首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Early Cretaceous, retro-foreland basin fluvial deposits throughout Wyoming record interactions between orogenesis, subsidence, sediment accumulation, basin physiography, and syndepositional structural deformation associated with the early stages of the Sevier Orogeny. Quantitative paleochannel reconstructions presented here are important for understanding these interactions, evaluating controls on alluvial architecture, and can be applied to basin-modeling studies. Most paleochannel sandstones and conglomerates represent point bars associated with meandering rivers, although some rivers may have been braided. Paleoflow of earliest Cretaceous Cloverly A-interval paleochannels (forebulge depozone, central WY) was generally to the north, northeast, and east, which suggests that most are deposits of basin-axial rivers. Discharges of overlying B-interval paleochannels are less than most of those of the A interval, possibly reflecting a temporal decrease in water supply related to the eastward expansion through time of an orographic rain shadow caused by progressive rising of the Sevier Orogen to the west. The Bechler (western WY), Cloverly B (central WY), and Lakota L2 (eastern WY) intervals are correlative and record deposition throughout the basin in the foredeep, forebulge, and backbulge depozones, respectively. Paleocurrents suggest that Bechler paleochannels are deposits of basin-transverse rivers that flowed to the east, whereas B and L2 paleochannels are deposits of basin-axial rivers that flowed dominantly to the north and northeast. The scales and discharges of most L2 paleochannels are much greater than those of the Bechler and B-interval. This eastward increase in discharge may reflect an eastward increase in precipitation related to the spatially decreasing effects of an orographic rain shadow caused by the Sevier Orogen to the west. Additionally, or alternatively, the higher discharges of most L2 rivers may indicate that they represent a more distal part of a tributary fluvial system than B-interval rivers (consistent with some lower slopes of L2 paleochannels).The alluvial architecture of thick foredeep deposits contrasts markedly with that of stratigraphically equivalent, much thinner deposits farther east that were associated with the forebulge and backbulge depozones. Foredeep deposits are dominated by overbank and lacustrine mudstones, and channel deposits tend to be isolated with limited lateral extents typically on the order of 10's of meters. Forebulge and backbulge channel deposits tend to be laterally and vertically connected forming sandstones and conglomerates with lateral extents on the order of 10's of km to >100 km. Long-term compacted sediment accumulation rates for the foredeep (generally 10−2 mm year−1) are an order of magnitude greater than those for the forebulge and backbulge depozones (10−3 mm year−1). Quantitative simulations of channel-deposit proportions indicate that basin-wide differences in alluvial architecture are attributable to differences in sediment accumulation rates, which, in turn, reflect variable subsidence rates of the different depozones. Additionally, in some areas of the fore- and backbulge depozones, alluvial architecture was controlled by local syndepositional structures. However, the alluvial architecture in areas influenced by syndepositional structures is broadly similar to that in areas where such structures were absent, both reflecting the same general tectonic setting that experienced limited regional subsidence. Hence, the two cases are not easily distinguished solely on the basis of alluvial architecture.  相似文献   

2.
3.
河南登封地区寒武系第三统张夏组是一套167m厚的碳酸盐岩地层,出露连续且完整,发育以微生物岩主导和以后生动物扰动灰岩主导的两种米级旋回类型。通过对米级旋回的演化及其沉积学和古遗迹学特征分析,张夏组自下而上由以微生物岩主导的米级旋回逐渐让位于以后生动物扰动灰岩主导的米级旋回;沉积体系由无鲕粒滩的碳酸盐岩台地逐渐向发育厚层鲕粒滩的碳酸盐岩台地演化;沉积环境从潮下低能深水演变为开阔台地,并逐渐变浅形成鲕粒滩、局限台地;沉积岩类型从叠层石、凝块石灰岩等微生物岩逐渐变化为生物碎屑灰岩、生物扰动灰岩和含生物扰动鲕粒灰岩。  相似文献   

