首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Gondwana Research》2014,26(4):1396-1421
This paper provides a review of the Late Mississippian to Permian paleoclimatic history for southern South America based on lithologic indicators, biostratigraphic information, and chronostratigraphic data. The region is divided into three major types of basins: 1. Eastern intraplate basins (e.g., Paraná Basin), 2. Western retroarc basins (e.g., Paganzo Basin) and 3. Western arc-related basins (e.g., Río Blanco Basin). Four major types of paleoclimatic stages are recognized in these basins: 1. glacial (late Visean–early Bashkirian), 2. terminal glacial (Bashkirian–earliest Cisuralian) 3. postglacial (Cisuralian–early Guadalupian), and 4. semiarid–arid (late Guadalupian–Lopingian). The glacial stage began in the late Visean and continued until the latest Serpukhovian or early Bashkirian in almost all of the basins in southern South America. During the Bashkirian–earliest Cisuralian (terminal glacial stage), glacial deposits disappeared almost completely in the western retroarc basins (e.g., Paganzo Basin) but glaciation persisted in the eastern basins (e.g., Paraná and Sauce Grande Basins). A gradual climatic amelioration (postglacial stage) began to occur during the earliest Permian when glacial deposits completely disappeared across all of South America. During this interval, glacial diamictites were replaced by thick coal beds in the Paraná Basin while north–south climatic belts began to be delineated in the western basins, which were likely controlled by the distribution of mountain belts along the Panthalassan Margin of South America. Towards the late Permian, climatic belts became less evident and semiarid or arid conditions dominated in the southern South America basins. Eolian dunes, playa lake deposits, and mixed eolian–fluvial sequences occur in the Paraná Basin and in the western retroarc basins. Volcanism and volcaniclastic sedimentation dominated along the western margin of South America at that time. The stratigraphic record obtained in southern South America supports a long duration transition from icehouse to extreme greenhouse conditions.  相似文献   

2.
Eyles  & Eyles 《Sedimentology》2000,47(2):343-356
The intracratonic Canning Basin is Western Australia's largest sedimentary basin (>400 000 km2) and has experienced repeated episodes of Phanerozoic extension and subsidence, resulting in deposition of a number of first-order 'megasequences'. A major phase of basin extension and sedimentation (Grant Group) occurred in the Late Carboniferous/Early Permian when Australia lay at high palaeolatitudes. Facies analysis of 5000 m of drill core from 25 continuously cored wells in Grant Group strata on the fault-bounded Barbwire Terrace in the northern Canning Basin identified three facies associations (FAs). These record the predominance of fault-generated, subaqueous mass flow and sediment reworking. The lowest association (FA I; up to 355 m thick) rests unconformably on tilted older strata and consists of coarse-grained, subaqueously deposited, sediment gravity flow facies. These include fault-generated breccias, massive and graded sandstones and conglomerates deposited by turbidity currents and diamictites generated by mixing of different textural populations during downslope remobilization. FA I is overlain abruptly by relatively fine-grained deposits of FA II (up to 140 m thick), which consist of laminated to thin-bedded mudstone and sandstone turbidites, recording an abrupt increase in relative water depths. In turn, these facies coarsen upwards and are transitional into shallow-water, swaley cross-stratified and rippled sandstones of FA III (up to 125 m thick). The overall stratigraphic succession probably records an initial phase of faulting and accommodation of coarse sediment (FA I), a subsequent phase of rapid subsidence, increasing water depths and 'sediment underfilling' (FA II) and, finally, a regressive phase of shoreface progradation. The occurrence of rare striated clasts in FA I suggests reworking of glacial sediment, but no direct glacial influence on sedimentation can be identified.  相似文献   

