondwana and magmatism is interpreted to reflect lithospheric delamination of an extensive orogenic plateau.  相似文献   

14.
The technique of single zircon dating from the thermal evaporation of 207Pb/206Pb (Kober 1986, 1987) provides a means of dating successive periods of growth and nucleation of zircons in polymetamorphic assemblages. In contrast Nd model ages may provide a measure of the period of crustal residency for the sample or its protolith. These two techniques have been combined to elucidate the tectonic history of the Proterozoic mobile belt of southern India, exposed south of the Palghat-Cauvery Shear Zone that marks the southern boundary of the Archaean craton of Karnataka. The two main tectonic units of this mobile belt comprise the Madurai and Trivandrum Blocks, both of which are characterised by massive charnockite uplands and low-lying polymetamorphic metasedimentary belts that have undergone a complex tectonic history throughout the Proterozoic. Evidence for early Palaeoproterozoic magmatism is restricted to the Madurai Block where single zircon evaporation ages from a metagranite (2436 ± 4 Ma) are similar to model Nd ages from a range of lithologies suggesting crustal growth at that time. The Trivandrum Block, to the south of the Achankovil shear zone, is comprised of the Kerala Khondalite Belt, the Nagercoil charnockites and the Achankovil metasediments. Single zircon evaporation ages, together with conventional zircon and garnet chronometry, suggest that all three units underwent upper-amphibolite facies metamorphism at ∼1800 Ma, an event unrecorded in the metagranite from the Madurai Block. This implies that the Madurai and Trivandrum blocks represent distinct terrains throughout the Palaeoproterozoic. Model Nd ages from the Achankovil metasediments are much younger (1500–1200 Ma) than those from the adjacent Kerala Khondalite Belt and Madurai Blocks (3000–2100 Ma), but there is no evidence for zircon growth in these metasediments during the Mesoproterozoic. Hence the comparatively young model Nd ages of the metasediments are indicative of a mixed provenance rather than a discrete period of crustal growth. Zircon overgrowths from the Madurai Block (547 ± 17 Ma) and Achankovil metasediments (530 ± 21 Ma) suggest that all tectonic units of the Proterozoic mobile belt of South India shared the same metamorphic history from the early Palaeozoic. This event has been recognised in the basement lithologies of Sri Lanka and East Antarctica, confirming that the constituent terrains of East Gondwana had assembled by this time. Received: 10 October 1995 / Accepted: 27 October 1997  相似文献   

15.
The final assembly of Gondwana, known as the late Pan-African orogeny, is characterized by Ediacaran–early Cambrian ultrahigh temperature (UHT) metamorphism, which is widely identified within reconstructed East Gondwana. This distinctive feature likely provides a reliable criterion for identifying new Gondwanan terranes that lack paleo-geomagnetic data. Here we present zircon U–Pb geochronology and phase equilibria calculations for a variety of granulite types newly recognized from western Qaidam, China, which provide the first evidence that the Qaidam block, at least western Qaidam, experienced high-grade metamorphism in excess of 900 °C before/at 540–520 Ma. These UHT metamorphic rocks, similar to many well-known Pan-African UHT metamorphic terranes, is inferred to evolve along a clockwise PT path that is usually related to collisional orogens. Comparison between new metamorphic zircon U–Pb ages from western Qaidam and the published age data from the UHT metamorphic terranes within East Gondwana suggests that the UHT metamorphic rocks found in western Qaidam similarly records the final assembly of Gondwana. Although the exact paleo-geographical location of the Qaidam block during the Gondwana period is unknown yet because of lacking paleo-geomagnetic data, new Pan-African UHT metamorphic record found in western Qaidam indicates, for the first time, that the Qaidam block is a Gondwanan terrane that split from this semi-supercontinent after the Pan-African orogeny.  相似文献   

16.
New evidence for high-pressure, eclogite facies metamorphism in the crystalline basement of the Tisza Megaunit (southern Hungary) is reported. The retrogressed mafic eclogite forms a small lens in the orthogneiss and it was found in the borehole near Jánoshalma. The carbonated eclogite contains the peak metamorphic assemblage omphacite + garnet + phengite + kyanite + clinozoizite + rutile + K-feldspar + quartz. Omphacite (Xjd0.40–0.41Xdio0.52–0.53Xhd0.05Xaug1.55–2.85) occurs in the matrix and as inclusions in garnet (Xpy0.37–0.38Xgrs0.21–0.22Xalm0.39–0.40Xsps0–0.01Xadr0–0.01) and kyanite. Thermobarometry based on net-transfer reactions between garnet, omphacite, kyanite and phengite yields PT conditions of 710 ± 10 °C and 2.6 ± 0.75 GPa. Retrogression during decompression is manifested by formation of symplectites; the most typical are diopside + plagioclase after omphacite, corundum + spinel + plagioclase after kyanite and biotite + plagioclase after phengite. Carbonatization along the veins of the retrogressed eclogite was probably coeval with formation of these symplectites. At places where carbonate is absent the rock was completely hydrated and retrogressed down to the greenschist facies with the development of actinolite. Similar eclogites together with abundant orthogneisses occur mainly in the eastern parts of the Tisza Megaunit, suggesting the existence of an ancient (possibly Variscan) subduction/accretionary complex.  相似文献   

