首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
With its amplification simultaneously emerging in cryospheric regions, especially in the Tibetan Plateau, global warming is undoubtedly occurring. In this study, we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014, reported spatiotemporal variability in surface air temperature in the future under four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), and further quantified the timing of warming levels (1.5, 2, and 3 °C) in the region. The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well, although with differences across individual models. The projected surface air temperature, by 2099, would warm by 1.9, 3.2, 5.2, and 6.3 °C relative to the reference period (1981–2010), with increasing rates of 0.11, 0.31, 0.53, and 0.70 °C/decade under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios for the period 2015–2099, respectively. Compared with the preindustrial periods (1850–1900), the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5 °C threshold and will break 2 °C in the next decade, but there is still a chance to limit the temperature below 3 °C in this century. Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.  相似文献   

2.
Changes in surface air temperature during the last century are widely discussed among researches in the field of climate change. This paper measures the variability of annual surface air temperature of five major cities of Pakistan (Lahore, Peshawar, Quetta, Hyderabad and Karachi) for the period from 1882 to 2003. We perform an exploratory analysis which shows that the annual landmass air temperature series of five relatively more important climate stations of Pakistan obey the normal distribution. A subsequent trend analysis shows that the temperature has been increasing in the twentieth century for the five (major) cities of Pakistan, the increase being 0.3°C to 1.0°C. We computations based on Bayesian analysis for two samples (e.g., for Lahore, we use data for the period from 1882 to 1960 and 1961–2000 for first sample and second sample, respectively) of temperature data of five cites shows that the average of annual mean temperature for the second period is higher than the average of first period. Thus, Bayesian inferencing shows that the general pattern of evolution of temperature over Pakistan is pretty similar to the current global warming configuration.  相似文献   

3.
Rapid warming in mid-latitude central Asia for the past 100 years   总被引:5,自引:0,他引:5  
Surface air temperature variations during the last 100 years (1901–2003) in mid-latitude central Asia were analyzed using Empirical Orthogonal Functions (EOFs). The results suggest that temperature variations in four major sub-regions, i.e. the eastern monsoonal area, central Asia, the Mongolian Plateau and the Tarim Basin, respectively, are coherent and characterized by a striking warming trend during the last 100 years. The annual mean temperature increasing rates at each sub-region (representative station) are 0.19°C per decade, 0.16°C per decade, 0.23°C per decade and 0.15°C per decade, respectively. The average annual mean temperature increasing rate of the four sub-regions is 0.18°C per decade, with a greater increasing rate in winter (0.21°C per decade). In Asian mid-latitude areas, surface air temperature increased relatively slowly from the 1900s to 1970s, and it has increased rapidly since 1970s. This pattern of temperature variation differs from that in the other areas of China. Notably, there was no obvious warming between the 1920s and 1940s, with temperature fluctuating between warming and cooling trends (e.g. 1920s, 1940s, 1960s, 1980s, 1990s). However, the warming trends are of a greater magnitude and their durations are longer than that of the cooling periods, which leads to an overall warming. The amplitude of temperature variations in the study region is also larger than that in eastern China during different periods.  相似文献   

4.
Surface air temperature is one of the main factors that can be used to denote climate change. Its variation in the westerly and monsoon-influenced part of China (i.e., North-West and East China) were analyzed by using monthly data during 1961–2006 from 139 and 375 meteorological stations over these two regions, respectively. The method of trend coefficient and variability was utilized to study the consistency and discrepancy of temperature change over North-West and East China. The results suggest that whether for the annual or the seasonal mean variations of temperature, there were consistent striking warming trends based on the background of global warming over North-West and East China. The most obvious warming trends all appeared in winter over the two regions. Except for the period in spring, the annual and seasonal mean warming trends in North-West China are more obvious than those in East China. The annual mean temperature warming rates are 0.34°C per decade and 0.22°C per decade over North-West and East China, respectively. The average seasonal increasing rates in spring, summer, autumn, and winter are 0.22°C per decade, 0.24°C per decade, 0.35°C per decade, and 0.55°C per decade in North-West China, respectively. At the same time, they are 0.25°C per decade, 0.11°C per decade, 0.22°C per decade, and 0.39°C per decade in East China, respectively. The temperature discrepancies of two adjacent decades are positive over the westerlies and monsoonal region, and they are bigger in the westerlies region than those in the monsoonal region. The most significant warming rate is from the North-East Xinjiang Uygur Autonomous Region of China to West Qinghai Province of China in all seasons and annually over the westerlies region. The North and North-East China are the main prominent warming areas over the monsoonal region. The warming rate increases with latitude in the monsoonal region, but this is not the case in the westerlies region.  相似文献   