3.
During the Late Paleozoic, the Gondwana supercontinent was affected by multiple glacial and deglacial episodes known as “The Late Paleozoic Ice Age” (LPIA). In Brazil, the evidence of this episode is recorded mainly by widespread glacial deposits preserved in the Paraná Basin that contain the most extensive record of glaciation (Itararé Group) in Gondwana. The Pennsylvanian to early Permian glaciogenic deposits of the Itararé Group (Paraná Basin) are widely known and cover an extensive area in southern Brazil. In the Doutor Pedrinho area (Santa Catarina state, southern Brazil), three glacial cycles of glacier advance and retreat were described. The focus of this article is to detail the base of the second glacial episodes or Sequence II. The entire sequence records a deglacial system tract that is represented by a proximal glacial grounding-line system covered by marine mudstones and shales associated with a rapid flooding of the proglacial area. This study deals with the ice proximal grounding-line systems herein interpreted according to lab model named plane-wall jet with jump. Detailed facies analysis allowed the identification of several facies ranging from boulder-rich conglomerates to fine-grained sandstones. No fine-grained deposits such as siltstone or shale were recorded. According to this model, the deposits are a product of a supercritical plane-wall outflow jet that changes to a subcritical jet downflow from a hydraulic jump. The hydraulic jump forms an important energy boundary that is indicated by an abrupt change in grain size and cut-and-fill structures that occur at the middle-fan. The sedimentary facies and facies associations show a downflow trend that can be subdivided into three distinct stages of flow development: (1) a zone of flow establishment (ZFE), (2) a zone of transition (ZFT), and (3) an established zone (ZEF). The proximal discharge is characterized by hyperconcentrated-to-concentrated flow due to the high energy and sediment-laden nature of the flows. At the transitional zone, a hydraulic jump produces a rapid shift of conglomeratic to sandy facies with associated scour features. Towards the distal zones, the jet detaches to originate a vertical turbulent jet characterized by more diluted flows. Discussion of fan facies and architecture within a framework of jet-efflux dynamics provides an improved understanding of grounding-line fans systems that produce coarse-grained strata commonly enclosed by fine-grained rocks. The results have clear implication in terms of prediction of facies tract and geometry of oil and gas reservoirs deposited under similar conditions. And also can be useful to identifying the position of a glacial terminus through time.  相似文献   

4.
U–Pb dating and Hf-isotope provenance analysis of detrital zircons from the glaciogenic lower Permian Grant Group of the Canning Basin indicate sources principally from basement terranes in central Australia, with subordinate components from terranes to the south and north. Integrating these data with field outcrop and subsurface evidence for ice sheets, including glacial valleys and striated pavements along the southern and northern margins of the basin, suggests that continental ice sheets extended over several Precambrian upland areas of western and central Australia during the late Paleozoic ice age (LPIA). The youngest zircons constrain the maximum age for contemporaneous ice sheet development to the late Carboniferous (Kasimovian), whereas palynology provides a minimum age of early Permian (Asselian–Sakmarian). Considering the palynological age of the Grant Group within the context of regional and global climate proxies, the main phase of continental ice sheet growth was possibly in the Ghzelian–Asselian. The presence of ice sheets older than Kasimovian in western and central Australia remains difficult to prove given a regional gap in deposition possibly covering the mid-Bashkirian to early Ghzelian within the main depocentres and even larger along basin margins, and the poor evidence for older Carboniferous glacial facies. There is also no evidence for extensive glacial facies younger than mid-Sakmarian in this region as opposed to eastern Australia where the youngest regional glacial phase was Guadalupian.  相似文献   

5.
The Ericiyes Basin is a trans‐tensional basin situated 20 km north of the regional Ecemi? Fault Zone. Recently it has been hypothesized that faulting within the Erciyes Basin links with the Ecemi? Fault Zone further south as part of a regional Central Anatolian Fault Zone. New 40Ar/39Ar dating of volcanic and volcaniclastic rocks adjacent to faults, both along the margins and in the centre of the Erciyes Basin, constrains the timing of basin inception and later faulting. Extensional faulting occurred along the eastern and western margins of the basin during the Early Messinian (latest Miocene). Sinistral and minor normal faulting were active along the axis of the basin during the early Pleistocene. These fault timings are similar to those inferred for the Ecemi? Fault Zone further south, and support the hypothesis that faulting within the Erciyes Basin and the Ecemi? Fault Zone are indeed linked.  相似文献   