4.
The continental Upper Triassic Tadrart Ouadou Sandstone Member was deposited in an extensional setting on the Pangaean continent, strongly influenced by a low‐latitude climatic regime (10° to 20° north). Complex interaction of basin subsidence and climatically driven processes led to high facies variability and a lack of correlatable units across the Argana Valley exposures. A process‐orientated approach integrating detailed facies with architectural element analysis was undertaken, which resulted in a multistage depositional model for the Tadrart Ouadou Sandstone Member. The basin‐scale model shows that basal alluvial fan and braided river systems are confined to the centre of the Argana Valley exposures. Aeolian deposits occur throughout the sequence, but dominate in the north. After a phase of playa deposition, prominent basin‐wide fluvial incision of up to 8 m marks the onset of perennial fluvial flow. These well‐sorted, internally complex and locally highly amalgamated fluvial sandstones are widespread throughout the basin and are focused in a north to south (south‐west) flowing channel system. After a final stage of aeolian sedimentation, sandstone deposition of the Tadrart Ouadou Sandstone Member in the Argana Valley is terminated rapidly by the onlap of lacustrine mudstones of the Sidi Mansour Member. The study revealed that, except for one pronounced period of perennial conditions, sedimentation is controlled largely by ephemeral fluvial flow, alternating ground water tables, deflation processes and periods with limited periodic local run‐off. The study highlights that facies architecture in the basin is the result of complex interaction of local syn‐sedimentary tectonics and the climatic regime within the basin, but also the climate of the catchment area to the east. The data suggest a proximal to mid‐distal basin setting in the rain‐shadow to the west of a mountain range (Massif Ancien), which exerted a strong control on the depositional environments of Triassic deposits exposed in this part of South‐west Morocco.  相似文献   

5.
黑龙江北部孙吴——嘉荫盆地沉积相类型及其演化   总被引:4,自引:1,他引:3       下载免费PDF全文
通过对孙吴-嘉荫盆地淘淇河组、永安村组、太平林场组、鱼亮子组、乌云组和孙吴组露头剖面详细的沉积学研究,查明该盆地从淘淇河组到孙吴组发育的沉积相类型有冲积扇、辫状河、曲流河、扇三角洲、辫状河三角洲、曲流河三角洲、湖底扇和湖泊。冲积扇及扇三角洲主要发育于淘淇河组和孙吴组;辫状河及辫状河三角洲主要发育于鱼亮子组和乌云组;曲流河及曲流河三角洲主要发育于永安村组和太平林场组,各组均有湖泊相沉积发育。孙吴-嘉荫盆地从淘淇河组到乌云组,具有冲积扇-扇三角洲-湖泊→曲流河-曲流河三角洲-湖泊→辫状河-辫状河三角洲-湖泊→冲积扇-扇三角洲-湖泊的沉积演化规律,反映晚白垩-古新世构造活动性减弱,中-上新世孙吴组沉积时重又趋于活动。  相似文献   

6.
通过野外地质露头和钻孔岩心观察以及对大量钻孔岩心编录和测井解释资料的综合统计分析,笔者将伊犁盆地南缘西段中下侏罗统水西沟群划分出4个大的沉积体系:八道湾组(J1b)的冲积扇沉积体系、三工河组—西山窑组一段的辫状河三角洲沉积体系、西山窑组二段至三段的浅湖沼泽沉积体系和西山窑组四段至五段的曲流河三角洲沉积体系。文中详细讨论了伊犁盆地南缘西段水西沟群各沉积体系的沉积相特征,研究了水西沟群沉积体系及沉积相与砂岩型铀矿的成矿关系,指出辫状河三角洲沉积体系是砂岩型铀矿成矿最有利的沉积体系,三角洲前缘河口坝及席状砂亚相、三角洲平原辫状河流亚相、扇中-扇端亚相及三角洲平原分流河道亚相是砂岩型铀矿主要的控矿沉积相。  相似文献   