5.
In the present study, an investigation has been made to study the spatial and temporal variability in the maximum, the minimum and the mean air temperatures at Madhya Pradesh (MP), in central India on monthly, annual and seasonal time scale from 1901 to 2002. Further, impact of urbanization and cloud cover on air temperature has been studied. The annual mean, maximum and minimum temperatures are increased by 0.60, 0.60 and 0.62 °C over the past 102 years, respectively. Seasonally, the warming is more pronounced during winter than summer. The temperature decreased during the less urbanized period (from 1901 to 1951) and increased during the more urbanized period (1961 to 2001). It is also found that the minimum temperature increased at higher rate (0.42 °C) followed by the mean (0.36 °C) and the maximum (0.32 °C) temperature during the more urbanized period. Furthermore, cloud cover is significantly negatively related with air temperature in monsoon season and as a whole of the year.  相似文献   

6.
地下浅层地温和近地表空气温度存在着必然的内在联系,地面温度变化的信息随着时间推移向下传播并叠加到稳态地温场上,因此通过对现今地温剖面的分析可以重建过去地面温度变化的历史。为了研究西安地区地下和地上的温度变化,本文在西安开展了钻孔温度测量,获得了16个钻孔的地温剖面,同时收集整理了西安气象站1951~2010年气温数据。对1951~2010年气温数据进行回归分析得到西安地区年平均气温、年平均最高气温和最低气温增温率分别为3.71 ℃/100a、2.03 ℃/100a和5.14 ℃/100a,均高于全国和全球平均水平,其中1986~2010年间平均气温增温更是显著,达到9.01 ℃/100a。从钻孔测温曲线中筛选出西安城郊6个传导型地温剖面进行分析,结果表明西安地区钻孔温度记录的地面温度变化趋势与气象台记录的气温变化趋势基本吻合。根据利用钻孔温度剖面下段回归分析得到的地表稳态温度和地温梯度以及25年间西安地区平均气温增温率推算得到钻孔理论地温剖面与实测地温数据总体上具有较好的一致性。对实测地温数据的进一步精确拟合分析显示,西安城郊6个选定的钻孔所在区域地面温度变暖分别起始于20年、24年、26年、28年、30年和30年前,对应的地表增温幅度分别为0.4 ℃、0.72 ℃、2.18 ℃、4.2 ℃、2.4 ℃和2.4 ℃。市区和周边郊区钻孔所在区域在增温幅度上存在明显的差异,市区增温强度明显高于郊区,而城郊结合部介于两者之间。  相似文献   

7.
The inter-annual variation and linear trends of the surface air temperature in the regions in and around the Bay of Bengal have been studied using the time series data of monthly and annual mean temperature for 20–40 years period within 1951–1990. The study area extends from Pusma Camp of Nepal in the north and Kuala Lumpur of Malaysia in the south and between 80--100 ° E. The annual variation of temperature has also been studied using the mean monthly temperature for the variable time frames 1961–1975, 1976–1990 and 1961–1990. The trend of temperature has been analyzed using linear regression technique with the data from 1961–1990, which showed that the warming trend is dominant over the study areas except for a few stations. It has been found that Nepal shows predominant warming trends. Bangladesh and the adjacent areas of India and the northern part of Bay of Bengal adjacent to the Bangladesh coast have shown strong warming trends of the annual temperature with maximum at Dhaka (0.037 °C/year). The near equatorial zone, i.e., southern India, Sri Lanka and part of Thailand and Malaysia (Kuala Lumpur) shows warming trends in the annual mean temperature with strong warming at Pamban and Anuradhapura (around 0.04 °C/year). The cooling trends have been observed at a few stations including Port Blair, Yangoon and Cuttack. Further analysis shows the presence of prominent ENSO scale of variations with time period 4–7 years and 2–3 years for almost all the stations. The decadal mode with T >7 years is present in some data series. The results of the variations of temperature with respect to the Southern Oscillation Index (SOI) show that SOI has some negative correlation with temperature for most of the stations except those in the extreme northeast. It has been found that positive anomaly of temperature has been observed for El Niño events and negative anomaly for the La Nina events.  相似文献   

