首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Republic of Djibouti (Horn of Africa), fractured volcanic aquifers are the main water resources. The country undergoes an arid climate. Alluvial aquifers exist in the wadis (intermittent streams) valleys and, in relation with volcanic aquifers, form complex volcano-sedimentary systems. Due to increasing water demands, groundwater resources are overexploited and require a rigorous management. This paper is focused on the Dalha basalts aquifer, located in the Dikhil area (Southwest of Djibouti). This aquifer is of vital importance for this area. Hydrochemical data and isotopic tracers (18O and 2H) were used to identify factors and phenomena governing the groundwater’s mineralization. The Piper diagram shows complex water types. Results from multivariate statistical analyses highlight three water families according to their locations: (1) groundwater characterized by low ionic concentrations located at the wadis zones; (2) groundwater characterized by moderate salinity and (3) highly mineralized waters mainly flowing in the eastern and central part of the study area, in volcanic aquifers. Results from scatter plots, especially Na versus Cl and Br versus Cl, suggest that the origin of more saline waters is not from dissolution of halite. The δ18O and δ2H data indicate that the groundwater flowing in the alluvial aquifer is of meteoric origin and fast percolation of rainwater occurs in the volcanic aquifers. These findings provide a preliminary understanding of the overall functioning of this complex volcano-sedimentary system. Additional investigations (pumping tests, numerical modeling) are in progress to achieve a more comprehensive understanding of this system.  相似文献   

2.
The geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system in the northern part of the Baltic Artesian Basin (BAB) illustrates how continental glaciations have influenced groundwater systems in proglacial areas. The aquifer system contains water that has originated from various end-members: recent meteoric water, glacial meltwater and relict Na-Cl brine. The saline formation water that occupied the aquifer system prior to the glacial meltwater intrusion has been diluted by meltwaters of advancing-retreating ice sheets. The diversity in the origin of groundwater in the aquifer system is illustrated by a wide variety in δ18O values that range from −11‰ to −22.5‰. These values are mostly depleted with respect to values found in modern precipitation in the area. The chemical and isotopic composition of groundwater has been influenced by mixing between waters originating from different end-members. In addition, the freshening of a previously saline water aquifer due to glacial meltwater intrusion has initiated various types of water-rock interaction (e.g. ion exchange, carbonate mineral dissolution).  相似文献   

3.
Rock water interactions play an important role in the flow of groundwater. Groundwater samples were collected from deep production wells with depths ranging from 120 to 230 m. Complete chemical analysis of 40 groundwater samples was collected from the fractured limestone aquifer including major cations (Na+, K+, Ca2+, Mg2+) and major anions (Cl?, SO4 2?, HCO3 ?, CO3 2?). A geochemical modeling (NETPATH Software) was applied for environmental simulate net geochemical mass-balance reactions between initial and final waters along a hydrologic flow path. This program simulates selected evolutionary waters for every possible combination of the plausible phases that account for the composition of a selected set of chemical constraints in the system. The groundwater of the Eocene aquifer mainly belongs to fairly fresh water with salinity contents ranging from 228 to 3595 ppm. The measured groundwater levels range between 8 and 25 m near the river Nile to the limestone plateau (eastwards). Consequently, groundwater flows from east to westward toward the river Nile. Groundwater aquifer in the study area is mainly composed of fractured limestone; the saturated states of the PCO2, calcite, aragonite, dolomite, siderite, gypsum, anhydrite, hematite, and goethite in addition to H2 gas were estimated. The undersaturated state of carbon dioxide reflects closed conditions and very low probability of recent recharge, and it reveals also the high tendency of water to precipitates carbonate species. Undersaturation by carbonate minerals is only restricted to some pockets distributed on the different places of the aquifer in the study area. The majority of groundwater samples of Eocene aquifer in the study area indicated that groundwater is not suitable for irrigation with treatment and requires good drainage.  相似文献   