7.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

8.
The Palaeoproterozoic Transvaal Supergroup floor to the Bushveld complex comprises protobasinal successions overlain by the Black Reef Formation, Chuniespoort Group and the uppermost Pretoria Group. The protobasinal successions comprise predominantly mafic lavas and pyroclastic rocks, immature alluvial-fluvial braidplain deposits and finer-grained basinal rocks. These thick, laterally restricted protobasinal sequences reflect either strike-slip or small extensional basins formed during the impactogenal rifting and southeasterly-directed tectonic escape, which accompanied collision of the Zimbabwe and Kaapvaal cratons during Ventersdorp times. The erosively-based sheet sandstones of the succeeding Black Reef Formation reflect northwand-directed compression in the south of the basin. Thermal subsidence along the Ventersdorp Supergroup and Transvaal protobasinal fault systems led to shallow epeiric marine deposition of the sheet-like Chuniespoort Group carbonate-BIF platform succession. After an estimated 80 Ma hiatus, characterized by uplift and karstic weathering of the Chuniespoort dolomites, slower thermal subsidence is thought to have formed the Pretoria Group basin. Widespread, closed basin alluvial fan, fluvial braidplain and lacustrine sedimentation, as well as laterally extensive, subaerial andesitic volcanism (Rooihoogte to Strubenkop Formations), gave way to a marine transgression, which laid down the tuffaceous mudrocks, relatively mature sandstones and subordinate subaqueous volcanic rocks of the succeeding Daspoort, Silverton and Magaliesberg Formations. Poorly preserved post-Magaliesberg formations in the Upper Pretoria Group point to possible compressive deformation and concomitant rapid deposition of largely feldspathic detritus within smaller closed basins.  相似文献   

9.
Five genetic facies associations/architectural elements are recognised for the epeiric sea deposits preserved in the Early Proterozoic Timeball Hill Formation, South Africa. Basal carbonaceous mudrocks, interpreted as anoxic suspension deposits, grade up into sheet-like, laminated, graded mudrocks and succeeding sheets of laminated and cross-laminated siltstones and fine-grained sandstones. The latter two architectural elements are compatible with the Te, Td and Tc subdivisions of low-density turbidity current systems. Thin interbeds of stromatolitic carbonate within these first three facies associations support photic water depths up to about 100 m. Laterally extensive sheets of mature, cross-bedded sandstone disconformably overlie the turbidite deposits, and are ascribed to lower tidal flat processes. Interbedded lenticular, immature sandstones and mudrocks comprise the fifth architectural element, and are interpreted as medial to upper tidal flat sediments. Small lenses of coarse siltstone–very fine-grained sandstone, analogous to modern continental rise contourite deposits, occur within the suspension and distal turbidite sediments, and also form local wedges of inferred contourites at the transition from suspension to lowermost turbidite deposits. Blanketing and progressive shallowing of the floor of the Timeball Hill basin by basal suspension deposits greatly reduced wave action, thereby promoting preservation of low-density turbidity current deposits across the basin under stillstand or highstand conditions. A lowstand tidal flat facies tract laid down widespread sandy deposits of the medial Klapperkop Member within the formation. Salinity gradients and contemporaneous cold periglacial water masses were probably responsible for formation of the inferred contourites. The combination of the depositional systems interpreted for the Timeball Hill Formation may provide a provisional model for Early Proterozoic epeiric basin settings.  相似文献   

10.
祁连山北缘旱峡地区发育完整的下白垩统下沟组-中沟组沉积序列;以陆源碎屑岩为主,发育砾岩、砂岩、钙质粉砂岩和页岩等;其中砾石分选差、磨圆一般、成分以灰白色砂岩为主,砂岩成分、结构成熟度中等-差。岩石组合、沉积序列和综合沉积特征研究表明,下沟组和中沟组主要由湖泊、扇三角洲、河流等3种类型沉积相、亚相与微相类型组成,发育了一系列重力流成因的沉积类型;湖泊沉积主要发育在下沟组底部和中沟组,扇三角洲沉积分布在下沟组中-上部,中沟组发育河流沉积。研究区早白垩世中期古流向以EN向为主,早白垩世晚期以W向为主,表明沉积沉降中心也由早期的旱峡西移至研究区西南侧。在综合分析的基础上,建立了研究区下白垩统下沟组-中沟组沉积相模式。  相似文献   

11.
Sediments in the Trentishoe Formation of the Middle Devonian Hangman Sandstone Group (North Devon, U.K.) provide the basis of a model for sandy ephemeral stream and clay playa deposition. Three types of sequence are found, representing proximal, medial and distal areas on an extensive alluvial plain. The Proximal sequence consists of cross-cutting channel-fill sandstones which represent the deposits of a network of low sinuosity sand bed streams. The Medial sequence comprises upwards coarsening cyclothems which start with relatively distal, thinly bedded sandstone and siltstone flood sheets cut by complexes of silt draped channel-fill sandstones and single channel fill sandstones. The flood sheets coarsen and thicken upwards to more proximal multistorey sheet sandstones. The Distal sequences consist of laminated mudstone and sandstone, cut by desiccation and water escape features, alternating with wave rippled sandstones, and represent playa lakes occasionally incised by high sinuosity channels with laterally accreting sandstones. The three sequence types represent the downslope progression from a low sinuosity channel network which passed into an ephemeral flood deposit complex which in turn drained into clay playas.  相似文献   