8.
The objective of the present study was to reconstruct a short-term (12–14 years) trend of surface temperature and precipitation patterns using their surrogates as provided by satellite images for selected locations along the Red Sea mountains in Saudi Arabia. Time series land surface temperature (LST) and normalized difference vegetation index (NDVI) data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite were temporally plotted to delineate the trend and the decadal rates of change of both parameters. Results showed that real climate change is reported in the study area during the study period. There is a net increasing in the surface temperatures by 0.45 to 1.2 °C/decade and a net decrease in annual rainfall between 2001 and 2014. Findings of the present study show that the region is under a warming of the climate and a declining of wetness, which coincide with the air temperature and rainfall trends obtained from meteorological stations.  相似文献   

9.
A series of global actions have been made to address climate change. As a recent developed climate policy, Intended Nationally Determined Contributions (INDC) have renewed attention to the importance of exploring temperature rise levels lower than 2 °C, in particular a long-term limit of 1.5 °C, compared to the preindustrial level. Nonetheless, achieving the 2 °C target under the current INDCs depends on dynamic socioeconomic development pathways. Therefore, this study conducts an integrated assessment of INDCs by taking into account different Shared Socioeconomic Pathways (SSPs). To that end, the CEEP-BIT research community develops the China’s Climate Change Integrated Assessment Model (C3IAM) to assess the climate change under SSPs in the context of with and without INDCs. Three SSPs, including “a green growth strategy” (SSP1), “a more middle-of-the-road development pattern” (SSP2) and “further fragmentation between regions” (SSP3) form the focus of this study. Results show that after considering INDCs, mitigation costs become very low and they have no evident positive changes in three SSPs. In 2100, a temperature rise would occur in SSP1-3, which is 3.20, 3.48 and 3.59 °C, respectively. There are long-term difficulties to keep warming well below 2 °C and pursue efforts toward 1.5 °C target even under INDCs. A drastic reduction in greenhouse gas emissions is needed in order to mitigate potentially catastrophic climate change impacts. This work contributes on realizing the hard link between the earth and socioeconomic systems, as well as extending the economic models by coupling the global CGE model with the economic optimum growth model. In C3IAM, China’s energy consumption and emissions pattern are investigated and refined. This study can provide policy makers and the public a better understanding about pathways through which different scenarios could unfold toward 2100, highlights the real mitigation and adaption challenges faced by climate change and can lead to formulating effective policies.  相似文献   

