首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The El Minia governorate lies within the Nile Valley, surrounded by calcareous plateaus to the east and west. The present study focuses on the hydrogeochemistry of the Eocene limestone aquifer at some wadis in the east El Minia governorate, Eastern Desert, Egypt. Hydrogeologically, two main aquifers are encountered in the study area, namely the Maghagha marly limestone and the Samalut chalky limestone aquifers. The Maghagha aquifer is composed of alternating layers of marly limestone and shale with thicknesses ranging from 3.49 m to 177.05 m and a groundwater depth ranging from 8.5 m to 59.27 m which reflects low groundwater potentiality. The groundwater salinity representing this aquifer ranges from 603.5 mg/L to 978.5 mg/L, reflecting fresh water type. Samalut aquifer is made up of chalky, cavernous and fractured limestone with thickness ranging from 30 m to 205 m and groundwater depth ranging from 9 m to 86.77 m, which indicates good groundwater potential. The groundwater salinity of the concerned aquifer ranges from 349.7 mg/L to 2043.9 mg/L, reflecting fresh to possibly brackish water types. Groundwater in the study area is of meteoric water origin; recent recharge is mainly controlled through the presence of fractures and their densities. The majority of groundwater samples in the study area are suitable for drinking and irrigation purposes.  相似文献   

2.
A robust classification scheme for partitioning groundwater chemistry into homogeneous groups was an important tool for the characterization of Eocene limestone aquifer. The aquifer locally is composed of chalky limestone with thin clay intercalated (Samalut Fm.), the fissures, the joints, and the fractures are represented the conduits of the aquifer system. The flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The aquifer is mainly recharged by surrounding aquifers and agricultural wastewaters. The groundwater flows in the eastern part (due the Bahr Yossef and River Nile), which is a discharge area rather than a recharge. Twenty-eight groundwater samples was collected from the Eocene limestone aquifer and analyzed for isotopes, major, and trace elements. δD and δ18O concentrations ranged widely due to geology, infiltration of different surface waters, evaporation, and hydrogeology. The concentration of δD and δ18O isotopes is depleted in the northern zone of the northern part and western zone of the central and southern part of the study area. They are enriched due the eastern area of the central and southern part of the study area. δD vs. δ18O delineate the Pleistocene aquifer and has a strong influence than other waters on aquifer hydrogeochemistry. It is confirmed by the AquaChem outputs of the mixing proportions of different water types included in the aquifer system. Cl-δD and Cl-δ18O relationships indicate the role of evaporation especially due the eastern area of the central and southern part of the study area. This research tests the performance of the many available graphical and statistical methodologies used to classify water samples. R-mode clustering, correlation analysis, and principal component analysis were investigated. All the methods were discussed and compared as to their ability to cluster, ease of use, and ease of interpretation. Nearly most low-salinity waters are in equilibrium to supersaturate with respect to both carbonate minerals, while it is shifted to undersaturate with salinity. The inverse modeling findings clarify that the calcite, gypsum, and anhydrite dissolution increased due the northeastern area, middle zone, and southern corner of the northern, central, and southern part of the study area, respectively. The latter areas also were characterized by the lowest precipitation of the dolomite. Such areas are distinguished by much more enhancement for aquifer permeability and therefore transmissivity. The latter areas can be use as injection zone by fresh water. It can be a triple function; firstly, it recharges the saline Eocene limestone aquifer through the enhancement hydraulic conductivity and dilutes it. Secondly, it enhances much more the aquifer permeability and therefore the transmissivity. The Eocene limestone aquifer can be improved in quality and quantity by using such a model and exploits it as an alternative water resource with Quaternary aquifer and Nile water. Thirdly, it irrigates more areas to increase the income/capita. The dedolomitization represents the main hydrogeochemical process in the aquifer system. The geomedia (limestone, clay, marl, shale, and sand deposits) are in contact with water, therefore, the rock/water interaction, mixing, and ion exchange were estimated by the geochemical evolution of the groundwater systems.  相似文献   