12.
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.  相似文献   

13.
Sedimentary Characteristics of the Cretaceous in the Songliao Basin   总被引:2,自引:0,他引:2  
The rupture of the lithosphere in Late Jurassic brought about the eruption of basaltic magma in the Songliao Basin. The evolution of the basin in Cretaceous progressed through six stages: pre-rift doming, extensional fracturing, fault subsidence, fault downwarping, downwarping and shringkage, resulting in the deposition of terrstrial facies nearly 10,000 m thick. There are different depositional sequences in these stages: the depositional period of the Early Cretaceous Shahezi and Yincheng Formations is the development stage of the down-faulted basin, forming a volcanic rock-alluvial fan-fan delta-lacustrine (intercalated with episodic turbidites)-swamp facies sequences; the period of the Early Cretaceous Dengluku Formation is the transformation stage of fault subsidence into fault downwarping of the basin, forming a sequence mainly of alluvial plain-lacustrine facies; the depositional period of the Early Cretaceous Quantou Formation-Late Cretaceous Nenjiang Formation is the downwarping stage of the basin, forming an alluvial plain-delta-lacustrine facies sequence; the period of the Late Cretaceous Sifangtai Formation-Mingshui Formation is the shringkage stage of the basin, forming again a sequence mainly of alluvial plain-alluvial fan and small relict lacustrine facies. These vertical depositional sequences fully display the sedimentary characteristics of a failed continental rift basin. Many facts indicate that the two large-scale lake invasions, synchronous with the global rise of sea level, which took place in the downwarping stage of the basin development, led to the connection between the lake and sea.  相似文献   

14.
西藏波密及邻区松宗、然乌一带,下石炭统诺错组与中上泥盆统松宗组之间的层序不整合界线是藏东南地区冈瓦纳北缘晚古生代盆地性质转变的重要界面。界线之下的松宗组为稳定的碳酸盐岩台地沉积;界线之上,以大规模的火山活动、盆地裂解为标志,伴随着沉积盆地的持续沉陷和相对海平面的上升,沉积了以石炭系诺错组和来姑组为代表的向上变深序列,相对海平面在晚石炭世达到了顶点,以来姑组上部的含铁质板岩和大套的浊积岩为标志。其后。以洛巴堆组为代表的晚石炭世末期—二叠纪的沉积记录,则代表了一个缓慢的向上变浅的沉积层序。在这个向上变深再变浅的沉积盆地演化过程中,火山活动呈现了明显的由强转弱的变化轨迹。中侏罗统马里组陆相红色磨拉石不整合堆积于下伏地层之上,表明本区在晚三叠世—早侏罗世经历了一次规模宏大的褶皱造山事件。  相似文献   

15.
鄂尔多斯盆地北部早白垩世地层特征及对比   总被引:3,自引:0,他引:3  
鄂尔多斯盆地北部早白垩世地层是一套从冲积扇到河流相、三角洲相直至湖泊相多相型空间递变的陆相地层 ,具克拉通盆地转为伸展断陷盆地特征。盆地北部早白垩世具 2个三级层序 ,分别控制了具不同动力学背景的2套沉积旋回。盆地的东部原伊金霍洛组、盆地西部的志丹群洛河组、环河组为下部沉积旋回 ,受盆地东部隆起影响 ,以北东向和近南北向断裂带控制的断块活动为主 ;盆地的东部原东胜组、盆地西部的罗汉洞组、泾川组为上部沉积旋回 ,受盆地北部隆起影响 ,以东西向断裂带控制的断块活动为主。  相似文献   

