首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
21世纪中叶天津沿海地区极端高水位趋势预测   总被引:6,自引:3,他引:3  
宋美钰  王福  王宏 《地质通报》2008,27(6):829-836
据统计,天津沿海地区50年一遇的风暴潮极端增水水位为 4.092m,开展控沉工作后的地面下沉速率约为15mm/a,目前沿岸海挡顶面高程一般为 4.332m.参考孟加拉湾、伦敦、汉堡等沿海地区在2050年海平面上升(取较今高约0.2m的推测值)背景下的极端增水趋势预测(增加0.5m),推测天津沿海地区2050年的极端高水位将增加到 4.792m(4.092m 0.2m 0.5m),现有海挡顶面高程将下沉至 3.687m(以2007年为起算年份).2050年极端高水位将比届时的海挡顶面高1.105m,由此将加重风暴潮水漫溢致灾的危险.如果再考虑波浪叠加、河口效应、极端海面上升等不确定因素的影响,危险将更加严重.  相似文献   

2.
中国沿海地区地面沉降问题思考   总被引:7,自引:0,他引:7  
中国沿海地区地面沉降主要发生在大河三角洲及沿海平原区。文章主要以我国两大沿海城市——上海及天津为例,分析和阐述了沿海地区发生地面沉降的机理以及影响地面沉降发生发展的诸多因素。指出,孔隙水承压含水层中抽取地下水将引起承压水位降低进而引起土颗粒承担的有效压力的增大,从而使土层压缩。影响沿海地区地面沉降的因素有新构造运动、全球海平面上升、软土地基自然沉降、过量抽取地下流体以及建筑施工造成的局部沉降等。文章认为,在诸多影响因素中,人类过量开采地下流体是导致地面沉降发生的主要原因,人类应在资源利用和环境保护方面力争双赢。  相似文献   

3.
根据水准测量资料及水准点高程的线性模型计算,获得天津沿海地区地面沉降速率分布。结合风暴潮灾害与海堤工程现状调查,研究认为风暴潮灾害的经济损失与沿海地区不断加剧的地面沉降密切相关。天津地区风暴潮灾害的发生频率已由历史时期的8年一次,上升到地面沉降发展时期的5年一次,风暴潮致灾频率呈加快趋势,地面沉降以及由此引发的风暴潮灾害加剧已成为天津滨海新区沿海的重要自然灾害。提出应着力落实天津市控制地面沉降管理办法和防潮工程措施、加强地面沉降治理和海堤建设等工作建议。  相似文献   

4.
渤海湾西岸泥质海岸带地质环境现状与趋势预测   总被引:4,自引:3,他引:1  
简要介绍了与泥质海岸带现代地质环境变化有关的最新研究结果,包括地质历史时期全球气温与海面的变化、21世纪海平面上升趋势预测、极端高水位、新奥尔良实例等。根据对前人成果的综合研究和小组获得的最新数据,阐明了影响渤海湾西岸环境变化的主要因素——保有高程、加积作用、地面下沉、海面上升和以极端增水为代表的突发事件——各自的现状,提出了综合诸因素相互作用的泥质海岸带的研究思路和警惕可能的沼泽化趋势的建议。  相似文献   

5.
上海地区未来海平面上升及产生的可能影响   总被引:5,自引:0,他引:5  
未来海平面变化,特别是由于地面沉降等引起的相对海平面上升,将对沿海地区的地质环境及人类的生存发展产生极大的影响,通过对影响上海地区海平面变化主要因素的概括,对未来的相对海平面变化作出了预测,对由海平面上升引起的环境效应作了阐述,提出了相应的防治对策。强调了控制上海地区的地面沉降,以减轻海平面上升所造成的危害,具有特殊而重要的意义。  相似文献   

6.
渤海湾地区广泛分布的古海面标志物,为建立该地区的相对海面变化曲线提供了良好的基础。过去20年来该地区已相继建立了一些相对海面变化曲线,但在讨论影响古海面标志物高程的因素时,未将构造活动与水动型海面变化及均衡作用对高程的贡献量加以区分。文章以该地区7个点的古海面标志物及相关层位的高程测量与年代学测定结果,经与地区性预测海面变化曲线进行对比后,定量讨论了该地区海面变化(包括绝对海面变化与冰川、水均衡作用)与构造活动对古海面标志物高程的贡献;并以壳体的稳定同位素、地层记录与古地震研究资料讨论了牡蛎礁体在建礁过程中所记录的构造下沉。  相似文献   

