首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continental sediments of the Cloverly and Lakota Formations (Lower Cretaceous) in Wyoming are subdivided into three depositional systems: perennial to intermittent alluvial, intermittent to ephemeral alluvial, and playa. Chert-bearing sandstones, conglomerates, carbonaceous mudrocks, blocky mudrocks, and skeletal limestones were deposited by perennial to intermittent alluvial systems. Carbonaceous mudrocks contain abundant wood fragments, cuticle and cortical debris, and other vascular plant remains representing deposition in oxbow lakes, abandoned channels, and on floodplains under humid to seasonal conditions. Intraformational conglomerates, sandstones, bioturbated and blocky mudrocks with caliche nodules, and bioturbated limestones characterize deposition in intermittent to ephemeral alluvial systems. Bioturbated limestones are encased in bioturbated mudrocks with abundant pseudo-slickensides. The presence of caliche nodules in some of the blocky to bioturbated mudrocks is consistent with supersaturation and precipitation of calcium carbonate from groundwater under semi-arid conditions. Caliche nodules, pseudo-slickensides, and carbonate-rich floodplain sediments are interpreted to have been deposited by intermittent to ephemeral alluvial systems under seasonal to semi-arid climatic conditions. Laminated mudrocks, siltstones, vuggy carbonates, bedded to nodular evaporites, pebbly mudrocks, and diamictites were deposited in evaporative alkaline lakes or playas. Pebbly mudrocks and diamictites are interpreted to represent deposition from channelized and unchannelized hyperconcentrated flows on a playa, resulting from intense rain events within the basin.The areal abundance and distribution of these depositional systems change systematically across the overfilled portion of the Early Cretaceous Cordilleran foreland basin in Wyoming. The lower part (A-interval) of the Cloverly and Lakota Formations is characterized by deposits of perennial to intermittent rivers that existed 300 to 1000 km east of the Sevier fold-and-thrust belt. Proximal to the Sevier fold-and-thrust belt, the A-interval of the Cloverly Formation and upper Ephraim Formation of the Gannett Group are typified by deposits of intermittent to ephemeral rivers and their associated floodplains. In the middle part (B-interval) of the Cloverly Formation, intermittent to ephemeral alluvial systems expand to 600 km into the basin. The upper part (C-interval) of the Cloverly Formation is characterized by playa deposits in the Bighorn and Wind River Basins and intermittent to ephemeral alluvial deposits along the front of the ancestral Sevier Mountains. Deposits of perennial to intermittent alluvial systems in the C-interval of the Cloverly and Lakota Formations are restricted to the Black Hills region, almost 900 km to the east of the Sevier Mountains. The change in the areal distribution of depositional systems through time within this continental foreland basin may be attributed to the development of a rain shadow associated with the uplift of the Sevier Mountains in the Early Cretaceous.  相似文献   

2.
Intracontinental subduction of the South China Block below the North China Block in the Late Triassic resulted in formation of the transpressional Sichuan foreland basin on the South China Block. The Upper Triassic Xujiahe Formation was deposited in this basin and consists of an eastward-tapering wedge of predominantly continental siliciclastic sedimentary rocks that are up to 3.5 km thick in the western foredeep depocenter and thin onto the forebulge and into backbulge depocenters.Five facies associations (A–E) make up the Xujiahe Formation and these are interpreted, respectively, as alluvial fan, transverse and longitudinal braided river, meandering river, overbank or shallow lacustrine, and deltaic deposits. This study establishes a sequence stratigraphic framework for the Xujiahe Formation which is subdivided into four sequences (SQ1, 2, 3 and 4). Sequence boundaries are recognized on the basis of facies-tract dislocations and associated fluvial rejuvenation and incision, and systems tracts are identified based on their constituent facies associations and changes in architectural style and sediment body geometries. Typical sequences consist of early to late transgressive systems tract deposits related to a progressive increase in accommodation and represented by Facies Associations A, B and C that grade upwards into Facies Association D. Regionally extensive and vertically stacked coal seams define maximum accommodation and are overlain by early highstand systems tract deposits represented by Facies Associations D, E and C. Late highstand systems tract deposits are rare because of erosion below sequence boundaries. Sequence development in the Xujiahe Formation is attributed to active and quiescent phases of thrust-loading events and is closely related to the tectonic evolution of the basin. The Sichuan Basin experienced three periods of thrust loading and lithospheric flexure (SQ1, lower SQ2 and SQ3), two periods of stress relaxation and basin widening (upper SQ 2 and SQ3) and one phase of isostatic rebound (SQ4). Paleogeographic reconstruction of the Sichuan Basin in the Late Triassic indicates that the Longmen Mountains to the west, consisting of metamorphic, sedimentary and pre-Neoproterozoic basement granitoid rocks, was the major source of sediment to the foredeep depocenter. Subordinate sediment sources were the Xuefeng Mountains to the east to backbulge depocenters, and the Micang Mountains to the northwest during the late history of the basin. This study has demonstrated the viability of sequence stratigraphic analysis in continental successions in a foreland basin, and the influence of thrust loading on sequence development.  相似文献   