6.
The Kingston Peak Formation of the Pahrump Group in the Death Valley region of the Basin and Range Province, USA, is the thick (over 3 km) mixed siliciclastic–carbonate fill of a long‐lived structurally‐complex Neoproterozoic rift basin and is recognized by some as a key ‘climatostratigraphic’ succession recording panglacial Snowball Earth events. A facies analysis of the Kingston Peak Formation shows it to be largely composed of ‘tectonofacies’ which are subaqueous mass flow deposits recording cannibalization of older Pahrump carbonate strata exposed by local faulting. Facies include siltstone, sandstone and conglomerate turbidites, carbonate megabreccias (olistoliths) and related breccias, and interbedded debrites. Secondary facies are thin carbonates and pillowed basalts. Four distinct associations of tectonofacies (‘base‐of‐scarp’; FA1, ‘mid‐slope’; FA2, ‘base‐of‐slope’; FA3, and a ‘carbonate margin’ association; FA4) reflect the initiation and progradation of deep water clastic wedges at the foot of fault scarps. ‘Tectonosequences’ record episodes of fault reactivation resulting in substantial increases in accommodation space and water depths, the collapse of fault scarps and consequent downslope mass flow events. Carbonates of FA4 record the cessation of tectonic activity and resulting sediment starvation ending the growth of clastic wedges. Tectonosequences are nested within regionally‐extensive tectono‐stratigraphic units of earlier workers that are hundreds to thousands of metres in thickness, recording the long‐term evolution of the rifted Laurentian continental margin during the protracted breakup of Rodinia. Debrite facies of the Kingston Peak Formation are classically described as ice‐contact glacial deposits recording globally‐correlative panglacials but they result from partial to complete subaqueous mixing of fault‐generated coarse‐grained debris and fine‐grained distal sediment on a slope conditioned by tectonic activity. The sedimentology (tectonofacies) and stratigraphy (tectonosequences) of the Kingston Peak Formation reflect a fundamental control on local sedimentation in the basin by faulting and likely earthquake activity, not by any global glacial climate.  相似文献   

7.
The Late Carboniferous–Early Permian Itararé Group is a thick glacial unit of the Paraná Basin. Five unconformity-bounded sequences have been defined in the eastern outcrop belt and recognized in well logs along 400 km across the central portion of the basin. Deglaciation sequences are present in the whole succession and represent the bulk of the stratigraphic record. The fining-upward vertical facies succession is characteristic of a retrogradational stacking pattern and corresponds to the stratigraphic record of major ice-retreat phases. Laterally discontinuous subglacial tillites and boulder beds occur at the base of the sequences. When these subglacial facies are absent, deglaciation sequences lie directly on the basal disconformities. Commonly present in the lowermost portions of the deglaciation sequences, polymictic conglomerates and cross-bedded sandstones are generated in subaqueous proximal outwash fans in front of retreating glaciers. The overlying assemblage of diamictites, parallel-bedded and rippled sandstones, and Bouma-like facies sequences are interpreted as deposits of distal outwash fan lobes. The tops of the deglaciation sequences are positioned in clay-rich marine horizons that show little (fine-laminated facies with dropstones) or no evidence of glacial influence on the deposition and likely represent periods of maximum ice retreat.  相似文献   

8.
More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous–Oligocene strata. Most synclines are NNE–NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene–Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene–Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.  相似文献   

9.
The uppermost portion of the Taciba Formation, Itararé Group, Paraná Basin, Brazil, records a succession of depositional environments tied to the demise of late Paleozoic glaciation. In the study area, Teixeira Soares county, state of Paraná, the unit is dominated by massive to laminated diamictites with inclusions of sandstones and other coarse-grained lithotypes, representing re-sedimented material in proximal areas. These are succeeded by fine to medium-grained sandstones with tabular cross-stratification and pectinid-rich shell pavements, interpreted as nearshore deposits. Above this, laminated and intensely bioturbated siltstones with closed articulated bivalve shells are recorded, probably deposited in inner shelf settings. Fine to very fine sandstones/siltstones with hummocky cross-stratification and intercalated mudstones, including infaunal in situ shells, are interpreted as stacked storm deposits, generated in distal shoreface environments. These are succeeded by fossil-poor, massive to laminated siltstones/mudstones or gray shales (=Passinho shale) that are inferred to be outer shelf deposits, generated in organic-rich, oxygen-deficient muddy bottoms. In this sedimentary succession dropstones or ice-rafted debris are missing and locally the Passinho shale marks the maximum flooding surface of the Itararé succession. These are capped by the fluvio-deltaic deposits of the Rio Bonito Formation (Sakmarian–Artinskian). Six facies-controlled, bivalve-dominated assemblages are recognized, representing faunal associations that thrived in aerobic to extreme dysaerobic bottoms along a nearshore–offshore trend. Within these assemblages, nineteen bivalve species (three of them new) were recorded and described in detail. The presence of Myonia argentinensis (Harrington), Atomodesma (Aphanaia) orbirugata (Harrington) and Heteropecten paranaensis Neves et al. suggests correlation with bivalve assemblages of the Eurydesma-bearing Bonete Formation, Pillahuincó Group, Sauce Grande-Colorado Basin (Buenos Aires Province), Argentina, indicating a possible Asselian age for this diverse post-glacial bivalve fauna. Despite that, typical members of the icehouse-style EurydesmaTrigonotreta biota (stricto sensu) have not yet been found in the studied bivalve assemblages.  相似文献   

