首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal pollution in the surficial sediments derived from estuary in Daliao River and Yingkou Bay is investigated in the present work in order to assess environmental quality and pollution levels. Physicochemical parameters of surficial sediments (sediment type and TOC) and the overlying water (temperature, EC, pH and dissolved oxygen) are also studied. The total concentrations of Cd, Cr, Mn and Ni in the samples are determined using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). The result indicates the comparatively low concentrations of the four metals (the max. of 0.67 mg/kg of Cd, 85.80 mg/kg of Cr, 1073.00 mg/kg of Mn and 38.62 mg/kg of Ni), the distribution rule of four metals in different regions of the studying area and the sources of the pollution. The methods of index of geoaccumulation, potential ecological risk index and pollution load index are used to assess the degree of contamination, distribution character and the sequence of pollution level in different regions which reflect the overall low values and low pollution level. The six-step sequential extraction method is used to determine the chemical forms of the four metals in order to evaluate their possible mobility, bioavailability and toxicity in surficial sediments. Cd and Mn are mostly concentrated in the CARB fraction, while Ni and Cr are mostly concentrated in the RES fraction. The mobility of the metals has the following order (average value): Cd > Mn > Ni > Cr.  相似文献   

2.
朱伯万  薛怀友 《江苏地质》2006,30(3):187-190
对扬中长江漫滩柱状沉积物Cd、Pb、Cu、N i、Cr、Zn重金属垂向变化特征分析,表层20 cm以上,重金属含量普遍较高,表明了人类活动对长江重金属输入量呈现日益增加的趋势。通过重金属与Fe元素作线性回归方程,求得重金属的背景含量。相比而言,表层沉积物重金属含量反映了长江滩涂沉积物已经呈现明显的污染趋势。  相似文献   

3.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

4.
Major ion chemistry of water and elemental geochemistry of suspended and surficial sediments collected from the Cauvery Estuary were studied to understand the geochemical processes in this tropical estuarine system. Specific conductance (EC), total dissolved solids (TDS), and total suspended matter (TSM) increased conservatively with increasing chlorinity. In general, SO4 2?, Na, K, Ca, and Mg showed an increasing trend while H4SiO4 and PO4 3? showed a decreasing trend toward the sea. Additional removal mechanisms operating for these ions in the Cauvery Estuary have been identified based on observed concentrations. Factor analysis pointed out the sources contributing to the observed trends in estuarine water chemistry. POC and PON decreased toward the high chlorinity zone. TSM in the Cauvery Estuary were mostly of inorganic nature. Stable carbon isotope values showed that the carbon was equally of marine and terrestrial origin and helped to delineate the contribution of river water and seawater. The ? mean size (a logarithmic grain size scale commonly used by sedimentologists) indicated that the surficial sediments were primarily comprised of coarse and silt, whereas suspended sediments were principally silt and clay. Suspended sediments were enriched in clays compared to surficial sediments. Quartz and feldspar were abundant among detritals while chlorite, kaolinite, and montmorillonite were dominant among clays. Silicon was the most abundant element in the sediments followed by Al, Ca, Na, K, Fe, Mn, and P. Heavy metals were enriched in the suspended sediments compared to the surficial bottom sediments as follows: Fe = 3.5, Mn = 7.4, Pb = 1.1, Zn = 15.2, Cu = 7.4, and Cr = 4.0. The levels of Cd, Cr, Zn, and Fe increased up the middle reaches and then decreased toward the sea due to urban effluent and fertilizer input. Size fractionation studies indicated that the metal concentration in the finer fraction was 50% higher by mass than the coarse silt and fine silt fractions. Chemical fractionation studies showed that the abundance of metals were in the order of residual > organic/sulfide > carbonate > Fe/Mn oxide > exchangeable fractions.  相似文献   

5.
 The concentrations of various metals (Cr, Cu, Co, Fe, Mn, Ni, Pb, Zn, and Cd) were determined in recently deposited surface sediments of the Gomati River in the Lucknow urban area. Markedly elevated concentrations (milligrams per kilogram) of some of the metals, Cd (0.26–3.62), Cu (33–147), Ni (45–86), Pb (25–77), and Zn (90–389) were observed. Profiles of these metals across the Lucknow urban stretch show a progressive downstream increase due to additions from 4 major drainage networks discharging the urban effluents into the river. The degree of metal contamination is compared with the local background and global standards. The geoaccumulation index order for the river sediments is Cd>Zn>Cu>Cr>Pb. Significant correlations were observed between Cr and Zn, Cr and Cu, Cu and Zn and total sediment carbon with Cr and Zn. This study reveals that the urbanization process is associated with higher concentrations of heavy metals such as Cd, Cu, Cr, Pb, and Zn in the Gomati River sediments. To keep the river clean for the future, it is strongly recommended that urban effluents should not be overlooked before their discharge into the river. Received: 16 February 1996 · Accepted: 29 February 1996  相似文献   