16.
High energy, lake‐shoreline carbonate sequences are rarely documented in the geological record. However, one example occurs in the Upper Triassic Mercia Mudstone Group (MMG) of southern Britain. The MMG is one of a number of thick, non‐fossiliferous mudstone deposits associated with North Atlantic Mesozoic rift basins. The origin of the MMG mudstones is the subject of current debate, with marine, playa‐lacustrine and alluvial–aeolian models having been proposed. Shoreline features have been documented from the northern margin of the basin, but the rarity of such features elsewhere in the MMG has led many workers to doubt a lacustrine origin for the mudstones. Wave‐dominated, lake‐shoreline deposits have been recognized in several sections from the southern basin margin in the Clevedon area of the Bristol Channel in south‐west England. These deposits provide evidence for the development of a sizeable perennial to semi‐perennial hypersaline lake in which the MMG mudstones accumulated. Shoreline sediments overlie alluvial stream and sheet‐flood deposits, and pass from transgressive gravel–conglomerate beach units with bioclasts, influenced by shore‐normal waves (deposited under semi‐humid conditions), to lower gradient, highstand oolitic sands affected by more varied wave approach (deposited under progressively more arid conditions), which culminated in lowstand, oolitic strand‐plain deposits overlain by a playa‐mudflat unit. Shoreline deposits record a simple shallowing‐upward transgressive–highstand–lowstand sequence. However, a change from a reflective (transgressive) to dissipative (highstand) shoreline is believed to represent a climatically induced change in prevailing wind direction. Shoreline features recognized in the MMG are similar to those of recent playa‐lacustrine basins of the western United States. Ooids display a variety of size, fracture and dissolution features in addition to beachrock fabrics, suggesting that they were originally composed of radial aragonite, similar to modern ooids from the Great Salt Lake, Utah.  相似文献   

17.
通过对新疆现代白杨河冲积扇的地貌和现代沉积进行调查,发现冲积扇表面发育两种不同类型的河道,一种为季节性河道,另一种为暂时性河道。暂时性河道内水流占有率小于50%直至接近于0,主要由暴雨形成突发性洪水造成,季节性河流河道内流水占据率为50%左右,输出水流特征介于暂时性河道和常年性河流河道之间。白杨河主河道属于季节性河道,河道占冲积扇表面面积2.1%,沉积物以砾石质为主,颗粒粗、磨圆度高、分选较好,泥质含量低、叠瓦状排列特征明显,沉积物具有向下游变细的趋势,河道形态沿程变化明显。暂时性河道占冲积扇表面面积97.9%,沉积物粒度相对较细,磨圆度低、分选差、泥质含量高,河道规模向下游减小,分叉增多。季节性河道以河道径流为主,暂时性河道主要以片流、泥石流等方式搬运沉积物。季节性河道沉积物主要来自上游较远的源区,暂时性河道的沉积物来源于冲积扇扇根附近基岩风化形成的倒石锥,塌积扇和山地泥石流沉积,一部分来自于对冲积扇原有沉积物的改造、搬运和再沉积。季节性河道是形成冲积扇扇体的主要动力,暂时性河道主要对冲积扇起改造作用。研究深化了对干旱地区冲积扇沉积过程和沉积特征的认识,丰富了冲积扇的沉积模式。  相似文献   

18.
四川盆地西部侏罗纪沉积相及油气分布   总被引:2,自引:1,他引:2       下载免费PDF全文
四川盆地西部侏罗纪为内陆盆地,除其北缘早侏罗世有湖沼相外,主要为河流相与湖泊相,邻龙门山区发育冲积扇,其余地区发育冲积平原相和泛滥平原相。依据湖泊积水状况,将湖泊相细分为时令湖相、间歇湖相和长年湖相。印支期,甘孜-阿坝造山带形成,四川盆地由湿热气候演变为干燥、炎热气候;并使早侏罗世-中侏罗世早期成为长年湖泊环境。受燕山早中期构造运动影响,河流相、时令湖相与间歇湖相发育。长年湖相形成了侏罗系重要的生储油层系。河流相的粗碎屑岩成为储层,时令湖相与间歇湖相的泥质岩成为盖层,组成了侏罗系中上统多个储盖组合。  相似文献   