4.
Original isotopic and chemical data are reported on the groundwater and gases from the unique occurrence of mineral water in the coastal zone of southern Primorye. Results of the δ18O and δ2H analysis of the underground and surface water of the area integrated with their δ13C composition made it possible to solve the problem of the genesis and evolution of groundwater and gases in the coastal part of the Sea of Japan. It was established that meteoric waters penetrate into the Mesozoic terrigenous rocks and changed their chemical composition under the influence of transformation of organic matter from the host rocks. CO2 released owing to reactions provides multiple enrichment of the water in HCO3 and stimulates Na influx via dissolution of aluminosilicates.  相似文献   

5.
The Castellón Plain alluvial aquifer, Spain, is intensively exploited to meet the demand for agricultural irrigation and industrial water supply. The geochemistry of its groundwater shows complex salinization in the northern and southern parts of the aquifer, with significant pollution from human origin in the central portion. Boron content and B isotope geochemistry are useful for distinguishing between various sources of pollution and their relative importance in different parts of this aquifer. Boron concentrations in the groundwater vary between 0.01 and 0.85 mg/L. In the more saline groundwaters, found at the northern and southern ends of the study area, the presence of B is linked to inputs from seawater and water with a calcium-magnesium sulphate facies, which feed the aquifer and clearly influence the chemistry of its waters. Evidence of B adsorption processes in some samples is shown by the low B/Cl ratios and the high values of δ11B. In the central portion of the aquifer, the high B/Cl ratios and the strongly negative δ11B are related to pollution of human origin.  相似文献   

6.
The hydrodynamic groundwater data and stable isotopes of water have been used jointly for better understanding of upward leakage and mixing processes in the Djerid aquifer system (southwestern Tunisia). The aquifer system is composed of the upper unconfined Plio-Quaternary (PQ) aquifer, the intermediate (semi-)confined Complex Terminal (CT) aquifer and the deeper confined Continental Intercalaire (CI) aquifer. A total of 41 groundwater samples from the CT and PQ aquifers were collected during June 2001. The stable isotope composition of waters establishes that the CT deep groundwater (depleted as compared to present Nefta local rainfall) is ancient water recharged during late Quaternary time. The relatively recent water in the shallow PQ aquifer is composed of mixed water resulting from upward leakage and sporadic meteoric recharge. In order to characterize the meteoric input signal for PQ in the study area, rainfall water samples were collected during 4 years (2000–2003) at the Nefta meteorological station. Weighted mean values of isotopic contents with respect to rainfall amounts have been computed. Despite the short collection period in the study area, results agree with those found in Beni Abbes (southwestern Algerian Sahara) by Fontes on 9 years of rainfall surveillance. Stable isotopic relationships provide clear evidence of shallow PQ aquifer replenishment by deep CT groundwater. The 18O/upward leakage rate allowed the identification of distinctive PQ waters related to CT aquifer configuration (confined in the western part of the study area, semi-permeable in the eastern part). These trends were confirmed by the relation 18O/TDS. The isotope balance model indicated a contribution of up to 75% of the deep CT groundwater to the upper PQ aquifer in the western study area, between Nefta and Hazoua.  相似文献   

7.
The stable isotopic characteristics were used together with the total chloride to assess changes in groundwater from recharge zones into the carbonate aquifer in an arid environment. The aquifer under study represents a major source of groundwater and thermal springs in Al-Ain city, which are located at the northern part of Jabal Hafit in the United Arab Emirates (UAE). The relationship between oxygen and hydrogen isotopic composition of groundwater is established and is described by δD?=?2.2δ18O???9.96. The lower slope and y-intercept of groundwater samples relative to the local meteoric waterline suggests that the isotopic enrichment is due to the evaporation of shallow groundwater after recharge occurs. The majority of the shallow groundwater samples have a negative deuterium excess (d-excess) which might be ascribed to high a degree of evaporation, while most of the groundwater samples from deep wells, have a positive value of d-excess which may be related to a low degree of evaporation. The δ18O values of the thermal waters suggest enrichment towards δ18O of the carbonate rocks because of the exchange with oxygen at higher temperatures. A possible mixing between thermal or hot water and shallow groundwater is evident in some samples as reflected by δD vs. Cl and d-excess vs. δ18O plots.  相似文献   