3.
The aim of this article is to assess the main factors influencing salinity of groundwater in the coastal area between El Dabaa and Sidi Barani, Egypt. The types and ages of the main aquifers in this area are the fractured limestone of Middle Miocene, the calcareous sandstone of Pliocene and the Oolitic Limestone of Pleistocene age. The aquifers in the area are recharged by seasonal rainfall of the order of 150 mm/year. The relationship of groundwater salinity against the absolute water level, the well drilling depth, and the ability of aquifer to recharge has been discussed in the present work. The ability of aquifer to locally recharge by direct rainfall is a measure of the vertical permeability due to lithological and structural factors that control groundwater salinity in the investigated aquifers. On the other hand, the fracturing system as well as the attitude of the surface water divide has a prime role in changing both the mode of occurrence and the salinity of groundwater in the area. Directly to the west of Matrouh, where the coastal plain is the narrowest, and east of Barrani, where the coastal plain is the widest, are good examples of this concept, where the water salinity attains its maximum and minimum limits respectively. Accordingly, well drilling in the Miocene aquifer, in the area between El Negila and Barrani to get groundwater of salinities less than 5000 mg/l is recommended in this area, at flow rate less than 10 m3/hr/well. In other words, one can expect that the brackish water is probably found where the surface water divide is far from the shore line, where the Wadi fill deposits dominate (Quaternary aquifer), acting as a possible water salinity by direct rainfall and runoff.  相似文献   

4.
Groundwater is an important water resource in the Helwan area, not only for drinking and agricultural purposes, but also because several famous mineral springs have their origin in the fractured carbonate aquifer of the region. The area is heavily populated with a high density of industrial activities which may pose a risk for groundwater and surface water resources. The groundwater and surface water quality was investigated as a basis for more future investigations. The results revealed highly variable water hydrochemistry. High values of chloride, sulphate, hardness and significant mineralization were detected under the industrial and high-density urban areas. High nitrate contents in the groundwater recorded in the southern part of the study area are probably due to irrigation and sewage infiltrations from the sewage treatment station. The presence of shale and marl intercalation within the fissured and cavernous limestone aquifer promotes the exchange reactions and dissolution processes. The groundwater type is sodium, sulphate, chloride reflecting more mineralized than surface water. The results also showed that water in the study area (except the Nile water) is unsuitable for drinking purposes, but it can be used for irrigation and industrial purposes with some restrictions.  相似文献   

5.
The Nubian Sandstone Aquifer (NSSA) is the main groundwater resource of the El-Bahariya Oasis, which is located in the middle of the Western Desert of Egypt. This aquifer is composed mainly of continental clastic sediments of sandstone with shale and clay intercalations of saturated thickness ranging between 100 and 1500 m. Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sustainable resources management and land use planning. Accordingly, this research aims to estimate the vulnerability of NSSA by applying the DRASTIC model as well as utilising sensitivity analyses to evaluate the relative importance of the model parameters for aquifer vulnerability in the study area. The main objective is to demonstrate the combined use of the DRASTIC and the GIS techniques as an effective method for groundwater pollution risk assessment, and mapping the areas that are prone to deterioration of groundwater quality and quantity. Based on DRASTIC index (DI) values, a groundwater vulnerability map was produced using the GIS. The aquifer analysis in the study area highlighted the following key points: the northeastern and western parts of the NSSA were dominated by ‘High’ vulnerability classes while the northwestern and southeastern parts were characterised by ‘Medium’ vulnerability classes. The elevated central part of the study area displayed ‘Low’ aquifer vulnerability. The vulnerability map shows a relatively greater risk imposed on the northeastern part of the NSSA due to the larger pollution potential of intensive vegetable cultivation. Depth-to-water, topography and hydraulic conductivity parameters were found to be more effective in assessing aquifer vulnerability.  相似文献   