6.
The presence of heavy metal concentrations was examined in natural sediments from four sites along the Jajrood river in northeast of Tehran, the capital of Iran. Besides determination of elemental concentrations (Pb, Cu, Zn, Cd, Ni and Cr), X-ray fluorescence and X-ray diffraction tests were carried out to determine other chemical components in these adsorbents. Also the ability of sediments to adsorb these heavy metal ions from aqueous solutions was investigated. Results show that the extent of adsorption increases with increase in adsorbent concentration. The amount of adsorbed Pb, Cu and Zn in sediments was much greater than that of the other metals, and Cr was adsorbed much less than others. The adsorbabilities of sediments to heavy metals increased in the order of Pb > Cu > Zn > Cd > Ni > Cr. Based on the adsorption data, equilibrium isotherms were determined at selected areas to characterize the adsorption process. The adsorption data followed Freundlich and Langmuir isotherms in most cases. Correlation and cluster analysis was performed on heavy metals adsorption and sediment components at each site to evaluate main adsorbing compounds in sediments for each metal. Results demonstrated that heavy metals sorption is mostly related to load of organic matter in the Jajrood river sediments.  相似文献   

7.
Zn, Cu, Cr and Pb concentrations of the sediment collected from three tidal flat sites of Yangtze estuary were investigated in October 2003. Results showed that the average concentrations of heavy metals in the sediments were two to three times to the environment background values of Yangtze estuary tidal flat sediment. The heavy metal concentrations in the sediments near the Bailonggang (BLG) and Laogang (LG) sewage outfalls were obviously higher than those of Chaoyang (CY) tidal flat where there are no sewage outfalls near the coast. And the concentrations of heavy metals in the surface sediments of LG tidal flat decreased with the increasing of the distance to the sewage outfalls. The heavy metal concentration profile in the sediment core changed with the depth, and generally reached maximum values at the depth of plant roots. The assessment results showed that the sediments of LG, BLG and CY tidal flat had been polluted by heavy metals in different level. The pollution degree of heavy metals in the sediments was as follows: Zn > Cu > Pb > Cr. The potential ecological risks of the four heavy metals in three tidal flat sites sediment were all at a middle level, and Cu and Pb made the main contributions. The adverse ecological effects caused by the four heavy metals did not occur frequently.  相似文献   

8.
The interaction between heavy metals and river sediment is very important because river sediment is the sink for heavy metals introduced into a river and it can be a potential source of pollutants when environmental conditions change. The Kumho River, the main tributaries of the Nakdong River in Korea, can be one of the interesting research targets in this respect, because it runs through different geologic terrains with different land use characteristics in spite of its short length. Various approaches were used, including mineralogical, geochemical, and statistical analyses to investigate the distribution and behavior of heavy metals in the sediments and their sources. The effect of geological factor on the distribution of these metals was also studied. No noticeable changes in the species or relative amounts of minerals were observed by quantitative X-ray diffraction in the sediments at different stations along the river. Only illite showed a significant correlation with concentrations of heavy metals in the sediments. Based on an average heavy metal concentration (the average concentrations of Cd, Co, Cr, Cu, Ni, Pb, and Zn were 1.67, 20.9, 99.7, 125, 97.6, 149, 298 ppm, respectively), the sediments of the Kumho River were classified as heavily polluted according to EPA guidelines. The concentrations of heavy metals in the sediments were as follows: Zn > Pb > Cu > Ni > Cr > Co > Cd. In contrast, contamination levels based on the average I geo (index of geoaccumulation) values were as follows: Pb > Cd > Zn > Cu > Co = Cr > Ni. The concentrations of heavy metals increased downstream (with the exception of Cd and Pb) and were highest near the industrial area, indicating that industrial activity is the main factor in increasing the concentrations of most heavy metals at downstream stations. Sequential extraction results, which showed increased heavy metal fractions bound to Fe/Mn oxides at the downstream stations, confirmed anthropogenic pollution. The toxicity of heavy metals such as Ni, Cu, and Zn, represented by the exchangeable fraction and the fraction bound to carbonate, also increased at the downstream stations near the industrial complexes. Statistical analysis showed that Pb and Cd, the concentrations of which were relatively high at upstream stations, were not correlated with other heavy metals, indicating other possible sources such as mining activity.  相似文献   