8.
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO42? were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.  相似文献   

9.
Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.  相似文献   

10.
The Western Desert of Egypt is an area of natural expansion for agricultural, industrial, and civil activities. This expansion has led to a great demand for groundwater. In the central part of Egypt, on the western limestone plateau, vertical electrical sounding and borehole geophysical logging were conducted to delineate aquifer boundaries. The measurements were interpreted using the lithological information from the drilled wells as a constraining factor. Fractured chalky limestone sediments represent the main aquifer, which is covered by sand and gravel deposits and which rests directly on partially saturated and highly resistive massive limestone. Discontinuous clay layers, which overlie the aquifer unit, were detected in the southern part of the study area as well as a relatively thin marly limestone layer in the northern part. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. Although the groundwater is normally brackish, it can serve the acute demands for water, especially for agricultural purposes.  相似文献   

11.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

12.
The groundwater extracted from the unconfined Quaternary aquifer is the main source of water supply in El-Tur area. The area is bounded from the east by the elevated basement complex of Southern Sinai and from the west by El-Qabaliyat Ridge. The wadis dissecting these highlands form effective watersheds of the Quaternary aquifer. These wadis form areas of focused recharge. Recharge also occurs directly via the Quaternary sediments covering El-Qaa Plain. Subsurface lateral groundwater flow from the fractured basement contributes significant recharge to the aquifer as well. The aquifer sediment facies affect the type and quality of groundwater. In the eastern part where the aquifer is composed mainly of gravel and coarse sand with fragments of weathered basement, the Na-Cl-SO4 water dominates. In the west where the facies change is rapid and complex, many water types arise. The base exchange index (BEX) is positive in this part reflecting the role of clay minerals in changing the water types via cation exchange. In the east where clays are insignificant in the aquifer, the BEX is negative. In the western part next to El-Qabaliyat Ridge, the wells discharging from the calcareous sand zone have low groundwater salinities compared to the wells discharging from the alluvium. In general, the groundwater salinity increases in the direction of groundwater flow from the northeast to the southwest which reflects the dissolution of aquifer sediments. The concentration relationships between the major ions on one hand and chloride on the other reflect the dissolution of calcium carbonates, precipitation of K- and Mg-bearing minerals, and cation exchange of Ca for Na on clay minerals. The hydrochemical models support these reactions. In addition, they show that the effect of evaporation on the recharge water in the western catchment is about four times its effect on the eastern recharge water which reflects the rapid recharge through the wadis draining the fractured basement. Moreover, the contribution from the eastern catchment in sample No. 23 is more than four-folds the contribution from the western recharge area. The stable isotopes (2H and 18O) show that the Quaternary aquifer is recharging from recent rainfall. However, upward leakage of Paleogene groundwater (depleted in 18O) also occurs. The groundwater level map shows strong overpumping impact especially in the areas close to El-Tur city.  相似文献   

13.
Ayadi  Rahma  Trabelsi  Rim  Zouari  Kamel  Saibi  Hakim  Itoi  Ryuichi  Khanfir  Hafedh 《Hydrogeology Journal》2018,26(4):983-1007