10.
Future projections of climate suggest our planet is moving into a ‘super‐interglacial’. Here we report a global synthesis of ice, marine and terrestrial data from a recent palaeoclimate equivalent, the Last Interglacial (ca. 130–116 ka ago). Our analysis suggests global temperatures were on average ~1.5°C higher than today (relative to the AD 1961–1990 period). Intriguingly, we identify several Indian Ocean Last Interglacial sequences that suggest persistent early warming, consistent with leakage of warm, saline waters from the Agulhas Current into the Atlantic, intensifying meridional ocean circulation and increasing global temperatures. This mechanism may have played a significant positive feedback role during super‐interglacials and could become increasingly important in the future. These results provide an important insight into a future 2°C climate stabilisation scenario. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Annually resolved June–July–August (JJA) temperatures from ca. 570 BC to AD 120 (±100 a; approximately 690 varve years) were quantified from biogenic silica and chironomids (Type II regression; Standard Major Axis calibration‐in‐time) preserved in the varved sediments of Lake Silvaplana, Switzerland. Using 30 a (climatology) moving averages and detrended standard deviations (mean–variability change, MVC), moving linear trends, change points and wavelets, reconstructed temperatures were partitioned into a warmer (+0.3°C; ca. 570–351 BC), cooler (?0.2°C; ca. 350–16 BC) and moderate period (+0.1°C; ca. 15 BC to AD 120) relative to the reconstruction average (10.9°C; reference AD 1950–2000 = 9.8°C). Warm and variable JJA temperatures at the Late Iron Age–Roman Period transition (approximately 50 BC to AD 100 in this region) and a cold anomaly around 470 BC (Early–Late Iron Age) were inferred. Inter‐annual and decadal temperature variability was greater from ca. 570 BC to AD 120 than the last millennium, whereas multi‐decadal and lower‐frequency temperature variability were comparable, as evident in wavelet plots. Using MVC plots of reconstructed JJA temperatures from ca. 570 BC to AD 120, we verified current trends and European climate model outputs for the 21st century, which suggest increased inter‐annual summer temperature variability and extremes in a generally warmer climate (heteroscedasticity; hotspot of variability). We compared these results to MVC plots of instrumental and reconstructed temperatures (from the same sediment core and proxies but a different study) from AD 1177 to AD 2000. Our reconstructed JJA temperatures from ca. 570 BC to AD 120 showed that inter‐annual JJA temperature variability increased rapidly above a threshold of ~10°C mean JJA temperature. This increase accelerated with continued warming up to >11.5°C. We suggest that the Roman Period serves with respect to inter‐annual variability as an analogue for warmer 21st‐century JJA temperatures in the Alps. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
1961—2008年若尔盖高原湿地的气候变化和突变分析   总被引:3,自引:0,他引:3  
利用1961—2008年若尔盖高原湿地境内的5个气象台站的逐月气象数据和玛曲水文站的径流数据,分析了近48a来若尔盖湿地的气候变化趋势,并应用M-K方法、累积距平和滑动t检验对年降水量和平均气温的气候突变进行了检测.结果表明:从1960年代的冷湿期,到1980年代中期到1990年代中后期的冷干期,再到1990年代末起增暖迅速进入暖干期,若尔盖湿地气候呈现较明显的暖干化趋势:一方面,总云量持续减少,日照时数上升,平均气温明显上升,气温日较差逐渐减小;另一方面,降水量、蒸发量、径流量总体都呈减少趋势,干燥指数也逐渐降低.秋季是若尔盖高原湿地气候发生暖干化最明显的季节,气候变暖主要是平均最低温度显著升高的贡献.日较差是蒸发量变化的最重要的影响因子,但低云量、气温、日照等的作用也不能忽视.年平均气温和降水量分别在1997年和1985年发生突变,分别转为迅速增暖和持续减少.  相似文献   

13.
Glaciers are among the most conspicuous and dynamic features on the earth’s surface and are also highly sensitive to changes in climatic parameters. Glaciers in the Kashmir Himalayas have been reported to be retreating due to climate forcing. Kolahoi Glacier is one of the largest and important glaciers of the Kashmir Himalayas and is the main source of Liddar River, which is the largest tributary of the Jhelum River system. In the present study, an analysis to assess the response of Kolahoi Glacier to the changing climate was carried out using the Survey of India (SoI) map and multi-temporal Landsat satellite data. The results show a significant change in the spatial extent of Kolahoi Glacier. The total area of this glacier has reduced from 12.21 km2 in 1962 to 11.61 km2 in 2010. An analysis of meteorological data (temperature and precipitation) shows that the average annual temperature increased from 9.1 °C in 1980–1989 to 10.3 °C in 2000–2009, while the precipitation decreased from 1329.44 to 1126.89 mm during the same period. The results suggest that this glacier will be annihilated completely if the same retreating trend continues.  相似文献   

14.
Distribution of grassland vegetation is highly associated with climatic conditions and varied with climatic change. The tendency of climatic changes on Qinghai Plateau was analyzed, based on the meteorological data from 1961 to 2007 collected from 50 meteorological stations distributed throughout the whole plateau. The vegetation distribution of alpine grassland under past and future climatic change was estimated by using the approach of Comprehensive and Sequential Classification system. Results show that the climate varied greatly before and after 1987. The temperature increased 0.16°C/10a before 1987 and 0.64°C/10a after 1987. The precipitation increased 0.14 mm/10a before 1987 and 3.92 mm/10a after 1987. There were 12 types of grassland vegetation between 1961 and 1987, while there were 11 types of grassland vegetation between 1988 and 2007 on the Plateau. When climatic warming continued with CO2 doubling in the future, the vegetation of alpine grassland will shrink into nine types.  相似文献   