3.
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both.  相似文献   

4.
Paillou et al. (2009) mapped a 900 km-long paleodrainage system in eastern Libya, the Kufrah River, that could have linked the southern Kufrah Basin to the Mediterranean coast through the Sirt Basin, possibly as long ago as the Middle Miocene. We study here the potential connection between the terminal part of the Kufrah River and the Mediterranean Sea through the Wadi Sahabi paleochannel, which may have constituted the northern extension of the lower Kufrah River paleodrainage system. New analysis of SRTM-derived topography combined with Synthetic Aperture Radar images from the Japanese PALSAR orbital sensor allowed the mapping of seven main paleochannels located west of the Kufrah River, each of which is likely to have formed a tributary that supplied water and sediment to the main paleodrainage system. The northernmost four paleochannels probably originated from the Al Haruj relief, a Pliocene alkaline basaltic intracontinental volcanic field, and potentially connected to the Wadi Sahabi paleochannel. The remaining three paleochannels are in the more southerly location of the Sarir Calanscio, North-East of the Tibesti mountains, and barely present a topographic signature in SRTM data. They end in the dunes of the Calanscio Sand Sea, forming alluvial fans. The most southern paleochannel, known as Wadi Behar Belama, was previously mapped by Pachur (1996) using LANDSAT-TM images, and was interpreted by Osborne et al. (2008) as representing part of an uninterrupted sediment pathway from the Tibesti mountains to the Mediterranean Sea. Processing of SRTM topographic data revealed local depressions which allow to connect the seven paleochannels and possibly the terminal alluvial fan of the Kufrah River to the Wadi Sahabi paleochannel, through a 400 km-long, south-north oriented, paleocorridor. These new findings support our previous hypothesis that proposed a connection between the lower Kufrah River in the region of the Sarir Dalmah and the Wadi Sahabi paleochannel, which connected to the Mediterranean Sea. Including the newly mapped paleochannels, the Kufrah River paleowatershed, at its maximum extent, would have covered more than 400,000 km2, representing close to a quarter of the surface area of Libya.  相似文献   