6.
The delta Wadi El-Arish area of the Sinai Peninsula is one of the most important parts of Egypt for industrial and agricultural expansion projects because of its relatively abundant supply of groundwater. This study focuses on the hydrogeology and hydrochemistry of the Quaternary aquifer in the delta Wadi El-Arish area and on the impacts pumping has had on groundwater quality. The objectives were to determine the relationships between groundwater pumping and water levels and water quality, to estimate the hydraulic parameters of the Quaternary aquifer, and to determine the hydrochemistry of groundwater in the Quaternary aquifer and its suitability for irrigation. The conclusions are: (1) potentiometric surface elevations have declined by an average of about 0.5 m since 1981 in response to an increase in pumping, (2) the transmissivity of the lower Pleistocene calcareous sandstone (kurkar) unit is higher than the transmissivity of the upper Pleistocene alluvium, (3) groundwater in the Pleistocene aquifer is augmented with groundwater leaking from the overlying Holocene sand dune deposits through the intervening sandy clay aquitard, (4) groundwater in the kurkar is of lower quality than groundwater in the alluvium, (5) total dissolved solids (TDS) concentrations have increased by an average of about 1500 ppm since 1962, (6) an increase in saltwater intrusion has occurred in the northern part of the study area, and (7) the irrigation suitability of groundwater pumped from wells in much of the area is limited to salt tolerant crops. Our recommendations are: (1) no new pumping wells should be drilled and no increase in pumping rates should be allowed in the delta Wadi El-Arish area, (2) reliable estimates of the quantity of groundwater recharge should be made, (3) flood irrigation systems should be replaced by either drip or sprinkler  相似文献   

7.
王广才  段琦等 《地质论评》2001,47(6):653-657
矿井防治水的理论和工程实践表明,水文地球化学方法是矿井水害预防和治理工作中较为有效的一种方法,以平顶山矿区、肥城矿区为例,阐述了水文地球化学方法在水害研究中的某些应用,在平顶山矿区、环境同位素(氢、氧)和统计分析(聚类分析)技术的研究结果,进一步证实和校正了以往对该区水流系统的概念模型,即局部水流系统和过渡水流系统(或西南部和东北部子系统)的划分仅适于寒武系灰岩含水系统;砂岩含水层在矿区中、北部低山区接受大气降水补给,并有可能补给薄层灰岩含水层。在肥城矿区,地下水示踪试验结果表明,该区的GF9,F7-1、F7-3断层在试验段内具有较强的导水性,奥灰水可通过上述断层并以不同特征的通道和速度继续径流并补给各井下出水点,因而是该区煤矿安全的主要威胁。  相似文献   

8.
The demand for water is rapidly increasing in Egypt, because of high population and agriculture production growth rate, which makes research of water resources necessary. The regional multi-aquifer system of the Miocene–Pleistocene age is discharged in Wadi El Natrun area. Intensive aquifer overexploitation and agricultural development in the area are related to groundwater quality deterioration. Hydrochemical and hydrogeological data was evaluated to determine the groundwater origin and quality in the south-eastern part of wadi, which appears to be more significant for water supply owing to lower groundwater salinity. The dominance of the high mineralised Cl groundwater type was found; however, also less mineralised SO4 and HCO3 types were identified there. Based on the ion relations, halite and gypsum dissolution and ion exchange are the most important hydrochemical processes forming the groundwater chemical composition. The Cl dominated groundwater matches the discharge part of the regional hydrogeological system. Contrary, the presence of HCO3 and SO4 hydrochemical types corresponds to the infiltration and transferring parts of the hydrogeological system indicating the presence of zones conducting low mineralised groundwater. The discharge area of the over-pumped aquifer in Wadi El-Natrun lies 23 m beneath the sea level with the shoreline being at the distance of 100 km, thus there is a real risk of seawater intrusion. Using the hydrochemical facies evolution diagram, four samples in the centre of the discharge area indicate advanced seawater intrusion. The zones of the highest demand for groundwater quality protection were indicated based on a spatial pattern of hydrogeochemical composition.  相似文献   