19.
Ancient stream-dominated (‘wet’) alluvial fan deposits have received far less attention in the literature than their arid/semi-arid counterparts. The Cenozoic basin fills along the Denali fault system of the northwestern Canadian Cordillera provide excellent examples of stream-dominated alluvial fan deposits because they developed during the Eocene-Oligocene temperate climatic regime in an active strike-slip orogen. The Amphitheatre Formation filled several strike-slip basins in Yukon Territory and consists of up to 1200 m of coarse siliciclastic rocks and coal. Detailed facies analysis, conglomerate: sandstone percentages (C:S), maximum particle size (MPS) distribution, and palaeocurrent analysis of the Amphitheatre Formation in two of these strike-slip basins document the transition from proximal, to middle, to distal and fringing environments within ancient stream-dominated alluvial-fan systems. Proximal fan deposits in the Bates Lake Basin are characterized by disorganized, clast-supported, boulder conglomerate and minor matrix(mud)-supported conglomerate. Proximal facies are located along the faulted basin margins in areas where C:S = 80 to 100 and where the average MPS ranges from 30 to 60 cm. Proximal fan deposits grade into middle fan, channelized, well organized cobble conglomerates that form upward fining sequences, with an average thickness of 7 m. Middle fan deposits grade basinward into well-sorted, laterally continuous beds of normally graded sandstone interbedded with trough cross-stratified sandstone. These distal fan deposits are characteristic of areas where C:S = 20 to 40 and where the average MPS ranges from 5 to 15 cm. Fan fringe deposits consist of lacustrine and axial fluvial facies. Palaeogeographic reconstruction of the Bates Lake Basin indicates that alluvial-fan sedimentation was concentrated in three parts of the basin. The largest alluvial-fan system abutted the strike-slip Duke River fault, and prograded westward across the axis of the basin. Two smaller, coarser grained fans prograded syntaxially northward from the normal-faulted southern basin margin. Facies analysis of the Burwash Basin indicates a similar transition from proximal to distal, stream-dominated alluvial fan environments, but with several key differences. Middle-fan deposits in the Burwash Basin define upward coarsening sequences 50 to 60 m thick composed of fine-grained lithofacies and coal in the lower part, trough cross-stratified sandstone in the middle, and conglomerate in the upper part of the sequence. Upward-coarsening sequences, 90–140 m thick, also are common in the fan fringe lacustrine deposits. These sequences coarsen upward from mudstone, through fine grained, ripple-laminated sandstone, to coarse grained trough cross-stratified sandstone. The upward-coarsening sequences are basinwide, facies independent, and probably represent progradation of stream-dominated alluvial-fan depositional systems. Coal distribution in the Amphitheatre Formation is closely coupled with predominant depositional processes on stream-dominated alluvial fans. The thickest coal seams occur in the most proximal part of the basin fill and in marginal lacustrine deposits. Coal development in the intervening middle and distal fan areas was suppressed by the high frequency of unconfined flow events and lateral channel mobility.  相似文献   

20.
Based on a detailed sedimentological analysis of Lower Triassic continental deposits in the western Germanic sag Basin (i.e. the eastern part of the present‐day Paris Basin: the ‘Conglomérat basal’, ‘Grès vosgien’ and ‘Conglomérat principal’ Formations), three main depositional environments were identified: (i) braided rivers in an arid alluvial plain with some preserved aeolian dunes and very few floodplain deposits; (ii) marginal erg (i.e. braided rivers, aeolian dunes and aeolian sand‐sheets); and (iii) playa lake (an ephemeral lake environment with fluvial and aeolian sediments). Most of the time, aeolian deposits in arid environments that are dominated by fluvial systems are poorly preserved and particular attention should be paid to any sedimentological marker of aridity, such as wind‐worn pebbles (ventifacts), sand‐drift surfaces and aeolian sand‐sheets. In such arid continental environments, stratigraphic surfaces of allocyclic origin correspond to bounding surfaces of regional extension. Elementary stratigraphic cycles, i.e. the genetic units, have been identified for the three main continental environments: the fluvial type, fluvial–aeolian type and fluvial/playa lake type. At the time scale of tens to hundreds of thousands of years, these high‐frequency cycles of climatic origin are controlled either by the groundwater level in the basin or by the fluvial siliciclastic sediment input supplied from the highland. Lower Triassic deposits from the Germanic Basin are preserved mostly in endoreic basins. The central part of the basin is arid but the rivers are supplied with water by precipitation falling on the remnants of the Hercynian (Variscan)–Appalachian Mountains. Consequently, a detailed study of alluvial plain facies provides indications of local climatic conditions in the place of deposition, whereas fluvial systems only reflect climatic conditions of the upstream erosional catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号