5.
The Kaskapau and Cardium Formations span Late Cenomanian to Early Coniacian time and were deposited on a low‐gradient foredeep ramp. The studied portion of the Kaskapau Formation spans ca 3·5 Myr and forms a mudstone‐dominated wedge thinning from 700 to <50 m from SW to NE over ca 300 km. In contrast, the Cardium Formation spans about 2·1 Myr, is about 100 m thick, sandstone‐rich and broadly tabular. The Kaskapau and Cardium Formations are divided, respectively, into 28 and nine allomembers, each bounded by marine flooding surfaces. Kaskapau allomembers 1 to 7 show about 200 km of offlap from the forebulge, accompanied by progradation of thin sandstones from the eroded forebulge crest. In contrast, Kaskapau allomembers 8 to 28 and Cardium allomembers C1 to C9 show overall onlap onto the forebulge of about 350 km, and contain no forebulge‐derived sandstones. This broad pattern is interpreted as recording a latest Cenomanian pulse of tectonic loading which led to shoreline back‐step in the proximal foredeep and coeval uplift of the forebulge, leading to erosion. The advance of the sediment wedge after Kaskapau allomember 7 is attributed primarily to the isostatic effect of a distributed sediment load; the advance of the orogenic wedge had a subordinate effect on subsidence of the forebulge. For Kaskapau allomembers 1 to 6, isopachs trend north to south, suggesting a load directly to the west; allomembers 7 to 28 show an abrupt rotation of isopachs to NW–SE, suggesting that the load shifted several hundred kilometres to the south. This re‐orientation might be related to a change from an approximately orthogonal to a dextral transpressive stress regime. Within the longer‐term offlap–onlap cycle recorded by the Kaskapau and Cardium Formations, individual allomembers are grouped into packages reflecting higher‐frequency onlap–offlap cycles, each spanning ca 0·5 to 0·7 Myr. Offlap from the forebulge tends to be accompanied by more pronounced transgression in the foredeep, whereas onlap onto the forebulge is accompanied by progradation of tongues of shoreface sandstone. This relationship suggests that changes in deformation rate in the orogenic wedge modulated proximal subsidence rate, enhancing or suppressing shoreline progradation, and also causing subtle uplift or subsidence of the forebulge region. Wedge‐shaped allomembers in the Kaskapau Formation contain shoreface sandstone and conglomerate that prograded, respectively, <40 and <25 km from the preserved basin margin; progradation of coarse clastics was limited by rapid flexural subsidence. Tabular allomembers of the Cardium Formation imply a low flexural subsidence rate and contain sandy and conglomeratic shoreface deposits that prograded up to ca 180 km from the preserved basin margin. This relationship suggests that low rates of flexural subsidence promoted steeper alluvial gradients, more vigorous gravel transport and more extensive shoreface progradation. Overall, observed stratal geometry and facies distribution is explained readily in terms of current elastic flexural models. Most shoreface sandstones in the proximal foredeep show evidence of forced regression. Eustasy provides the most plausible explanation for relative sea‐level rise–fall cycles on the 125 kyr allomember timescale. Geometric relationships suggest eustatic oscillations of about 10 m. Forced regressive shoreface development was suppressed during Kaskapau allomembers 1 to 10 when the rate of flexural subsidence was at its highest.  相似文献   

6.
The Iquitos Arch corresponds to a broad topographic high in the Western Amazonia. Morphostructural and geophysical data and flexural modeling show that the Iquitos Arch is the present-day forebulge of the Northwestern Amazonian foreland basin. A detailed tectono-sedimentary study of the Neogene and Quaternary deposits of the Iquitos area has been carried out in order to circumscribe the timing of the forebulge uplift and its environmental consequences. The Neogene and Quaternary sedimentary succession of the Iquitos Arch consists of six formations that evolved from tidal to fluvial environments. The first three formations exhibit Late Miocene gliding features and synsedimentary normal faults. Such soft-sediment deformations bear witness to tectonic activity ascribed to the growth of the forebulge. Regional erosive surfaces that separate the Neogene and Quaternary formations recorded the progressive forebulge emersion and the evolution of Amazonian drainage system. This uplift is related to an increase in tectonic activity within the Andes, which has provoked the eastern propagation of the orogenic wedge and caused an orogenic loading stage in the Amazonian foreland basin system. The emersion of the forebulge induced the retreat of the Pebas “marine megalake” nearby the Iquitos area and consequently caused important environmental changes in the Amazonian basin. From the end of the Late Miocene to the Pliocene, the forebulge acted as a barrier inducing the deposition of fluvial deposits in the forebulge depozone and the deposition of the “White Sand” deposits in the backbulge depozone. Since about 6 Ma, the forebulge is incised and crossed over by the modern Amazon River. The Iquitos forebulge is still growing as shown by the faulted Holocene terrace deposits.  相似文献   