9.
拒马源泉群作为拒马河的源头,受到了较多专家和学者的关注。但这些研究多集中在地下水的水化学、水位动态、泉流量等特征上,对地下水氢氧同位素特征的分析几乎没有,且对北海泉的成因解释多为粗略的定性概述。为了说明涞源北盆地地下水的氢氧同位素特征,详细揭示北海泉的形成模式,首次系统地采集了不同含水岩组的地下水样品,测定了水样的氢氧同位素组分。结果表明:样品点δD和δ18O值均落在区域大气降水线上或附近,大气降水是研究区地下水的主要补给来源;白云岩、灰岩含水岩组高程效应较明显,径流途径长,松散含水层径流途径短,受蒸发作用较强;白云岩、灰岩含水岩组和松散含水层氘盈余d值分别为6.0‰~11.6‰、4.2‰~11.2‰、3.8‰~8.0‰,较大气降水大部分偏小,表明岩溶水和松散孔隙水经历了不同的流动过程;白云岩、灰岩含水岩组从补给区向排泄区各自流动过程中,在小西庄、香炉屯村附近断裂带发生沟通混合,然后在向盆地中心径流过程中受断层阻水上升,上升过程中又接受了松散孔隙水的补给,最后在松散岩层中出露成泉,形成北海泉。在孔隙水混入前,两者的平均补给比例大约为48.4%~57.6%和42.4%~51.6%。  相似文献   

10.
Three dimensional lithologic modeling techniques have been used for detailed characterization and groundwater flow modeling of the Quaternary aquifer system of the Sohag area, Egypt. Well log data were used for building the lithologic model using RockWorks. A groundwater flow model, facilitated by MODFLOW 2000, was built using results of the lithologic model. The obtained lithologic model honored the well log data and revealed a complex sedimentary system, which is mainly composed of six lithologic categories: clay, clay and sand, fine sand, coarse sand, sand and gravel, and gravel. Inter-fingering and presence of lenses are the main characteristics of the sedimentary basin in the study area. A wide range of hydraulic conductivities is present, which vary spatially and control the groundwater flow. Heterogeneity of the aquifer system is spatially represented where different hydraulic conductivities are found in the different directions. Sandy layers tend to be connected. Hydraulic continuity is represented by inter-fingering and connection of sandy materials within the aquifer system.  相似文献   

11.
煤炭开采后峰峰矿区奥陶系岩溶水硫酸盐演化过程研究   总被引:5,自引:3,他引:2  
文章运用水化学和同位素水文学等手段,寻求奥陶系岩溶水硫酸盐演化过程的“指纹”,通过不同含水层间水化学、稳定同位素差异的比对,分析其与上覆含水层间的水力联系和硫动力分馏过程,阐述采矿活动影响下峰峰矿区奥陶系岩溶水硫酸盐的演化过程。研究结果表明:煤矿开采后,峰峰矿区奥陶系岩溶水硫酸盐含量普遍增高,演化特征呈现多样性,存在多种硫动力分馏过程。分馏动力主要来自矿坑水和孔隙水通过导水裂隙的渗漏(越流)补给,以及脱白云石化过程中自身蒸发岩矿物(石膏)的溶解。   相似文献   

12.
五沟煤矿太原组上段灰岩岩溶裂隙水是矿井主采煤层(10煤)的主要充水含水层。通过对矿区水文地质边界条件、地面抽水试验和井下放水试验的分析,认为矿区水文地质边界受制于周边的较大型隔阻水断层,从而形成了较封闭的地下水系统;太原组上段灰岩含水层的富水性在平面上具有不均一性,在垂向具有随着深度的增加,岩溶发育有减弱的趋势,基本上属弱富水含水层,仅在局部构造发育带为中等富水含水层。利用利用surfer软件,绘制出矿区太原组灰岩水位等值线图;从图上可以看出,矿区目前太原组含水层水位标高总体呈北高南低,中间高两边低的态势,并在井田西南部形成以水5孔及J5-1孔为中心的低水位区。该研究对目前矿井防治水工作具有重要的指导意义。  相似文献   