9.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

10.
陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价   总被引:3,自引:1,他引:2  
徐友宁  张江华 《地质通报》2008,27(8):1263-1671
通过对潼关金矿区太峪河和太峪水库底泥中重金属元素总量的调查,探讨了金矿开发活动中重金属元素对河流底泥的污染程度。研究结果表明,除As外,河流底泥中重金属元素的含量与尾矿渣中重金属元素的含量变化一致,表明其主要来源于尾矿渣,但又明显高于尾矿渣。在同一地点河流底泥中重金属元素的含量平均高出河水中的1048.61~666030.08倍,呈显著富集。以邻近地区不受工矿活动影响的河流底泥重金属元素的含量均值作为评价参比值,太峪河底泥受到了Hg、Pb、Cd、Cu、Zn元素的极度污染,单项污染超标倍数及综合污染指数法评价结果表明,Hg、Pb、Cd平均污染超标倍数达366.90、217.42和149.97,是底泥中最主要的污染元素。河流底泥重金属元素的综合污染指数高达278.97,表明河流的复合污染亦呈极度状态。太峪河底泥受重金属元素极度污染的现实提示,矿区的环境防治工作已刻不容缓。  相似文献   

11.
 Geochemical characteristics of six trace metals – Cu, Co, Ni, Zn, Cd and Cr – in the bulk sediment and sand, silt and clay fractions of a tropical estuary on the southwest coast of India have been studied and discussed. In bulk sediment, the trace metal concentration is controlled mainly by the textural composition of the sample. Mud, sandy mud and sandy silt register higher concentrations of trace metals than that in sand-dominant sediments. The granulometric partitioning studies also re-affirmed the role of particle size in enriching the trace metals. The silt and clay fractions exhibit 7–8 times the enrichment of Cu and Cd compared to that in sand. The enrichment factors of Zn, Cr, Ni and Co in the silt and clay fractions, compared to that in sand, are 5–6, 4–5, 2–5 and 2–3 times, respectively. The trace metals in the sand fraction, particularly Ni and Cr, exhibit strong positive correlation with the heavy mineral content of the samples. It clearly indicates a heavy mineral pathway to the trace metals in the sand fraction. Cu and Co in silt and clay fractions exhibit a marked decrease towards the high saline zones of the estuary. This is attributed to the desorption of Cu and Co from particulate phases during estuarine mixing. Contrary to Cu and Co, the content of Zn in the clay fraction shows a marginal increase towards the estuarine mouth. This could be explained by the influx of Zn-rich contaminant discharges from Zn-smelting industries located slightly north of the estuarine mouth. The released Zn will effectively be held in the lattices of the clay mineral montmorillonite, which also exhibits a marked increase towards the estuarine mouth. The anomalously high values of Cd in some places of the Central Vembanad estuary is attributed to the local pollution. Received: 10 July 1995 · Accepted: 3 June 1996  相似文献   

12.
Sediments and surface water contamination by the industrial effluents containing heavy metals is the most detrimental environmental impact. Therefore, the present work attempts to determine the status of eight heavy metal distribution in sediments and water samples, and their ecological risks’ assessment in the studied area. The distribution pattern of heavy metals in the water and sediment follows the sequences: Zn > Cu > Pb > Cr > Mn > Ni > As > Cd and Mn > Zn > Cr > Pb > Cu > Ni > As > Cd, respectively. Gross water pollution is observed at different sampling points of Dhalai Beel and Bangshi River. The comparison of sedimentary mean metal concentrations with several environmental contamination monitoring parameters, viz, threshold effect level (TEL), probable effect level (PEL), and severe effect lever (SEL) indicates that the metal levels are less than PEL except Cr. Moreover, the level of contamination degree (C d) and modified degree of contamination (mC d) indicates ‘low’ and ‘nil to low’ degree of contamination, respectively. Pollution load indices (PLI) of the studied area are lower than unity, indicates no pollution. Furthermore, a toxic-response factor is applied to assess the potential ecological risk of these heavy metals into the water body. The results of this study exhibit a low potential ecological risk of heavy metals. The Pearson’s correlation and cluster analysis are also performed to assess the heavy metal interactions in water and sediment samples.  相似文献   

