首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basanites and nephelinites from the Tertiary Rhön area (Germany), which are part of the Central European Volcanic Province (CEVP), have high MgO, Ni and Cr contents and prominent garnet signatures indicating that they represent near-primary magmas formed by melting of a CO2-bearing peridotitic mantle source at high pressure. The Pb and Hf isotope (and previously published Nd and Sr isotope) ratios of the Rhön lavas are rather uniform, whereas the Os isotope composition is highly variable. For the most primitive basanites, Pb, Os and Hf isotope compositions fall within the range of enriched MORB and some OIB. Other basanites and nephelinites with low Os concentrations have distinctly more radiogenic Os (187Os/188Os: 0.160–0.469) isotope compositions, which are inferred to originate from crustal contamination. The samples with the highest Os concentrations have the lowest Os isotope ratios (187Os/188Os(23 Ma): 0.132–0.135), and likely remain unaffected by crustal contamination. Together with their fairly depleted Sr, Nd and Hf isotope ratios, the isotopic composition of the Rhön lavas suggests derivation from an asthenospheric mantle source. Prominent negative K and Rb anomalies, however, argue for melting amphibole or phlogopite-bearing sources, which can only be stable in the cold lithosphere. We therefore propose that asthenospheric melts precipitated at the asthenosphere-lithosphere thermal boundary as veins in the lithospheric mantle and were remelted or incorporated after only short storage times (about 10–100 million years) by ascending asthenospheric melts. Due to the short residence time incorporation of the vein material imposes the prominent phlogopite/amphibole signature of the Rhön alkaline basalts but does not lead to a shift in the isotopic signatures. Melting of the lithospheric mantle cannot strictly be excluded, but has to be subordinate due to the lack of the respective isotope signatures, in good agreement with the fairly thin lithosphere observed in the Rhön area. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature portions incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.  相似文献   

2.
The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268–0.892) together with their respective Sr–Nd–Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle “hybridization”, metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5–25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re–Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu–Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.  相似文献   

3.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

4.
We report new Os-Pb-Hf isotope data for a suite of alkaline to basaltic (nephelinites, basanites, olivine tholeiites to quartz-tholeiites) lavas from the Miocene Vogelsberg (Germany), the largest of the rift-related continental volcanic complexes of the Central European Volcanic Province (CEVP). 187Os/188Os in primitive (high-MgO) alkaline lavas show a much wider range than has been observed in alkaline basalts and peridotite xenoliths from elsewhere in the CEVP, from ratios similar to those in modern MORB and OIB (0.1260-0.1451; 58.9-168 ppt Os) to more radiogenic ratios (0.1908 and 0.2197; 27.6-15.1 ppt Os). Radiogenic Os is associated with high εHf and εNd, low 87Sr/86Sr and does not correlate with Mg or incompatible trace elements (e.g. Ce/Pb), suggesting the presence of a radiogenic endmember in the mantle rather than crustal contamination as the source of radiogenic Os. This contrasts with another high-Mg alkaline lava characterized by highly radiogenic 187Os/188Os (0.4344, 10.3 ppt Os), lower εHf and εNd, higher 87Sr/86Sr, and Pb isotope signatures than the other alkaline lavas with similar trace element composition suggestive of contamination with crustal material. Hafnium (εHf: +8.9 to +5.0) and Pb isotope compositions (206Pb/204Pb: 19.10-19.61; 207Pb/204Pb: 15.56-15.60) of the alkaline rocks fall within the range of enriched MORB and some OIB. The Vogelsberg tholeiites show even more diverse 187Os/188Os, ranging from 0.1487 in Os-rich olivine tholeiite (31.7 ppt) to ratios as high as 0.7526 in other olivine-tholeiites and in quartz-tholeiites with lower Os concentrations (10.3-2.0 ppt). Low-187Os/188Os tholeiites show Pb-Hf isotope ratios (206Pb/204Pb:18.81; 207Pb/204Pb: 15.61; εHf: +2.7) that are distinct from those in alkaline lavas with similar 187Os/188Os and originate from a different mantle source. By contrast, the combination of radiogenic Os and low 206Pb/204Pb and εHf in the other tholeiites probably reflects crustal contamination.The association at Vogelsberg of primitive alkaline and tholeiitic lavas with a range of MORB- to OIB-like Os-Pb-Hf-Nd-Sr isotopic characteristics requires at least two asthenospheric magma sources. This is consistent with trace element modelling which suggests that the alkaline and tholeiitic parent magmas represent mixtures of melts from garnet and spinel peridotite sources (both with amphibole), implying an origin of the magmas in the garnet peridotite-spinel peridotite transition zone, probably at the asthenosphere-lithosphere interface. We propose that uncontaminated Vogelsberg lavas originated in ‘metasomatized’ mantle, involving a 3-stage model: (1) early carbonatite metasomatism several 10-100 Ma before the melting event (2) deposition of low-degree asthenospheric melts from carbonated peridotite at the lithosphere-asthenosphere thermal boundary produces hydrous amphibole-bearing veins or patches, and (3) remobilization of this modified lithospheric mantle into other asthenospheric melts passing through the same area later. In keeping with ‘metasomatized’ mantle models for other continental basalt provinces, we envisage that stage (2) is short-lived (few Ma), thus producing a prominent lithospheric trace element signature without changing the asthenospheric isotopic signatures. Models of this type can explain the peculiar mix of lithospheric (prominent depletions of Rb and K) and asthenospheric (OIB-like high 187Os/188Os, 143Nd/144Nd and 176Hf/177Hf) signatures observed in the Vogelsberg and many other continental basalt suites.  相似文献   