10.
During the Late Tortonian, platform‐margin‐prograding clinoforms developed at the south‐western margin of the Guadix Basin. Large‐scale wedge‐shaped deposits here comprise 26 rhythms of mixed carbonate–siliciclastic bedset packages and marl beds. These sediments were deposited on a shallow‐water, temperate‐carbonate distally steepened ramp. A downslope‐migrating sandwave field developed in this ramp, with sandwaves moving progressively down the ramp to the ramp‐slope, where they destabilized, folded and occasionally collapsed. Downslope sandwave migration was induced by currents flowing basinwards. During the Late Tortonian, the Guadix Basin was open north to the Atlantic Ocean via the Dehesas de Guadix Strait and connected east to the Mediterranean Sea through the Almanzora Corridor. According to the proposed current circulation model for the Guadix Basin for this time, surface marine currents from the Atlantic entered the basin from the northern seaway. These currents moved counter‐clockwise and shifted the sediment on the ramp, forming sandwaves that migrated downslope. The development of platform‐margin prograding clinoforms by the basinward sediment‐transport mechanisms inferred here is known relatively poorly in the ancient sedimentary record. Moreover, these wedge‐shaped geometries are similar to those found in some shelves in the Western Mediterranean Sea and could represent an outcrop analogue to (sub)‐recent, platform‐margin clinoforms revealed by high‐resolution seismic studies.  相似文献   

11.
Backstripping analysis has been carried out on five boreholes and one outcrop section of the Ecca Group in the Main Karoo Basin of South Africa to determine the sedimentation rate and subsidence history of the basin. The result shows that the rate of sedimentation in the Prince Albert, Whitehill, Collingham, Ripon and Fort Brown Formations range between 0.003–0.03, 0.02–0.05, 0.01–0.05, 0.03–0.22, and 0.15–0.025 mm year?1, respectively. The backstripped subsidence curves that are constructed by removing the effects of decompaction to the water column and sediment loads show subsidence rates decreasing with time, resembling the typical thermal subsidence curves of passive continental margins. Three major subsidence episodes characterized the Ecca Group, namely, (1) rapid subsidence in an extensional regime, (2) slow subsidence in the middle of basin development and (3) another rapid subsidence in a compressional regime. The aforementioned subsidence episodes show that the southeastern Karoo Basin was located on a passive continental margin, suggesting that the subsidence was initiated and mainly controlled by mechanical (gravitational loading) or tectonic events, with little contribution of thermal events. The average rate of tectonic subsidence in the Prince Albert, Whitehill, Collingham, Ripon and Fort Brown Formations are 63, 28, 25, 215 and 180 m Ma?1, respectively. It is also inferred that the southeastern Karoo Basin evolved from a passive continental margin into an Andean-type continental foreland basin; thus, portraying a completely evolved post-rift setting along the southeastern Gondwana margin.  相似文献   