13.
以金矿开发影响的黄河二级支流太峪水系沉积物为研究对象,沿河采集16个表层沉积物样品,分层采集垂向剖面10件水库沉积物样品,测定了样品中重金属元素Hg、Pb、Cd、Cr、As、Cu和Zn的含量,采用Hakanson潜在生态指数法和Tomlinson污染负荷指数法评价重金属元素污染程度和潜在生态风险。结果表明,矿业活动是太峪水系沉积物重金属元素污染的主要因素;变异系数、富集系数和最高污染系数均反映Hg、Pb、Cd是太峪水系沉积物的特征污染重金属元素,Cr和As的质量分数接近地区背景值;太峪水系表层沉积物受到重金属元素的极强污染,山区段污染较山外更严重;整个流域的Hg、Pb、Cd具有很强的潜在生态危害,Cr、As、Zn的潜在生态危害轻微;太峪水系沉积物垂向各层沉积物都受到重金属元素的极强污染,生态问题以Hg、Pb、Cd的潜在生态危害为主,其污染和生态危害程度都高于流向上的沉积物。潜在生态危害指数评价突出了不同元素的毒性和危害程度,而污染负荷指数法侧重于样本空间上的污染程度,二者互补使用有利于实际问题的全面评价。  相似文献   

14.
松花江上游表层沉积物中重金属元素时空分布特征   总被引:1,自引:0,他引:1  
松花江是我国七大河流之一,研究其底泥重金属元素的时空分布特征对流域的水环境治理具有重要意义。本文对松花江(哈达山至松花湖段)底泥(表层沉积物)中元素As、Hg、Cr、Cd、Pb的分布特征进行了研究,并利用地累积指数分析了这些元素的污染状况。结果表明:研究区底泥几乎未受到As、Cr和Pb的污染,但多数地段内出现了Cd和Hg的污染,尤其是元素Hg,在个别地段的污染程度达到了极强;与10年前相比,一些重金属的污染得到了明显改善,但吉林市区段内Hg的污染仍非常严重。污染样品空间分布特征表明,松花江吉林市区段可能有来自工农业废水的重金属污染。  相似文献   

15.
Heavy metal distribution in sediments of Krishna River basin,India   总被引:1,自引:0,他引:1  
Suspended and bed sediments collected from the entire region of the Krishna River and its major tributaries were analyzed for heavy metals (V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Pb) by the thin-film energy dispersive x-ray fluorescence technique. There is considerable variation in the concentration of elements towards downstream, which may be due to the variation in the subbasin geology and various degrees of human impact. Suspended particles are enriched in heavy metals throughout the basin relative to bed sediments. The heavy metals are enriched in coarse size fractions (10–90 µm) throughout the Krishna River except its tributary Bhima, where finer fractions (2 µm) dominate. Transition elements correlate very well with each other. There is a striking similarity between the bed sediments of Krishna River and the Indian average. When the annual heavy metal flux carried by the Krishna River was estimated, and viewed in relation to the other major riverine transport, the Krishna is seen to be a minor contributor of heavy metals to the Bay of Bengal.  相似文献   

16.
Serpentinite soils, common throughout the world, are characterized by low calcium-to-magnesium ratios, low nutrient levels and elevated levels of heavy metals. Yet the water quality and heavy metal concentrations in sediments of streams draining serpentine geology have been little studied. The aim of this work was to collect baseline data on the water quality (for both wet and dry seasons) and metals in sediments at 11 sites on the Marlborough Creek system, which drains serpentine soils in coastal central Queensland, Australia. Water quality of the system was characterized by extremely hard waters (555–698 mg/L as CaCO3), high dissolved salts (684–1285 mg/L), pH (8.3–9.1) and dissolved oxygen (often >110% saturation). Cationic dominance was Mg > Na > Ca > K and for anions HCO3 > Cl > SO4. Al, Cu and Zn in stream waters were naturally high and exceeded Australian and New Zealand Environment and Conservation Council guidelines. Conductivity displayed the highest seasonal variability, decreasing significantly after wet season flows. There was little seasonal variation in pH, which often exceeded regional guidelines. Stream sediments were enriched with concentrations of Ni, Cr, Co and Zn up to 35, 21, 10 and 2 times the world average for shallow sediments, respectively. Concentrations for Ni and Cr were up to 60 and 16 times those of the relevant Interim Sediment Quality Guidelines Low Trigger Values, respectively. The distinctive nature of the water and sediment data suggests that it would be appropriate to establish more localized water quality and sediment guidelines for the creek system for the water quality parameters conductivity, Cu and Zn (and possibly Cr and Cd also), and for sediment concentrations of Cd, Cr and Ni.  相似文献   