15.
The large landmass of northern Russia has the potential to influence global climate through amplification of climate change. Reconstructing climate in this region over millennial timescales is crucial for understanding the processes that affect the global climate system. Chironomids, preserved in lake sediments, have the potential to produce high resolution, low error, quantitative summer air temperature reconstructions. Canonical correspondence analysis of modern surface sediments from high-latitude lakes, located in northern European Russia and central Siberia, suggests that mean July air temperature is the most significant variable explaining chironomid distribution and abundance. This strong relationship enabled the development of a chironomid-based mean July air temperature-inference model based on 81 lakes and 89 taxa which has a rjack2 = 0.92 and RMSEP = 0.89 °C. Comparison of taxon responses to July temperature between this Russian and existing Norwegian data-sets shows that the temperature optima of individual taxa were between 1 and 3 °C higher in the Russian data regardless of modelling technique. Reconstructions based on fossil assemblages from a Russian tundra lake core (VORK5) using a Norwegian chironomid-based inference model provide mean July air temperature estimates that are 1.0–2.7 °C colder than from the 81-lake Russian model and are also lower than the instrumental record from a nearby meteorological station. The Norwegian model also did not reconstruct decadal-scale fluctuations in temperature seen in the instrumental record. These observations suggest that chironomid-based inference models should only be applied to sediment cores which have similar climate regimes to the geographic area of the training set. In addition a 149 lake, 120 taxa chironomid-based continentality inference model was also developed from the modern Norwegian and Russian training sets. A 2-component WA-PLS model was the minimal adequate model with rjack2 = 0.73 and RMSEP = 9.9 using the Gorczynski continentality index. Comparison of reconstructed continentality indices from the tundra lake, VORK5, show close agreement with local instrumental records over the past 70 years and suggest that the model is reliable. Recent warming in the Arctic has been spatially and seasonally heterogeneous; in many areas warming is more pronounced in the spring and autumn leading to a lengthening of the summer, while summer temperatures have remained relatively stable. A continentality inference model has the potential to detect these seasonal changes in climate.  相似文献   

16.
This study was conducted to reveal the trends of the air temperature and soil temperature for 51 years (1960–2010) and their relationship in four of Korea’s largest metropolitan cities (Seoul, Incheon, Busan and Daejeon). Also, the trends of the air and soil temperatures between the studied metropolitan cities and a rural area (Chupungryong) were compared to examine the effect of urban heat. Among the metropolitan cities, the long-term mean soil temperatures (depth 0.0, 0.5, 1.0, 1.5, 3.0, 5.0 m) were lowest (13.34–14.80 °C) in Seoul and highest (16.24–16.54 °C) in Busan, which is mainly the effect of the latitude. The soil temperature exponentially increased with depth in the three cities except for Busan and was closely related to the air temperature. The soil temperatures responded well to the air temperature change (maximum correlation coefficients 0.88–0.98) but this response was slightly delayed with depth. The air and soil temperatures increased at the rates of 0.24–0.40 and 0.11–0.73 °C/decade, respectively, for the period. The increasing rate of the soil temperature was the largest in Daejeon as 0.39–0.73 °C/decade, which was almost 2–4 times greater than those of the other cities (0.11–0.40 °C/decade), and it rose with depth. The increase of the soil temperature was coincident with the increase of the air temperature, which indicates that the soil temperature was largely affected by the increasing of the air temperature. In contrast, the increase in air temperature in Chupungryong (0.06 °C/decade) was significantly lower than in the metropolitan cities. In addition, the increase of the soil temperature in the rural area (0.13 °C/decade) was also much lower than that in the inland cities (0.20–0.27 °C/decade) while it showed no substantial difference from that in the coastal cities (0.11–0.15 °C/decade). Therefore, it is inferred that the soil temperature of the metropolitan cities increased with the increase of the air temperature due to global warming as well as the anthropogenic urban heat.  相似文献   

17.
Meteorological drought during the southwest monsoon season and for the northeast monsoon season over five meteorological subdivisions of India for the period 1901–2015 has been examined using district and all India standardized precipitation index (SPI). Whenever all India southwest monsoon rainfall was less than ?10% or below normal, for those years all India SPI was found as ?1 or less. Composite analysis of SPI for the below normal years, viz., less than ?15% and ?20% of normal rainfall years indicate that during those years more than 30% of country’s area was under drought condition, whenever all India southwest monsoon rainfall was –15% or less than normal. Trend analysis of monthly SPI for the monsoon months identified the districts experiencing significant increase in drought occurrences. Significant positive correlation has been found with the meteorological drought over most of the districts of central, northern and peninsular India, while negative correlation was seen over the districts of eastern India with NINO 3.4 SST. For the first time, meteorological drought analysis over districts and its association with equatorial pacific SST and probability analysis has been done for the northeast monsoon over the affected regions of south peninsular India. Temporal correlation of all India southwest monsoon SPI and south peninsular India northeast monsoon SPI has been done with the global SST to identify the teleconnection of drought in India with global parameters.  相似文献   