7.
利用层次分析-综合指数法,对1985-2014年江苏省沿海地区累计地面沉降量及2014年地面沉降速率进行叠加分析,形成地区地面沉降危险性分区图;并选取地面高程、人口密度、GDP、公路和单位面积固定投资额作为指标,绘制易损性分区图;最后采用乘积法风险模型对江苏沿海地区开展地面沉降风险评价。评价结果显示:江苏沿海地区地面沉降高风险区占总面积18.71%,主要集中于南通市,其次分布于盐城市的建湖县、射阳县、阜宁县、响水县、市区及连云港市的灌南县等地;中等风险区主要围绕着高风险区分布,占研究区总面积的33.69%,;低风险区占总面积的47.60%。以地面沉降风险评价结果为基础,结合地面沉降现状及已有的防护措施,有甄别地提出相应防治措施。  相似文献   

8.
全新世河流相及海相沉积物堆积于尼罗河三角洲东北边缘的地堑状构造中。包括曼苏腊湖、塞得港和苏伊士运河北段的三角洲这一部分,自约7500年前以来,一直以高0.5厘米/年的速率迅速沉降着。沉降至少使尼罗河的四条主要支流转向流经这一地区。到2100年时,该地区持续下沉和海面上升的共同效应将可能淹没三角洲北部平原的大部分地区。沿海地区的沉积物输入因阿斯旺高坝的建立而急剧减少,由此引起的连续下沉的影响很可能是巨大的,特别是对于塞得港甚至向内陆方向发展直到曼苏腊湖以南地区。  相似文献   

9.
近年来我国海洋灾害损失及防灾减灾策略   总被引:2,自引:0,他引:2  
王爱军 《江苏地质》2005,29(2):98-101
我国是世界上海洋灾害最为严重的少数国家之一。近年来,由风暴潮、灾害性海浪、赤潮、海冰、海平面上升等海洋灾害带来的经济损失和人员伤亡越来越严重,其中,风暴潮是影响我国沿海地区最为严重的海洋灾害。通过建立海岸生态防护网、提高沿海地区防潮工程标准、开发海洋灾害监测和预报系统、实行海洋数据资料和信息共享等方法,降低海洋灾害发生的机率,减少海洋灾害损失。  相似文献   

10.
全球海平面变化研究新进展   总被引:8,自引:1,他引:8  
综述了近10年来海平面变化研究的主要成果,分析了影响海平面变化的主要因素,探讨了海平面变化研究中存在的一些问题。结果表明:①近10年全球平均海平面上升幅度大约为2.5~3.84 mm/a,热膨胀是引起海平面上升的主因;②海平面变化具有时空分布差异——西太平洋和东印度洋地区上升最快,其值高出全球平均值的10倍以上;大西洋与太平洋30~40°N地区季节变化最明显;③将海平面季节高值时段与北半球热带气旋出现时间进行对比,发现每年8~10月份,在20~50°N的西北太平洋与北大西洋沿岸地区出现海平面最高值与热带气旋相叠加的全球危险海岸带,该地带包括中国大陆东部、日本沿海地区、美国东部海岸带、墨西哥湾地区和加勒比海地区。  相似文献   

11.
《China Geology》2019,2(1):26-39
Bulletins of China’s National Sea Level show that the average rising rate of sea-levels in China is 3.3 mm/a over the past 40 years, with an obviously accelerated rising trend in the last decade. The rate of relative sea-level rise of the Yangtze River Delta reached >10 mm/a after considering the land subsidence, and Bohai Bay is even greater than 25 mm/a. The impact of the sea level rise to the coastal area will be greater in the coming years, so carrying out an assessment of this rising trend is urgent. This paper, taking the coastal area of Tianjin and Hebei as examples, comprehensively evaluates the impact of sea-level rise through multitemporal remote sensing shoreline interpretation, ground survey verification, elevation measurements for both seawall and coastal lowlands. The results show that the average elevation of the measured coastal areas of Tianjin and Hebei is about +4 m, and the total area of >100 km2 is already below the present mean sea level. More than 270 km, ca. 31% of the total length of the seawall, cannot withstand a 1-in-100-year storm surge. Numerical simulations of the storm flooding on the west coast of Bohai Bay, for 1-in-50-years, 1-in-100-years, 1-in-200-years and 1-in-500-years, show that if there were no coastal dykes, the maximum flooding area would exceed 3000 km2, 4000 km2, 5300 km2 and 7200 km2, respectively. The rising sea has a direct and potential impact on the coastal lowlands of Tianjin and Hebei. Based on the latest development in international sea-level rise prediction research, this paper proposes 0.5 m, 1.0 m and 1.5 m as low, middle and high sea level rise scenarios by 2100 for the study area, and combines the land subsidence and other factors to the elevation of the existing seawall. Comprehensive evaluation results indicate that even in the case of a low scenario, the existing seawall will not be able to withstand a 1-in-100-years storm surge in 2030, and the potential flooding areas predicted by the model will become a reality in the near future. Therefore, the seawall design in the coastal areas of Tianjin and Hebei must consider the combined effects of land subsidence, sea level rise and the extreme storm surges caused by it.©2019 China Geology Editorial Office.  相似文献   