Major element concentrations and stable (δ18O and δ2H) and radiogenic (3H and 14C) isotopes in groundwater have proved useful tracers for understanding the geochemical processes that control groundwater mineralization and for identifying recharge sources in the semi-arid region of Sfax (southeastern Tunisia). Major-ion chemical data indicate that the origins of the salinity in the groundwater are the water–rock interactions, mainly the dissolution of evaporitic minerals, as well as the cation exchange with clay minerals. The δ18O and δ2H relationships suggest variations in groundwater recharge mechanisms. Strong evaporation during recharge with limited rapid water infiltration is evident in the groundwater of the intermediate aquifer. The mixing with old groundwater in some areas explains the low stable isotope values of some groundwater samples. Groundwaters from the intermediate aquifer are classified into two main water types: Ca-Na-SO4 and Ca-Na-Cl-SO4. The high nitrate concentrations suggest an anthropogenic source of nitrogen contamination caused by intensive agricultural activities in the area. The stable isotopic signatures reveal three water groups: non-evaporated waters that indicate recharge by recent infiltrated water; evaporated waters that are characterized by relatively enriched δ18O and δ2H contents; and mixed groundwater (old/recent) or ancient groundwater, characterized by their depleted isotopic composition. Tritium data support the existence of recent limited recharge; however, other low tritium values are indicative of pre-nuclear recharge and/or mixing between pre-nuclear and contemporaneous recharge. The carbon-14 activities indicate that the groundwaters were mostly recharged under different climatic conditions during the cooler periods of the late Pleistocene and Holocene.

  相似文献   

14.
The Kangan Permo-Triassic brine aquifer and the overlying gas reservoir in the southern Iran are located in Kangan and Dalan Formations, consisting dominantly of limestone, dolomite, and to a lesser extent, shale and anhydrite. The gasfield, 2,900 m in depth and is exploited by 36 wells, some of which produce high salinity water. The produced water gradually changed from fresh to saline, causing severe corrosion in the pipelines and well head facilities. The present research aims to identify the origin of this saline water (brine), as a vital step to manage saline water issues. The major and minor ions, as well as δ2H, δ18O and δ37Cl isotopes were measured in the Kangan aquifer water and/or the saline produced waters. The potential processes causing salinity can be halite dissolution, membrane filtration, and evaporation of water. The potential sources of water may be meteoric, present or paleo-seawater. The Na/Cl and I/Cl ratios versus Cl? concentration preclude halite dissolution. Concentrations of Cl, Na, and total dissolved solid were compared with Br concentration, indicating that the evaporated ancient seawater trapped in the structure is the cause of salinization. δ18O isotope enrichment in the Kangan aquifer water is due to both seawater evaporation and interaction with carbonate rocks. The δ37Cl isotope content also supports the idea of evaporated ancient seawater as the origin of salinity. Membrane filtration is rejected as a possible source of salinity based on the hydrochemistry data, the δ18O value, and incapability of this process to dramatically enhance salinity up to the observed value of 330,000 mg/L. The overlaying impermeable formations, high pressure in the gas reservoir, and the presence of a cap rock above the Kangan gasfield, all prevent the downward flow of meteoric and Persian Gulf waters into the Kangan aquifer. The evaporated ancient seawater is autochthonous, because the Kangan brine aquifer was formed by entrapment of brine seawater during the deposition of carbonates, gypsum, and minor clastic rocks in a lagoon and sabkha environment. The reliability of determining the source of salinity in a deep complicated inaccessible high-pressure aquifer can be improved by combining various methods of hydrochemistry, isotope, hydrodynamics, hydrogeology and geological settings.  相似文献   

15.
拒马源泉群作为拒马河的源头,受到了较多专家和学者的关注。但这些研究多集中在地下水的水化学、水位动态、泉流量等特征上,对地下水氢氧同位素特征的分析几乎没有,且对北海泉的成因解释多为粗略的定性概述。为了说明涞源北盆地地下水的氢氧同位素特征,详细揭示北海泉的形成模式,首次系统地采集了不同含水岩组的地下水样品,测定了水样的氢氧同位素组分。结果表明:样品点δD和δ18O值均落在区域大气降水线上或附近,大气降水是研究区地下水的主要补给来源;白云岩、灰岩含水岩组高程效应较明显,径流途径长,松散含水层径流途径短,受蒸发作用较强;白云岩、灰岩含水岩组和松散含水层氘盈余d值分别为6.0‰~11.6‰、4.2‰~11.2‰、3.8‰~8.0‰,较大气降水大部分偏小,表明岩溶水和松散孔隙水经历了不同的流动过程;白云岩、灰岩含水岩组从补给区向排泄区各自流动过程中,在小西庄、香炉屯村附近断裂带发生沟通混合,然后在向盆地中心径流过程中受断层阻水上升,上升过程中又接受了松散孔隙水的补给,最后在松散岩层中出露成泉,形成北海泉。在孔隙水混入前,两者的平均补给比例大约为48.4%~57.6%和42.4%~51.6%。  相似文献   