7.
Regional mapping of Middle Albian, shallow‐marine clastic strata over ca 100 000 km2 of the Western Canada Foreland Basin was undertaken to investigate the relationship between large‐scale stratal architecture and lithology. Results suggest that, over ca 5 Myr, stratal geometry and facies were dynamically linked to tectonic activity in the adjacent Cordillera. Higher frequency modulation of accommodation is most reasonably ascribed to eustasy. The Harmon and Cadotte alloformations were deposited at the southern end of an embayment of the Arctic Ocean. The Harmon alloformation, forming the lower part of the succession, constitutes a wedge of marine mudstone that thickens westward over 400 km from <5 m near the forebulge to >150 m in the foredeep. Constituent allomembers are also wedge‐shaped but lack distinct clinothems, a rollover point or downlapping geometry. Ubiquitous wave ripples indicate that the sea floor lay above storm wave base. Deposition took place on an extremely low‐gradient ramp, where accommodation was limited by effective wave base. Lobate, river‐dominated deltas fringed the southern margin of the basin. The largest deltas are stacked in the same area, suggesting protracted stability of the feeder river. A buried palaeo‐valley on the underlying sub‐Cretaceous unconformity may have influenced compaction and controlled river location for ca 3 Myr. Adjacent to the western Cordillera, a predominantly mudstone succession is interbedded with abundant storm beds of very fine‐grained sandstone and siltstone that reflect supply from the adjacent orogen. Bioturbation indices in the Harmon alloformation range from zero to six which reflects the influence of stressors related to river‐mouth proximity. Harmon alloformation mudstone grades abruptly upward into marine sandstone and conglomerate of the overlying Cadotte alloformation. The Cadotte is composed of three allomembers ‘CA’ to ‘CC’, that represent the deposits of prograding strandplains 200 × 300 km in extent. Allomembers ‘CA’ and ‘CB’ are strongly sandstone‐dominated, whereas allomember ‘CC’ contains abundant conglomerate in the west. The dominantly aggradational wedge of Harmon alloformation mudstone records flexural subsidence driven by active thickening in the adjacent orogen: the high accommodation rate trapped coarser clastic detritus close to the basin margin. In contrast, the tabular, highly progradational sandstone and conglomerate bodies of the Cadotte alloformation record a low subsidence rate, implying tectonic quiescence in the adjacent orogen. Erosional unloading of the orogen through Cadotte time steepened rivers to the extent that they delivered gravel to the shore. These observations support an ‘anti‐tectonic’ model of gravel supply proposed previously for the United States portion of the Cretaceous foreland basin. Because Cadotte allomembers do not thicken appreciably into the foredeep, accommodation changes that controlled these transgressive–regressive successions were probably of eustatic origin.  相似文献   

8.
It is shown that the middle Cretaceous succession in the northern Cordilleran foreland basin consists of several-million-year tectonically-driven cycles comprising two components: strata deposited in an underfilled basin with a prominent forebulge zone and strata deposited in an overfilled basin lacking evidence of a forebulge. The episodic thrusting of the Cordilleran orogenic wedge and its rich sediment supply to the basin are two main controlling factors for the formation of these cycles. A qualitative model of several-million-year tectonically-driven underfilled–overfilled cycle for migration and stratigraphic fill in this basin is proposed. During the early underfilled period (orogenic loading period), due to orogenic loading of emplaced thrust sheets, flexural subsidence is created in the region proximal to the mountain belt and a prominent forebulge is developed. During the late underfilled period (early orogenic unloading period), as the cratonward migration of the subsidence center of sediment loading in the foredeep zone, forebulge zones and backbulge zones migrate cratonwards, forming a diachronic erosion surface in the central basin. During the overfilled period (late orogenic unloading period), a prominent erosion forms in the proximal basin and a peripheral sag develops above the forebulge area of the previous underfilled period. This model may provide a pattern to subdivide sedimentary successions in the Cordilleran foreland basin. Using this model, alternative interpretations are suggested for some important, but controversial stratigraphic phenomena in the Cretaceous Cordilleran foreland basin: traditionally defined eustatic highstands, wide sedimentation area of the basin, erosion surfaces and widespread subtle topographic uplifts in the central basin, high-frequency coarsening-up cycles, extensively distributed erosive-based sandstones and conglomerates enclosed in marine mudstones.  相似文献   