12.
Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.  相似文献   

13.
全球海平面变化与中国珊瑚礁   总被引:1,自引:0,他引:1       下载免费PDF全文
王国忠 《古地理学报》2005,7(4):483-492
本文以政府间气候变化专业委员会(IPCC)于2001年专门报告中关于21世纪内全球气候变化的温度和海平面变化的预估为前提。简要介绍了中国珊瑚礁的定位、类型和分布,对其进行了成熟度分类,评估了全球海平面变化对中国珊瑚礁的影响。据预测,21世纪我国各海域海平面上升以南海最大,为32 ~ 98cm,其平均上升速率为0.32 ~ 0.98cm/a。从海平面上升速率与珊瑚礁生长速率的理论对比分析,中国珊瑚礁基本上能与前者同步生长,即使海平面以预估高值上升,也不会威胁其生存。从中国珊瑚礁成熟度较高、其生长趋势以侧向生长为主的现实状况出发,未来全球海平面上升能为其创造向上生长的有利条件。从古地理学“将古论今”观点出发,自全新世6000aBP以来曾存在过的高海平面和较高表层海水温度的历史,也可以佐证,21世纪的全球海平面上升不会对中国珊瑚礁的存在和发育造成威胁。现存的珊瑚礁岛应对于全球海平面上升,可以做到“水涨岛高”,它们能够屹立于上升了的未来海平面之上;但对于岛上的人工建筑物则会被浸、被淹,或被淘蚀和破坏,因此必须根据海平面上升的幅度和速率,采取相应的防御措施。  相似文献   

14.
The northern coasts of the Gulf of Mexico (GoM) are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks are exacerbated by land subsidence and global sea-level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea-level rise in the northern Gulf coast. The unstructured-grid finite-volume coastal ocean model was used to simulate tides and hurricane-induced storm surges in the GoM. Simulated distributions of co-amplitude and co-phase lines for semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan, and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea-level rise on coastal inundation in the Louisiana coast were evaluated using a “change of inundation depth” parameter through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea-level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea-level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea-level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.  相似文献   

15.
The Greenland Ice Sheet is thinning at an accelerating pace and the ice sheet's contribution to sea-level rise has doubled in less than a decade. New data show rapid and widespread changes in the behaviour of the ice sheet, particularly along the coastal margin. These changes coincide with a decade of sustained Arctic warming of up to 3 °C. Decay of the Greenland Ice Sheet in response to global warming will not only be governed by increased surface melting during longer and warmer summers but also by a speed-up of coastal glaciers that drain the interior ice sheet. A precise estimate of sea-level rise in the twenty-first century relies on improved theoretical treatment of these glaciers in computer models.  相似文献   

16.
We analyse the potential impacts of sea-level rise on the management of saline coastal wetlands in the Hunter River estuary, NSW, Australia. We model two management options: leaving all floodgates open, facilitating retreat of mangrove and saltmarsh into low-lying coastal lands; and leaving floodgates closed. For both management options we modelled the potential extent of saline coastal wetland to 2100 under a low sea-level rise scenario (based on 5 % minima of SRES B1 emissions scenario) and a high sea-level rise scenario (based on 95 % maxima of SRES A1FI emissions scenario). In both instances we quantified the carbon burial benefits associated with those actions. Using a dynamic elevation model, which factored in the accretion and vertical elevation responses of mangrove and saltmarsh to rising sea levels, we projected the distribution of saline coastal wetlands, and estimated the volume of sediment and carbon burial across the estuary under each scenario. We found that the management of floodgates is the primary determinant of potential saline coastal wetland extent to 2100, with only 33 % of the potential wetland area remaining under the high sea-level rise scenario, with floodgates closed, and with a 127 % expansion of potential wetland extent with floodgates open and levees breached. Carbon burial was an additional benefit of accommodating landward retreat of wetlands, with an additional 280,000 tonnes of carbon buried under the high sea-level rise scenario with floodgates open (775,075 tonnes with floodgates open and 490,280 tonnes with floodgates closed). Nearly all of the Hunter Wetlands National Park, a Ramsar wetland, will be lost under the high sea-level rise scenario, while there is potential for expansion of the wetland area by 35 % under the low sea-level rise scenario, regardless of floodgate management. We recommend that National Parks, Reserves, Ramsar sites and other static conservation mechanisms employed to protect significant coastal wetlands must begin to employ dynamic buffers to accommodate sea-level rise change impacts, which will likely require land purchase or other agreements with private landholders. The costs of facilitating adaptation may be offset by carbon sequestration gains.  相似文献   