16.
Climate aridity and intensive exploitation due to uncontrolled pumping for irrigation have caused a drastic decrease in the piezometric level of the shallow aquifer of Chougafiya plain, central Tunisia, and have seriously degraded groundwater quality. According to the hydrochemical data (Cl?, SO4 2?, NO3 ?, HCO3 ?, Br?, Na+, Mg2+, K+, Ca2+, Sr2+) and the stable isotopes (18O and 2H content), groundwater salinization in the investigated aquifer is caused by four main processes: (1) evaporite dissolution (2) cation exchange reactions (3) evaporation processes and (4) mixing with Sabkhas salt water causing salinity to increase in the central and southern parts of the basin. The radiogenic (3H) isotope data provided insight into the presence of significant contemporaneous recharge waters in the western part of the shallow aquifer. The movement of the tritiated water may have occurred according to the general flow path (NW–SE). When tritium was used in conjunction with the stable isotopes and chloride, the mixing process could be clearly identified, especially in the central part of the study area.  相似文献   

17.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

18.
A steady-state groundwater flow model of three Quaternary intertill aquifers in the eastern part of Lithuania has been compiled. The distinction of separate modelled layers is based on hydraulic and isotope-hydrochemistry data criteria. 3H data were used to estimate the corrected groundwater age and were coupled with a groundwater-flow-dynamics model of the Quaternary aquifer system along a cross-section flow pathway from the Baltic Upland recharge area in eastern Lithuania towards the discharge area in the lowlands near the city of Kaunas in central Lithuania. The bicarbonate content in groundwater (214–462 mg/l) increases downgradient towards the lowland area. The other major constituents and total dissolved solids (TDS) have a trend analogous to the bicarbonate. The 14C activity of dissolved inorganic carbon (DIC) in the groundwater ranges from 41.4 to 85.7 pMC. With aquifer-system depth, active precipitation of aqueous solution takes place by dissolving minerals of calcite and dolomite and leakage of “old” groundwater from lower aquifers; the process is also traced by lower 14C and 3H activities and by more positive δ18O values in lowland areas.  相似文献   

19.
Major element concentrations, stable (δ18O and δ2H) and radiogenic (3H, 14C) isotopes determined in groundwater provided useful initial tracers for understanding the processes that control groundwater mineralization and identifying recharge sources in semi-arid Cherichira basin (central Tunisia).Chemical data based on the chemistry of several major ions has revealed that the main sources of salinity in the groundwaters are related to the water–rock interaction such as the dissolution of evaporitic and carbonate minerals and some reactions with silicate and feldspar minerals.The stable isotope compositions provide evidence that groundwaters are derived from recent recharge. The δ18O and δ2H relationships implied rapid infiltration during recharge to both the Oligocene and Quaternary aquifers, with only limited evaporation occurring in the Quaternary aquifer.Chemical and isotopic signatures of the reservoir waters show large seasonal evolution and differ clearly from those of groundwaters.Tritium data support the existence of recent recharge in Quaternary groundwaters. But, the low tritium values in Oligocene groundwaters are justified by the existence of clay lenses which limit the infiltration of meteoric water in the unsaturated zone and prolong the groundwater residence time.Carbon-14 activities confirm that groundwaters are recharged from the surface runoff coming from precipitation.  相似文献   

20.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号