13.
基于FEFLOW的采区放水实验数值模拟与模型评估   总被引:1,自引:0,他引:1  
魏新  杨国勇  胡林炜 《地下水》2010,32(5):1-2,22
采区安全开采受底板徐灰水,奥灰水威胁,确定含水层的富水性和准确的水文地质参数对于评价采区安全开采,评价徐灰水疏水降压可行性,正确预计工作面涌水量均具有重要的意义。基于有限元剖分方法的FEFLOW软件能对地下水流向进行模拟.其内置的PEST能有效地对模型的参数最优化,达到精确求参,从而增加模型的可行性和与实地水文地质条件的拟合度。  相似文献   

14.
在皖北矿区采取了2 2个深层地下水水样,测试Ag、Al、As、Ba等2 0种微量元素,建立了主成分分析模型。根据元素相关性、特征值与累计方差贡献率,进行了地下水的微量元素主成分分析和地下水主成分解释。在此基础上建立了皖北矿区主要突水水源4个主成分的判别表达式,从而得出结论:矿区地下水,特别是四含、太灰与奥灰3个突水含水层微量元素的质量浓度与4个主成分息息相关,可以简单地把第一、二、三、四主成分概括为地下水的溶滤作用、越流作用、河流补给作用、构造裂隙补给作用。   相似文献   

15.
The relationships between stratigraphic and tectonic setting, recharge processes and underground drainage of the glacierised karst aquifer system ‘Tsanfleuron-Sanetsch’ in the Swiss Alps have been studied by means of various methods, particularly tracer tests (19 injections). The area belongs to the Helvetic nappes and consists of Jurassic to Palaeogene sedimentary rocks. Strata are folded and form a regional anticlinorium. Cretaceous Urgonian limestone constitutes the main karst aquifer, overlain by a retreating glacier in its upper part. Polished limestone surfaces are exposed between the glacier front and the end moraine of 1855/1860 (Little Ice Age); typical alpine karrenfields can be observed further below. Results show that (1) large parts of the area are drained by the Glarey spring, which is used as a drinking water source, while marginal parts belong to the catchments of other springs; (2) groundwater flow towards the Glarey spring occurs in the main aquifer, parallel to stratification, while flow towards another spring crosses the entire stratigraphic sequence, consisting of about 800 m of marl and limestone, along deep faults that were probably enlarged by mass movements; (3) the variability of glacial meltwater production influences the shape of the tracer breakthrough curves and, consequently, flow and transport in the aquifer.  相似文献   

16.
Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.  相似文献   

17.
The Nubia Sandstone aquifer system is one of the most extensive groundwater systems in North Africa, covering an area of about 2,000,000 km2, including parts of Egypt, Libya, Sudan, and Chad. In the Western Desert of Egypt, the Nubian formation has a thermal gradient of 1.1–5°C 100 m–1 with the exception of the East Oweinat area, located in the southern part of the Western Desert. This is the only part of this huge system where ground-water occurs under unconfmed conditions in an area where the Nubian sandstone crops out and is underlain by shallow basement rocks; in this area groundwater has no thermal characteristics. The aquifer system in the East Oweinat area attains a relatively high hydraulic conductivity. The direction of groundwater flow is generally northeastwards but is distorted at faults and fracture zones. Chemical analyses of groundwater in the area indicate a low salt content and suitability for irrigation purposes. As the estimated recharge to the area is low compared with the foreseen irrigation water requirement, the development of groundwater in the East Oweinat should be based on groundwater mining. Although the evaluation of the groundwater resources in East Oweinat has indicated that groundwater can be extracted at a rate of 4.7×106 m3 d–1, the long-term economics of extraction that can sustain large-scale development projects has to be assessed.  相似文献   