12.
The Lower Cretaceous Botucatu Formation records the development of widespread dry–aeolian desert sedimentation throughout the Paraná Basin in south-west Gondwana. To reconstruct the provenance of the aeolian sediment, petrography, granulometric analysis, U-Pb detrital zircon ages have been determined from along the southern basin margin in Rio Grande do Sul state (southern Brazil) and Uruguay (Tacuarembó region). The dataset reveals a mean composition Qt89F8L3, comprising very fine to medium-grained quartozose and feldspatho-quartzose framework. Heavy mineral analysis reveals an overall dominance of zircon, tourmaline and rutile grains (mean ZTR0.84) with sporadic garnet, epidote and pyrolusite occurrences. The detrital zircon U-Pb ages are dominated by Cambrian to Neoproterozoic (515 to 650 Ma), Tonian to Stenian (900 to 1250 Ma) and Orosirian to Rhyacian (1.8 to 2.2 Ga) material. The detrital zircon dataset demonstrates a significant lateral variation in sediment provenance: Cambrian to Neoproterozoic detrital zircons dominate in the east, while Tonian to Stenian and Orosirian to Rhyacian ages predominate in the west of the study area. Sandstones are quartz-rich with dominantly durable zircon, tourmaline and rutile heavy mineral suite, with subtle but statistically significant along-strike differences in heavy mineral populations and detrital mineralogy which are thought to record local sediment input points into the aeolian system. The similar age spectra of Botucatu desert with proximal Paraná Basin units, the predominance of quartzose, and zircon, tourmaline and rutile components, suggests that recycling is the mechanism responsible for the erg feeding.  相似文献   

13.
14.
Changes in the sedimentologic and stratigraphic characteristics of the coal-bearing middle Oligocene–late Miocene siliciclastic Amagá Formation, northwestern Colombia, reflect major fluctuations in the stratigraphic base level within the Amagá Basin, which paralleled three major stages of evolution of the middle Cenozoic Andean Orogeny. These stages, which are also traceable by the changes in the compositional modes of sandstones, controlled the occurrence of important coal deposits. The initial stage of evolution of the Amagá Basin was related to the initial uplift of the Central Cordillera of Colombia around 25 Ma, which promoted moderate subsidence rates and high rates of sediment supply into the basin. This allowed the development of aggradational braided rivers and widespread channel amalgamation resulting in poor preservation of both, low energy facies and geomorphic elements. The presence of poorly preserved Alfisols within the scarce flood plains and the absence of swamp deposits suggest arid climate during this stage. The compositional modes of sandstones suggest sediment supply from uplifted basement-cored blocks. The second stage of evolution was related to the late Oligocene eastward migration of the Pre-Andean tholeitic magmatic arc from the Western Cordillera towards the Cauca depression. This generated extensional movements along the Amagá Basin, enhancing the subsidence and increasing the accommodation space along the basin. As a result of the enhanced subsidence rates, meandering rivers developed, allowing the formation of extensive swamps deposits (currently coal beds). The excellent preservation of Entisols and Alfisols within the flood plain deposits suggests rapid channels migration and a humid climate during deposition. Moderate to highly mature channel sandstones support this contention, and point out the Central Cordillera of Colombia as the main source of sediment. Enhanced subsidence during this stage also prevented channels amalgamation and promoted both, high preservation of geomorphic elements and high diversity of sedimentary facies. This resulted in the most symmetric stratigraphic cycles of the entire Amagá Formation. The final stage of evolution of the Amagá Basin was related to the early stage of development of the late Miocene northwestern Andes tholeitic volcanism (from ∼10 to ∼8 Ma). The extensive thrusting and folding associated to this volcanism reduced the subsidence rates along the basin and thus the accommodation space. This permitted the development of highly aggradational braided rivers and promoted channels amalgamation. Little preservation of low energy facies, poor preservation of the geomorphic elements and a complete obliteration of important swamp deposits (coal beds) within the basin are reflected by the most asymmetric stratigraphic cycles of the whole formation. The presence of greenish/reddish flood plain deposits and Alfisols suggests a dry climate during this depositional stage. The presence of channel sandstones with high contents of volcanic rock fragments supports a dry climate, and suggests an incipient phase of the Combia tholeiitic magmatism present during deposition of the Amagá Formation. The subsequent eastward migration of the NW Andes magmatic arc (after ∼8 Ma) may have produced basin inversion and suppressed deposition along the Amagá Basin.  相似文献   