17.
The long-term industrialization and urbanization of Guangzhou city may lead to heavy metal contamination of its aquatic sediment. Nevertheless, only few studies have been published on the distribution and contamination assessment of heavy metals in this urban river sediment. Thus, the major objective of this study was to quantitatively assess contamination of heavy metals and their chemical partitioning in the sediments of the Guangzhou section of the Pearl River (GSPR). Surface sediment samples were collected at 10 sites in the main river and 12 sites in the creeks of the GSPR. The total content of Cd was determined by graphite furnace atomic adsorption spectrometry (GF-AAS), and content of Cr, Cu, Pb and Zn was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The chemical partitioning of these heavy metals in the sediments of the main river was determined by the sequential selective extraction (SSE) method. Results indicated that the average total concentrations of Cd, Cr, Pb, Cu and Zn in the sediments of the main river were 1.44, 63.7, 95.5, 253.6 and 370.0 mg/kg, respectively, whereas they were 2.10, 125.5, 110.1, 433.7 and 401.9 mg/kg in the sediments of the creeks. The sediment at M4 and C9 sites was heavily contaminated with about 8 and 11 of toxic unit, respectively. Cr, Cu, Pb and Zn were mostly bound to organic matter and in the residual phase, whereas Cd was mostly associated with the soluble and exchangeable phase and the residual phase. The mobility and bioavailability of Cd, Zn and Cr in the sediments of the main river were relatively higher than Cu and Pb, due to higher levels in the soluble and exchangeable fraction and the carbonate fraction. The potential acute toxicity in the sediments of the main river and creeks was mainly caused by Cu contamination, accounting for 21.7–37.1% and 16.9–46.3% of the total toxicity, respectively, followed by Zn and Pb. Adverse biological effects induced by heavy metals would be expected in the sediments of the GSPR. Therefore, the sediments of the GSPR, especially at M4 and C9 sites, need to be remediated to maintain aquatic ecosystem health.  相似文献   

18.
 The distribution of Si, Al, Fe, Mn, Cu, Zn, Ni and Cr in different grain-size fractions and geochemical association of Fe, Mn, Cu and Zn with <63-μm size fraction of bed sediments of Damodar River has been studied. In general, concentrations of heavy metals tend to increase as the size fractions get finer. However at two sites, near mining areas, the coarser particles show similar or even higher heavy metal concentrations than finer ones. The higher residence time and/or presence of coarser particles from mining wastes are possibly responsible for higher metal content in the coarser size fractions. The chemical fractionation study shows that lithogenic is the major chemical phase for heavy metals. Fe and Mn are the major elements of the lithogenic lattice, constituting 34–63% and 22–59%, respectively, of total concentrations. Fe-Mn oxide and organic bound fractions are significant phases in the non-lithogenic fraction. The carbonate fraction is less significant for heavy metal scavenging in the present environment and shows the following order of abundance Zn>Cu>Mn>Fe. The exchangeable fraction of the Damodar sediments contains very low amounts of heavy metals suggesting poor bioavailability of metals. Received: 18 August 1998 · Accepted: 1 December 1998  相似文献   

19.
In this research, we have worked on the evaluation of heavy metal contamination in the sediments taken from the intertidal zone of Asaluyeh region using Modified Community Bureau of Reference sequential extraction method (mBCR), the simplified bioaccessibility extraction test (SBET), and calculated enrichment factor (EF). Also, potential influencing factors including sediment characteristics that may affect the heavy metals bioavailability and bioaccessibility were investigated. mBCR extraction analysis indicated that among the metals, Mn, Zn, V, Cu, and Cd exhibit relatively higher mobility, while Ti, Pb, Cr, and Ni occur mainly in the residual fractions. Based on the mean values, the bioaccessibility of metals decreased in the order: Mn (50.01%)>Cd (46.26%)>Zn (14.61%)>V (13.97%)>Pb (10.88%)>Ni (9.2%)>Ti (8.43%)>Cr (6.66%)>Cu (6.23%). The obtained results from the principal component analysis (PCA), EF and mBCR extraction showed that most anthropogenic-derived metals with higher solubility are more bioaccessible compared to those of natural origin. Multiple linear regression analysis demonstrated that the main physicochemical variables of the sediment influencing the bioaccessibility of metals include cation exchange capacity (CEC), pH, and particle size fraction.  相似文献   

20.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号