17.
We constructed a detailed relative sea-level rise curve for the last 1500 years using a novel approach, i.e. charting the rate of relative sea-level rise using microfaunal and geochemical data from a coastal salt marsh sequence (Clinton, CT, USA). The composition of benthic foraminiferal assemblages and the iron abundance in peats were used to describe shifts in marsh environment through time quantitatively. The resulting sea-level rise curve, with age control from 14C dating and the onset of anthropogenic metal pollution, shows strong increases in the rate of relative sea-level rise during modern global warming (since the late nineteenth century), but not during the Little Climate Optimum (ad 1000–1300). There was virtually no rise in sea-level during the Little Ice Age (ad 1400–1700). Most of the relative sea-level rise over the last 1200 years in Clinton appears to have occurred during two warm episodes that jointly lasted less than 600 years. Changes from slow to fast rates of relative sea-level rise apparently occurred over periods of only a few decades. We suggest that changes in ocean circulation could contribute to the sudden increases in the rate of relative sea-level rise along the northeastern USA seaboard. Relative sea-level rise in that area is currently faster than the worldwide average, which may result partially from an ocean surface effect caused by hydrodynamics. Our data show no unequivocal correlation between warm periods (on a decaal to centennial time-scale) and accelerated sea-level rise. One period of acclerated sea-level rise may have occurred between about ad 1200 and 1450, which was the transition for the Little Climate Optimum to the Little Ice Age, i.e. a period of cooling (at least in northwestern Europe). Local changes in tidal range might also have contributed to this apparent increase in the rate of relative sea-level, however. The second period of accelerated sea-level rise occurred during the period of modern global warming that started at the end of the last century.  相似文献   

18.
Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetatedSpartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic Coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4–4.5 yr record with the long-term (>50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, theSpartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrowsAmmodramus maritimus, saltmarsh sharp-tailed sparrowsAmmodramus caudacutus, black railsLaterallus jamaicensis, clapper railsRallus longirostris. Forster's ternsSterna forsteri, common ternsSterna hirundo, and gull-billed ternsSterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.  相似文献   

19.
We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium–SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6–14 cm of marsh submergence in response to historical sea-level acceleration, and 3–4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.  相似文献   

20.
During the mid-late Holocene large sections of the Scottish coastline have been characterized by falling relative sea-levels resulting from differential glacio-isostatic uplift of this region of northern Britain. The complex interplay between crustal and sea-level movements continues to influence the morphological development of the Scottish coast. A number of geophysical models predict ongoing uplift of the Scottish landmass. However, a number of recent studies based upon the analysis of satellite altimetry data indicate a late 20th Century acceleration in the rate of eustatic sea-level rise.Detailed geochemistry, radiometric dating, and diatom analysis on selected sediment cores from four mature coastal marsh environments in Argyll, western Scotland, provides an opportunity to investigate the linkages between Twentieth century crustal movements, eustatic sea-level rise and recent rates of sedimentation recorded within marsh sediments across the proposed Scottish glacio-isostatic uplift dome.Solid-phase major and trace element geochemistry has been used to examine the extent to which post-depositional physical disturbance and/or chemical reactions may have influenced the reliability of the radiometric dating methods. Geochemical data indicate that the evolution of these marsh environments has not been significantly influenced by physical disturbance and overall the supply of minerogenic material to the marshes has been quite uniform.Vertical distributions of 210Pbexcess and 137Cs activity have been measured and used to develop models of recent marsh vertical accretion. Dating of the cores reveals subtle variations in the rates of sediment accumulation over the last c. 70 years between sites. For much of the last hundred years or so, sedimentation rates have been in good overall agreement with various estimations for sea-level rise, although at the more easterly sites these estimates are generally exceeded. However, quasi-equilibrium between marsh sedimentation and sea-level rise for much of the Twentieth Century is indicated from the Diatom analysis.Over the most recent period of marsh development (<10 years), a significant increase in the rate of surface sedimentation is recorded at all sites across the study area. Diatom analysis of these surface layers reveals an increase in the relative abundance of marine (polyhalobous) taxa in the near-surface sediments. This signifies a very recent increase in the rate of regional relative sea-level rise indicating that a regional threshold in coastal forcing has now been exceeded.These findings provide clear evidence that recent relative sea-level rise is now outpacing estimated rates of glacio-isostatic adjustment (GIA) across the proposed Scottish uplift dome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号