9.
根据二连盆地古河道沉积演化特点,笔者应用卫星遥感图像分析技术调查了内蒙古二连盆地马尼特坳陷、乌兰察布坳陷和川井坳陷的地貌形态、区域水文地质条件、古今河道-冲洪积扇(群)分布、地下潜水、层间水的补-径-排水动力条件及局部排泄源的空间分布,并以水成铀矿理论为指导,结合前人地质、物探、水文地质及铀矿化点、异常点等资料,综合分析研究内蒙古二连盆地古河道-冲积扇(群)与铀集散作用的环境关系,圈定了铀成矿远景区19片,指出了进一步寻找铀矿的方向。  相似文献   

10.
The alluvial architecture of fine‐grained (silt‐bed) meandering rivers remains poorly understood in comparison to the extensive study given to sand‐bed and gravel‐bed channels. This paucity of knowledge stems, in part, from the difficulty of studying such modern rivers and deriving analogue information from which to inform facies models for ancient sediments. This paper employs a new technique, the parametric echosounder, to quantify the subsurface structure of the Río Bermejo, Argentina, which is a predominantly silt‐bed river with a large suspended sediment load. These results show that the parametric echosounder can provide high‐resolution (decimetre) subsurface imaging from fine‐grained rivers that is equivalent to the more commonly used ground‐penetrating radar that has been shown to work well in coarser‐grained rivers. Analysis of the data reveals that the alluvial architecture of the Río Bermejo is characterized by large‐scale inclined heterolithic stratification generated by point‐bar evolution, and associated large‐scale scour surfaces that result from channel migration. The small‐scale and medium‐scale structure of the sedimentary architecture is generated by vertical accretion deposits, bed sets associated with small bars, dunes and climbing ripples and the cut and fill from small cross‐bar channels. This style of alluvial architecture is very different from other modern fine‐grained rivers reported in the literature that emphasize the presence of oblique accretion. The Río Bermejo differs from these other rivers because it is much more active, with very high rates of bank erosion and channel migration. Modern examples of this type of highly active fine‐grained river have been reported rarely in the literature, although ancient examples are more prevalent and show similarities with the alluvial architecture of the Río Bermejo, which thus represents a useful analogue for their identification and interpretation. Although the full spectrum of the sedimentology of fine‐grained rivers has yet to be revealed, meandering rivers dominated by lateral or oblique accretion probably represent end members of such channels, with the specific style of sedimentation being controlled by grain size and sediment load characteristics.  相似文献   

11.
强烈不对称的楔型地层是前陆盆地的典型特点,前隆带地层大量减薄或缺失、前隆带与前渊带三级层序的细分对比是建立前陆盆地层序地层格架的关键.结合前人对前陆盆地岩石圈挠曲变形模拟的认识,经过对库车前陆盆地的实例分析表明,前陆盆地挤压构造活动引起前渊带沉降、而前隆带隆升,导致可容纳空间发育在横向上不协调.可容纳空间的不协调发育与前隆的产生和迁移的动态演化过程相伴随: 在构造的活动期,前隆隆升并向冲断带迁移,盆地变窄变深,可容纳空间发育的不协调性逐渐增强; 在构造宁静期,盆地变宽变浅,可容纳空间整体性发育.因此,前陆盆地二级层序在地震剖面上具双层结构(如库车盆地侏罗系、白垩系卡普沙良群),其下层为一组楔状、向冲断带收缩的退积反射; 上层反射呈带状、延续范围广.层序的对比模式为: 在二级层序的底部,三级层序向克拉通渐次超覆; 在二级层序的中部,三级层序的分布向冲断带渐次收缩; 在二级层序的上部,三级层序分布广泛,可对比性强(如库车盆地下第三系).   相似文献   

12.
The Kokorkom desert extended over an area of 826 km2 in the central-west sector of Neuquén and Río Negro provinces along the area of the backbulge basin within the Andean Foreland basin in the Neuquén Basin. Its deposits constitute the middle-upper section of the Candeleros Formation (Cenomanian) and reach approximately 130 m thick. Tracks are found on wet and dry interdune and within draa slipface deposits. They constitute biogenic deformation structures characterized by folded-up and/or brecciated sandstone levels formed under dry and/or wet substrate conditions with passive filling. The degree of preservation varies, but the identification of digit impression suggests that they were produced by theropods or iguanodontians.  相似文献   