5.
The Miocene to Quaternary lavas of northwestern Syria range from basanite, alkali basalts, and tholeiites to basaltic andesites, hawaiites, and mugearites. Crustal assimilation and fractional crystallization processes (AFC) modified the composition of the mantle derived magmas. Crustal assimilation is indicated by decreasing Nb/U (52.8–17.9) and increasing Pb/Nd (0.09–0.21) and by variable isotopic compositions of the lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–0.51269, 206Pb/204Pb: 18.98–18.60) throughout the differentiation. Modeling of the AFC processes indicates that the magmas have assimilated up to 25% of continental upper crust. The stratigraphy of the lavas reveals decreasing degrees and increasing depths of melting with time and the strongly fractionated heavy rare earth elements indicate melt generation in the garnet stability field. Modeling of melt formation based on trace element contents suggests that 8–10% melting of the asthenospheric mantle source produced the tholeiites, whereas basanite and alkali basalts are formed by 2–4% melting of a similar source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
New mineral and bulk-rock analyses, as well as Nd, Sr and Pbisotope compositions are presented for lavas from Grande Comore,Moheli and Mayotte, thru of the four main islands of the ComoresArchipelago in the western Indian Ocean, and these data an usedto evaluate the petrogenesis, evolution and mantle source regioncharacteristics of Comorean lavas. The typically silica-undersaturated,alkaline lavas from all three islands can be grouped into twodistinct types: La Grille-type (LGT) lavas, which display strongrelative depletions in K, and Karthala-type (KT) lavas, whichdo not. With the exception of the lavas erupted by La Grillevolcano on Grande Comore, which exhibit the petrographic andgeochemical characteristics expected of primary mantle-derivedmagmas, all Comorean lavas analysed have experienced compositionalmodifications after they segregated from their source regions.Much of this variation can be explained quantitatively by fractionalcrystallization processes dominated by the fractionation ofolivineand clinopyroxene. Semi-quantitative modelling shows that theconsistent and fundamental difference in composition betweenK-depleted LGT lavas and normal KT lavas can be attributed topartial melting processes, provided amphibole is a residualmantle phase after extraction of LGT magmas at low degrees ofmelting. Low absolute abundances of the heavy rare earth elementsin LGT magmas are interpreted to reflect partial melting withinthe garnet stability field In contrast, KT magmas, which donot show relative K depletions, are considered to be the productsof somewhat larger degrees of partial melting of an amphibolefreesource at comparatively shallower depths. Whereas the Nd andSr isotopic compositions of Comorean lavas (which show a significantrange: 87Sr/86Sr = 0.70319–0.70393; 143Nd/Nd = 0.51263–0.51288)bear evidence for a time-averaged depletion in incompatibleelements, the high incompatible element abundances of the lavasare interpreted to reflect the effects of a recent mantle enrichmentevent. At depths well within the garnet stability field thismantle enrichment is interpreted to have taken the form of modalmetasomatism with the introduction of amphibole (giving riseto the source of LGT magmas), whereas cryptic metasomatism tookplace at shallower levels (giving rise to the source of KT lavas).The Nd, Sr and Pb isotope signature of the majority of Comoreanlavas (both LGT and KT) is proposed to be the result of predominant4contributions from a somewhat heterogeneous source4 4 4 presentativeof the ambient sub-Comorean mantle, comprising a mixture betweena HIMU component and a component on the depleted portion ofthe mantle array (possibly the source of Indian Ocean MORB),with only limited contributions from an EM I plume component.The lavas erupted by Karthala volcano (the youngest Comoreanlavas), however, have significantly different isotopic compositionsfrom all other Comorean lavas (lower 143Nd/144Nd and higher87Sr/86Sr), suggesting increased contributions from the EM Icomponent. KEY WORDS: basalt petrogenesis; Comores; mantle geochemistry; ocean island basalts *Telephone: 27-21-6502921. Fax: 27-21-6503781 e-mail: alr{at}geology.uct.ac.za.  相似文献   