15.
The lower part of the Early Cambrian Sekwi Formation in the Selwyn Basin of the Northwest Territories, Canada, is composed of two regional, unconformity‐bounded sequences, S0 and S1, which record the first widespread carbonate deposition during the initial Palaeozoic transgression onto the western margin of Laurentia. These Early Cambrian sequences are unique to the western North American Cordillera, representing the only record of primarily deep‐water deposition on a tectonically active, mixed carbonate–siliciclastic ramp during this period. More specifically, the geometry of the Sekwi ramp changed during deposition of S0 and S1, from a shallowly dipping homoclinal ramp during the S0 transgressive systems tract to a steeply dipping tectonically modified ramp during the early highstand systems tract of S0. The steeply dipping ramp profile of S0 was preserved into the early transgressive systems tract of S1. The Sekwi ramp returned to a gently sloping ramp during the late highstand systems tract of S1 and remained so throughout the remainder of Sekwi deposition. The evolving shape of the Sekwi ramp is attributed to syndepositional ‘down to the basin’ faulting during deposition of both S0 and S1 and is recorded by: (i) the westward thickening, irregular geometries of S0 and S1; (ii) geographical restriction of deep‐water facies (including sediment gravity flow deposits); (iii) the presence of large allochthonous blocks; and (iv) the clast composition of sediment gravity flow deposits. Sediment gravity flow deposits play an unusually important role in the sequence stratigraphic interpretation of the lower Sekwi Formation, as they delineate depositional packages, including the maximum flooding zone, the transitions between portions of systems tracts, and the inferred locations of syntectonic extensional faults. Syntectonic faults increased accommodation basinward of an extensive ooid‐shoal complex that developed along the Sekwi ramp crest, greatly influencing sequence geometry and initiating the downslope motion of sediment gravity flows. The syndepositional faulting probably was a continuation of extension that began during the latest Neoproterozoic rifting of western Laurentia. The composition of sediment gravity flow deposits track changing accommodation space on the lower Sekwi ramp and can be used to differentiate systems tracts that probably were related more to tectonism than eustasy.  相似文献   

16.
The feldspars of the Buntsandstein, their postdepositional alterations, dependance of grain size, their regional distribution and palaeogeographic significance were investigated. The work was based on X-Ray, optical and chemical investigations of about 1100 samples from the Buntsandstein areas in Western Germany and the Vosges. By statistical means feldspar portions independent from grain size were calculated and four different sedimentstreams were identified. The relation of these streams to stratigraphic units is discussed. One stream originated from the south-western margins of the basin, it is very poor in plagioklase and it reached most likely northern Hessen during Lower and Upper Buntsandstein time. During the Middle Buntsandstein it reached the centre of the Weser Basin in southern Niedersachsen. It was ?oppressed“ at its southeastern and eastern flankes by sediment streams originating from the Bohemian Massif. They are characterised by a different granulation, by different feldspar content, and by increasing plagioklase content. In northern Hessen and southern Niedersachsen they reached the western flank of the Weser Basin. During the Middle Buntsandstein this basin had partly been an interference area of S-N and SE-NW sediment flows.  相似文献   

17.
ABSTRACT This paper details the influence of syndepositional tectonics in controlling the architecture of a well‐exposed confined turbiditic sandbody, which crops out in the eastern part of the Tertiary Piedmont Basin (Castagnola Basin, northern Italy). The Castagnola Basin was tectonically active during sedimentation of the sandbody, and the lateral distribution of turbidity‐current deposits has been used to constrain both how the basin subsided and the impact of basin topography on flow behaviour and deposition. The sandbody occurs in the lower member of an Upper Oligocene–Lower Miocene turbidite system (the Castagnola Formation). The sandbody is ≈30 m thick and can be followed laterally for ≈1·8 km; it shows onlap terminations onto both northern and southern basin margins. The outcrop is sufficiently large to allow a detailed analysis of the facies and geometrical heterogeneity, as viewed approximately parallel to the average palaeocurrent trend (SW–NE). Correlation between 41 sedimentological logs reveals the diachronous development of a succession of sandstone packages (subunits). Nine vertically stacked and laterally juxtaposed packages have been recognized (subunits B to I from oldest to youngest), which reflect changes in basin floor accommodation as a result of synsedimentary tectonism. Each package shows the development of different vertical stacking patterns with thinning‐ and ‐fining‐upward small‐scale sequences and variable lateral facies arrangements, as a consequence of the position relative to the basin margins. The geometry, stratigraphic relationships, facies distribution and palaeocurrent directions indicate that turbidite deposition during accumulation of most of the sandbody was controlled by (1) synsedimentary tilting of the basin slopes; (2) the distribution of structural and depositional relief within the basin; (3) the thickness and volume of the turbidite flows; and (4) the angle of impingement of turbidity currents against the basin slopes.  相似文献   