17.
‘Sakenites’ constitute a unique association of corundum‐, spinel‐ and sapphirine‐bearing anorthitic to phlogopitic rocks, first described in rocks from an exposure along the beds of the Sakena river to the NW of Ihosy, south Madagascar. The exposure has been revisited and subjected to a detailed petrological and geochemical study. The aluminous anorthitic rocks occur as boudinaged bands and lenses, closely associated with corundum‐, spinel‐ and sapphirine‐bearing phlogopitites, diverse calcsilicate rocks and marbles within a series of biotite‐sillimanite‐cordierite gneisses of the Ihosy granulite unit in the NW of the Pan‐African Bongolava‐Ranotsara shear zone. Bimineralic anorthite + corundum domains preserve the earliest record of a polyphasic evolutionary history that includes two distinct metasomatic episodes. Probable protoliths of these bimineralic rocks were kaolinite‐rich sediments or calcareous bauxites that were altered by Ca or Si infiltration‐metasomatism prior to or coeval with the development of the anorthite‐corundum assemblage. P–T pseudosection modelling of metapelitic gneisses suggests peak‐conditions around 800 °C and 6–7 kbar for the regional high‐grade metamorphism and deformation in the NW part of the Bongolava‐Ranotsara shear zone. The well‐annealed granoblastic‐polygonal textures indicate complete chemical and textural re‐equilibration of the foliated bimineralic rocks during this event. Subsequently, at somewhat lower P–T conditions (750–700 °C, 6 kbar), the influx of Mg‐, Si‐ and K‐bearing fluids into the anorthite‐corundum rocks caused significant metasomatic changes. In zones infiltrated by ‘primary’ potassic fluids, the bimineralic assemblage was completely replaced by phlogopite and Mg‐Al minerals, thereby producing corundum‐, spinel‐ and sapphirine‐bearing phlogopitites. Further advance of the resulting ‘residual’ Mg‐ and Si‐bearing fluids into anorthite‐corundum domains led to partial to complete replacement of corundum porphyroblasts by spinel, spinel + sapphirine or sapphirine, depending on the activities of the solutes. The static textures developed during this second metasomatic episode suggest fluid influx subsequent to intense ductile deformation in the Bongolava‐Ranotsara ductile shear zone c. 530–500 Ma ago.  相似文献   

18.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

19.
The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW–SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E–W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550–520 Ma). The Ranotsara Zone shows significant NW–SE striking brittle faulting that reactivates part of the NW–SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.  相似文献   

20.
The Arthur River Complex is a suite of gabbroic to dioritic orthogneisses in northern Fiordland, New Zealand. The Arthur River Complex separates rocks of the Median Tectonic Zone, a Mesozoic island arc complex, from Palaeozoic rocks of the palaeo‐Pacific Gondwana margin, and is itself intruded by the Western Fiordland Orthogneiss. New SHRIMP U/Pb single zircon data are presented for magmatic, metamorphic and deformation events in the Arthur River Complex and adjacent rocks from northern Fiordland. The Arthur River Complex orthogneisses and dykes are dominated by magmatic zircon dated at 136–129 Ma. A dioritic orthogneiss that occurs along the eastern margin of the Complex is dated at 154.4 ± 3.6 Ma and predates adjacent plutons of the Median Tectonic Zone. Rims on zircon cores from this sample record a thermal event at c. 120 Ma, attributed to the emplacement of the Western Fiordland Orthogneiss. Migmatitic Palaeozoic orthogneiss from the Arthur River Complex (346 ± 6 Ma) is interpreted as deformed wall rock. Very fine rims (5–20 µm) also indicate a metamorphic age of c. 120–110 Ma. A post‐tectonic pegmatite (81.8 ± 1.8 Ma) may be related to phases of crustal extension associated with the opening of the Tasman Sea. The Arthur River Complex is interpreted as a batholith, emplaced at mid‐crustal levels and then buried to deep crustal levels due to convergence of the Median Tectonic Zone arc and the continental margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号