18.
Modern meteorological observations in South China from 1960 to 2009 show a strong correlation between winter temperatures and two snowfall parameters, the southern boundary of the snow and the number of snowy days. Based on this relationship, the variation in annual winter mean temperature in South China from 1736 to 2009 was reconstructed using data acquired from Chinese historical documents dating from the Qing dynasty, such as memos and local gazettes. The reconstructed time series were used to analyse variations in winter temperature in South China. Significant interannual and interdecadal changes were found. The maximum temperature difference between neighbouring years was 3.1 °C for 1958–2009 and 3.0 °C for 1736–1957, whereas the maximum temperature difference between adjacent decades was 0.8 °C for the 1960s–2000s and 0.6 °C for the 1740s–1950s. The 2000s was the warmest decade; the mean temperature was 1.6 °C higher than that of the 1870s, which was the coldest decade between the 1740s and the 2000s. The mean winter temperature was warmer in the 18th and 20th centuries and coldest in the 19th century.  相似文献   

19.
This paper examines the variability of seismic activity observed in the case of different geological zones of peninsular India (10°N–26°N; 68°E–90°E) based on earthquake catalog between the period 1842 and 2002 and estimates earthquake hazard for the region. With compilation of earthquake catalog in terms of moment magnitude and establishing broad completeness criteria, we derive the seismicity parameters for each geologic zone of peninsular India using maximum likelihood procedure. The estimated parameters provide the basis for understanding the historical seismicity associated with different geological zones of peninsular India and also provide important inputs for future seismic hazard estimation studies in the region. Based on present investigation, it is clear that earthquake recurrence activity in various geologic zones of peninsular India is distinct and varies considerably between its cratonic and rifting zones. The study identifies the likely hazards due to the possibility of moderate to large earthquakes in peninsular India and also presents the influence of spatial rate variation in the seismic activity of this region. This paper presents the influence of source zone characterization and recurrence rate variation pattern on the maximum earthquake magnitude estimation. The results presented in the paper provide a useful basis for probabilistic seismic hazard studies and microzonation studies in peninsular India.  相似文献   

20.
In this study, the climate changes over Arid Central Asia(ACA) during the mid-Holocene(approximately 6,000 calendar years ago, MH) and the Last Glacial Maximum(approximately 21,000 calendar years ago, LGM) were investigated using multimodel simulations derived from the Paleoclimate Modelling Intercomparison Project Phase 3(PMIP3). During the MH, the multimodel median(MMM) shows that in the core region of ACA, the regionally averaged annual surface air temperature(SAT) decreases by 0.13°C and annual precipitation decreases by 3.45%, compared with the preindustrial(PI) climate. The MMM of the SAT increases by 1.67/0.13°C in summer/autumn, whereas it decreases by 1.23/1.11°C in spring/winter. The amplitude of the seasonal cycles of the SAT increases over ACA due to different MH orbital parameters. For precipitation, the regionally averaged MMM decreases by 5.77%/5.69%/0.39%/5.24% in spring/summer/autumn/winter, respectively. Based on the analysis of the aridity index(AI), compared with the PI, a drier climate appears in southern Central Asia and western Xinjiang due to decreasing precipitation. During the LGM, the MMM shows that the regionally averaged SAT decreases by 5.04/4.36/4.70/5.12/5.88°C and precipitation decreases by 27.78%/28.16%/31.56%/27.74%/23.29% annually and in the spring, summer, autumn, and winter, respectively. Robust drying occurs throughout almost the whole core area. Decreasing precipitation plays a dominant role in shaping the drier conditions, whereas strong cooling plays a secondary but opposite role. In response to the LGM external forcings, over Central Asia and Xinjiang, the seasonal cycle of precipitation has a smaller amplitude compared with that under the PI climate. In the model-data comparison, the simulated MH moisture changes over ACA are to some extent consistent with the reconstructions, further confirming that drier conditions occurred during that period than during the PI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号