13.
This study employs facies analysis and basic principles of sequence stratigraphy to correlate isolated outcrop sections and reveal the depositional history of the Chmielnik Formation – a prominent mid‐Serravalian clastic wedge formed on the basinward forebulge flank of the Polish Carpathian Foredeep. The coarse‐grained clastic wedge, up to 30 m thick and spanning ca 1·1 Ma within biozone NN6, consists of fluvio‐deltaic, foreshore and shoreface deposits with a range of large littoral sand bars, all enveloped in muddy offshore‐transition deposits. Its dynamic stratigraphy indicates rapid shoreline shifts and environmental changes due to the interplay of forebulge tectonism, sediment supply and third‐order eustatic cycles. A similar interplay of tectonism and eustasy is recognizable in the whole middle Miocene sedimentary succession deposited on the forebulge flank, demonstrating an extreme case of an accommodation‐controlled shelf and indicating tectonic cycles of the forebulge uplift and subsidence spanning ca 800 to 900 ka. The episodes of forebulge uplift correlate with the main pulses of orogen thrusting. The resulting composite peripheral unconformity differs markedly from the idealized model of a ‘steady‐state’ stepwise onlap driven by forebulge continuous retreat. It is concluded that the foredeep peripheral unconformities, instead of being simplified in accordance with this idealized model, should rather be studied in detail because they bear a valuable high‐resolution record of regional events and give unique insights into the local role of tectonics, eustasy and sediment supply.  相似文献   

14.
This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections  相似文献   

15.
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre‐scale bars vary within a multi‐kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre‐scale bars from the Río Paraná, Argentina. The investigated bars are located between 30 km upstream and 540 km downstream of the Río Paraná – Río Paraguay confluence, where a significant volume of fine‐grained suspended sediment is introduced into the network. Bar‐scale cross‐stratified sets, with lengths and widths up to 600 m and thicknesses up to 12 m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar‐scale sets are found on top of finer‐grained ripple‐laminated bar‐trough deposits. Bar‐scale sets make up as much as 58% of the volume of the deposits in small, incipient mid‐channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Río Paraná is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small‐scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large‐scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Río Paraguay. Relative to other controls on downstream fining, the tributary input of fine‐grained suspended material from the Río Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5 m of mid‐channel bars shows: (i) an increase in the abundance and thickness (up to metre‐scale) of laterally extensive (hundreds of metres) fine‐grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar‐trough deposits and a corresponding decrease in bar‐scale cross‐strata (<10%). The thalweg deposits of the Río Paraná are composed of dune sets, even directly downstream from the Río Paraguay where the upper channel deposits are dominantly fine‐grained. Thus, the change in sedimentary facies due to a tributary point‐source of fine‐grained sediment is primarily expressed in the composition of the upper bar deposits.  相似文献   

16.
利用大量钻测井及地震资料,通过对邻近前缘隆起的隆后坳陷地层特征的分析以及与库车河露头的对比,探讨了塔里木盆地三叠纪前缘隆起的迁移演化规律。结果表明,三叠纪前缘隆起发生了3次往复迁移,隆后坳陷地区发育多期不整合面,且最大不整合面均发育于地层的底部。早三叠世,隆后坳陷地层南厚北薄,早期前缘隆起向天山方向迁移,隆后坳陷地层超覆其上,前陆坳陷变窄;晚期则向克拉通方向迁移隆升,邻近的隆后坳陷地层遭受强烈剥蚀。由于前缘隆起的遮挡作用,该时期前陆坳陷与隆后地区尚未贯通,山前发育冲积扇。中、晚三叠世前缘隆起又发生两次迁移,其迁移特征与早三叠世类似,但中三叠世前陆坳陷与隆后坳陷仍未相连,而晚三叠世两者相互连通。  相似文献   