18.
华北克拉通破坏的过程在地壳浅层沉积和构造变形中留有相应的建造和改造形迹。本文在前人研究基础上,据钻井、地震剖面和露头资料揭示的地层分布、沉积面貌以及构造变形特征,综合论述了印支期华北克拉通的沉积盆地原型及与克拉通破坏早期构造变形之间的响应关系。晚三叠世,华北克拉通残留地层具有分区分布特点: 克拉通腹地的鄂尔多斯地区上三叠统延长组发育较全,向东延展至晋中、豫西一带; 克拉通北缘的上三叠统杏石口组(及同期老虎沟组、黑山窑组等)沿辽西—京西—冀北一线零星分布; 克拉通南缘上三叠统沿豫南—陕南一线发育在北秦岭一带。南、北两缘晚三叠世地层均已卷入同期和后期构造变形,多被逆冲断层夹持并呈断片状产出。从构造变形角度,晚三叠世华北克拉通两侧均已发现大规模的南北向挤压构造,大致形成“对冲”格局,与内克拉通先存的东西向构造线一致。同生沉积记录了区域构造变形过程和/或由变形等因素控制的抬升剥蚀信息。在内克拉通,西部鄂尔多斯地区构造稳定,变形轻微,残留地层较全;东部地区抬升强烈,上三叠统大多数缺失;在东、西部之间存在一个沉积—构造的“缓冲”过渡区。从盆地原型恢复角度,晚三叠世华北克拉通表现为南北两缘陆内前陆盆地镶边的内克拉通盆地格局。华北克拉通腹地的盆地原型是叠覆在早—中三叠世盆地之上的继承性内克拉通盆地。华北克拉通北缘的陆内前陆盆地系统由阴山—燕山楔顶带、张家口—承德前渊带、清水河—山海关前隆带和京西—柳江隆后坳陷带构成;南缘的陆内前陆盆地系统则为北秦岭楔顶带、平凉—南召前渊带、环县—霍邱前隆带和铜川—济源隆后坳陷带。其中的铜川—济源和京西—柳江两个隆后坳陷带则可归属于华北内克拉通盆地。  相似文献   

19.
The Kamoa sub‐basin, in the south‐eastern part of the Democratic Republic of Congo, is a rift basin that hosts a world‐class stratiform copper deposit at the base of a very thick (1·8 km) succession of matrix‐supported conglomerates (diamictite) (Grand Conglomérat Formation) that has been interpreted by some as the product of deposition in the aftermath of a planet‐wide glaciation. Newly available subsurface data consisting of more than 300 km of drill core throws new light on the origin of diamictite and associated facies types, and their tectonic, basinal and palaeoclimatic setting. Initiation of rifting is recorded by a lowermost subaqueous succession of fault‐related mass flow conglomerates and breccias (the ‘Poudingue’) with interdigitating coeval and succeeding sandstone turbidites (Mwashya Subgroup). Overlying diamictites of the Grand Conglomérat were deposited as subaqueous debrites produced by mixing and homogenization of antecedent breccias and gravel from the Poudingue and Mwashya sediments with basinal muds. Failure of over‐steepened basin margins and debris flow was likely to be triggered by faulting and seismic activity, and was accompanied by syn‐depositional subaqueous basaltic magmatism recorded by peperites and pillow lavas within diamictites. The thickness of diamictites reflects recurring phases of faulting, volcanism and rapid subsidence allowing continued accommodation of rapidly deposited resedimented facies well below wave base. A distal or indirect, glacial influence in the form of rare dropstones and striated clasts is evident, but tectonically‐driven mass flow destroyed any primary record of glacial climate originally present in basin margin sediments. Such basin margin settings were common during Rodinia rifting and their stratigraphy and facies record a dominant tectonic, rather than climatic, control on sedimentation. Deposition occurred on tectonic timescales inconsistent with a Snowball Earth model for Neoproterozoic diamictites involving a direct glacial contribution to deposition.  相似文献   

20.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号