18.
天津市宁河北奥陶系灰岩水源地的水文地球化学模拟   总被引:8,自引:3,他引:5  
姚锦梅  周训  周海燕 《现代地质》2006,20(3):494-499
天津市宁河北水源地属埋藏型地下水源地,其开采层奥陶系灰岩含水层呈北东向的向斜展布,隐伏于石炭系-二叠系砂页岩之下,并被新近系覆盖,仅在东北部与第四系含水层有水力联系,地下水的补给主要来自浅层第四系含水层的越流补给。应用水文地球化学模拟方法,研究从第四系含水层到奥陶系含水层地下水经历的水-岩作用,包括方解石、白云石、萤石和硬石膏的溶解或沉淀、二氧化碳气体的溶解或逸出等,地下水硬度、矿化度总体上有下降趋势,这是由于含Ca2+、Mg2+和HCO-3的矿物相发生溶解,迁入溶液的比率要小于发生沉淀迁出溶液的比率,具体表现在从第四系含水层到奥陶系含水层Ca2+、和HCO-3浓度的降低幅度较大。通过模拟计算,可以定量确定从补给区到研究区沿水流路径上的水-岩相互作用及质量交换,有助于揭示该区地下水化学环境的演化机制。  相似文献   

19.
高阳煤矿主采太原组9-10-11#煤层,矿区内断层、陷落柱发育,奥陶系灰岩溶裂隙水是威胁矿井安全开采的主要水源。据井下突水资料及地面水文地质勘探成果,总结出奥陶系峰峰组岩溶裂隙含水层的赋存特征:①从垂向上看,一段以泥灰岩、石膏、硬石膏为主,为相对隔水层,二段由青灰色及黑色厚层状泥晶、粉晶灰岩组成,钻探可见岩溶裂隙,富水性中等;②从水平方向上看,西部埋藏较浅区富水性明显强于中、东部深埋区,且在向斜轴部出现滞流区;③水位西高东低,相差近300m;④顶部存在隔水层段,隔水层厚度一般3.09~34.01m;⑤水位和水化学特征对比发现,峰峰组与马家沟组含水层没有水力联系;⑥地下水总体自西向东,自北向南径流,侧向径流排出井田外。该研究为煤矿底板水的防治提供了依据。  相似文献   

20.
A combination of major and trace elements have been used to characterize surface- and groundwater in El Minia district, Egypt. Surface water versus groundwater chemistry data enabled geographical zonation and chemical types to be differentiated. The main target of this research is to investigate the groundwater quality and hydrochemical evaluation. The situation is further complicated by contamination with lithogenic and anthropogenic (agricultural and sewage wastewaters) sources and low plan exploitation techniques. The investigated Pleistocene aquifer is composed of sand and gravel of different sizes, with some clay intercalation. The semi-confined condition was around the River Nile shifted to unconfine outside the floodplain. The groundwater flow generally from south to north and locally diverts towards the western part from the River Nile. Fifty-six, 11, five, and two water samples were collected from the Pleistocene aquifer, River Nile, Ibrahimia canal, and Al Moheet drain, respectively. The collected water samples were analyzed for major and trace elements. The toxic metal concentrations of Al Moheet drain are higher than those in the River Nile and the Ibrahimia canal. Cr, Hg, As, and Cd concentrations in the River Nile and Ibrahimia canal are fluctuated above and below the WHO drinking standards. Se concentration in River Nile and Ibrahimia canal is below WHO drinking and irrigation guidelines. Total dissolved solid content in groundwater is generally low, but it is increased due to the western part of the study area. The geographic position of the River Nile, Ibrahimia canal, and Al Moheet drain impact on the groundwater quality. The PHREEQC confirm the high mixing proportions from the River Nile into the groundwater and decline away from it. In addition to the thicknesses of the Pleistocene, aquifer and aquitard layer enhance the River Nile and agricultural wastewaters intrusion into the aquifer system. The toxic metal concentrations (Pb, Cd, Cr, PO4, Se, Mn, As, Hg, Ni, Al, Fe, and SIO2) in groundwater were increased mainly in the northwestern and southeastern part (far from the River Nile). It is attributed to anthropogenic, high vulnerability rate (unconfined), and partially to lithogenic. In most localities, the groundwater are unsuitable for drinking and irrigation purposes with respect to Se concentration, while they are unsuitable for dinking according Mn, As, and Hg contents. There are some Cd and Pb anomalies concentrations, which cause severe restriction if used in irrigation. The results suggested that significant changes are urgently needed in water use strategy to achieve sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号