17.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

18.
RHEE  JO  & CHOUGH 《Sedimentology》1998,45(3):449-472
The north-western part of the Cretaceous Kyongsang Basin, south-east Korea, comprises alluvial deposits of conglomerate, gravelly sandstone, sandstone and mudstone which can be grouped into four allomembers bounded by stratigraphic discontinuities. The discontinuities trend NW–SE and are marked by distinct facies transitions, abrupt emplacement of conglomerate and thin but persistent mudstone beds. Sedimentary facies and architectural analyses reveal that each allomember formed a depositional system of fluvial channel networks draining toward the south-east with alluvial fans on the northern margin. Each allomember can be characterized by distinctive architecture of channel-fills, clast composition of conglomerate and sandstone/mudstone ratio. Successive units show an eastward shift in the locus of deposition, suggesting basinward relocations of alluvial systems. Such variations with time and space are interpreted to reflect changes in accommodation space and sediment supply during basin evolution, probably caused by fault movements. This study shows that detailed mapping, combined with architectural analysis, and the establishment of alluvial allostratigraphy can help assess changes in alluvial systems and structural development of the basin.  相似文献   

19.
The Mesaverde Group consists of a thick wedge of fluvial, littoral-deltaic and shallow marine clastics shed into the Cretaceous Western Interior Seaway of North America. The western parts of the seaway lay within the strongly subsiding foredeep of the active Sevier fold and thrust belt further to the west. The study area is located east of the axis of maximum subsidence and is thus in a favourable position to record competing effects of eustasy, sediment supply and thrust-load induced subsidence. Facies and sequence analysis carried out on high quality outcrop and well log data led to the recognition of a complex depositional cycle hierarchy within the typical storm- and wave-dominated inner shelf/shoreface/strand plain and delta systems of the Mesaverde. Fourth-order parasequences and parasequence bundles of estimated 100–400 ka duration are the best recognizable, ubiquitous and most useful stratigraphic units. Their arrangement with respect to sequence boundaries, however, varies with their overall stratigraphic position and also differs from the Exxon models. Mesaverde progradation was interrupted by a major transgression that occurred out of phase with the aggradational to progradational stacking trend of third-order sequences. A proposed genetic model relates large-scale (second-order) sequence architecture to tectonics: a Sevier thrust event as well as Laramide uplift within the foredeep controlled non-linear changes in the accommodation/supply ratio. Parasequence stacking patterns and sequence boundary formation, in contrast, were the product of (global?) eustasy enhanced by short-term, perhaps local, changes in the rates of subsidence and detrital influx.  相似文献   

20.
Alluvial fans are usually constructed through episodic flood events. Despite the significance of these ephemeral floods on the morphodynamics of alluvial fans, depositional responses to the variations in flood conditions are still poorly documented. This greatly limits the ability to interpret ancient sedimentary successions of fans and the associated flood hydrodynamics. The Quaternary Poplar Fan from endorheic Heshituoluogai Basin provides an optimal case for addressing this issue. Based on the variations in facies associations and flood conditions, three depositional stages – namely; lobe building stage, channel building stage and the abandonment stage – are identified. During the lobe building stage the Poplar Fan is predominately constructed through incised channel flood, sheetflood and unconfined streamflood, with coeval development of distal surficial ephemeral ponds. The channel building stage is characterized by the development of gravelly braided rivers. However, only scour pool fill deposits are preferentially preserved in the Poplar Fan. During the abandonment stage, erosional lags and aeolian sands randomly occur throughout the fan, while gully deposits can only be found in the distal fan. The distinctive facies architecture of the Poplar Fan is likely to be the result of periodicity of climate fluctuations between wetter and drier conditions during the Late Pleistocene to Holocene. The ephemeral floods formed under wetter conditions usually show high discharge and sediment concentrations which facilitate the lobe building processes. During the drier periods, only gravelly braided rivers can be developed through ephemeral floods as the intensity and frequency in precipitation, discharge and sediment concentrations of the flood flows significantly decrease. The abandonment stage of the fan may occur between recurring flood episodes or during the driest periods. Furthermore, the long-term (105 to 106 year) geomorphic evolution of the Poplar Fan shows the influence of tectonic activities. The ongoing thrust uplift tectonic activities have caused destruction of the fan but can also facilitate the fan-head trench/incision of the fan, which in turn facilitate the progradation of the fan. This study proposes a new depositional model for alluvial fans constructed through episodic flood events, which shows the character of both sheet-flood dominated and stream-flow dominated end members of alluvial fans. These findings supplement the understanding of the variability of the alluvial fans and provide means to characterize rock record of alluvial fans and their associated flood and climate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号