7.
The island of Curaçao in the southern Caribbean Sea is composed mainly of a thick sequence (>5?km) of pillow lavas, grading upwards from picrites at the base of the exposed section, to basalts nearer the top. Modelling suggests that picrites are related to the basalts by fractional crystallisation. Initial radiogenic isotope ratios of the picrites have a restricted compositional range: ?Nd=+6.1 to +6.6, 87Sr/86Sr=0.70296–0.70319; whereas the basalts display a wider range of compositions: ?Nd=+6.6 to +7.6, 87Sr/86Sr=0.70321–0.70671. This variation in isotope ratios between basalts and picrites may be due to the assimilation of altered oceanic crust (or possibly partial melts of such crust) by a picritic magma along with fractional crystallisation. The relatively narrow range of Nd and Pb isotopic compositions in the Curaçao lavas suggests either that the source region was homogeneous, or that melts from a heterogeneous mantle source were well mixed before eruption. Chondritic to slightly light rare earth element enriched patterns, combined with long-term light rare earth element depletion (positive ?Nd), suggest that the lavas were formed by polybaric melting of spinel lherzolite, with small a contribution from garnet lherzolite melts. High-MgO lavas, the absence of a subduction related chemistry, and the chemical similarity to other oceanic plateaux, suggest a mantle plume origin for the Curaçao lava succession. The Curaçao volcanic sequence is part of an oceanic plateau formed at about 88–90?Ma, fragments of which are dispersed around the Caribbean as well as being obducted onto the western margin of Colombia and Ecuador. The occurrence of high-Mg lavas throughout this Cretaceous Caribbean–Colombian igneous province requires anomalously hot mantle (>200°?C hotter than ambient upper mantle) over a large part of a putative plume head, which is inconsistent with some mantle plume models.  相似文献   

8.
The Langdu high-K calc-alkaline intrusions are located in the Zhongdian area, which is the southern part of the Yidun island arc. These intrusive rocks consist mainly of monzonite porphyry, granodiorite, and diorite porphyry. The K2O content of majority of these rocks is greater than 3%, and, in the K2O-SiO2 diagram, all the samples fall into the high-K calc-alkaline to shoshonitic fields. They are enriched in light rare earth elements (LREEs) and depleted in heavy rare earth elements (HREEs; LaN/YbN = 14.3-21.2), and show slightly negative Eu anomalies (δEu = 0.77-1.00). These rocks have high K, Rb, Sr, and Ba contents; moderate to high enrichment of compatible elements (Cr = 36.7-79.9 ppm, Co = 9.6-16.4 ppm, and MgO = 2.2%-3.4%); low Nb, Ta, and Ti contents, and characteristic of low high field strength elements(HFSEs) versus incompatible elements ratios (Nb/Th = 0.75, Nb/La = 0.34) and incompatible elements ratios (Nb/U = 3.0 and Ce/Pb = 5.1, Ba/Rb = 12.0). These rocks exhibit restricted Sr and Nd isotopic compositions, with (87Sr/86Sr) i values ranging from 0.7044 to 0.7069 and εNd(t) values from -2.8 to -2.2. The Sr-Nd isotope systematic and specific trace element ratios suggest that Langdu high-K calc-alkaline intrusive rocks derived from a metasomatized mantle source. The unique geochemical feature of intrusive rocks can be modeled successfully using different members of a slightly enriched mantle, a slab-derived fluid, and terrigenous sediments. It can be inferred that the degree of partial melting and the presence of specific components are temporally related to the tectonic evolution of the Zhongdian island arc. Formation of these rocks can be explained by the various degrees of melting within an ascending region of the slightly enriched mantle, triggered by the subduction of the Garzê-Litang ocean, and an interaction between the slab-derived fluid and the terrigenous sediments.  相似文献   

9.
Anhydrous spinel peridotite xenoliths from the Ray Pic Quaternary alkali basalt volcano (French Massif Central) show a wide range of mineralogical and geochemical compositions, reflecting significant heterogeneities in the shallow sub-continental lithospheric mantle. Variations in modal mineralogy, mineral chem istry, REE patterns and radiogenic isotope data suggest that depletion by partial melting and enrichment by cryptic metasomatism were the major mantle processes which caused the heterogeneity. The lithospheric mantle beneath Ray Pic contains two contrasting types of peridotite: (i) lherzolites with LREE-depleted compositions, high 143Nd/144Nd, low 87Sr/86Sr and unradiogenic Pb isotope ratios; (ii) lherzolites, harzburgites and a wehrlite with LREE-enriched patterns, low 143Nd/144Nd, high 87Sr/86Sr and radiogenic Pb isotope ratios. The former closely resemble depleted MORB-source mantle. The latter are related to enrichment by recent infiltration of small degree partial melts or fluids from the asthenospheric mantle, possibly related to the “low velocity component” observed by Hoernle et al. (1995) in European Neogene alkaline magmas. Thus, the Ray Pic peridotite xenoliths represent interaction between asthenospheric mantle-derived melts/fluids and depleted lithospheric mantle. This is probably linked to the upwelling mantle plume imaged beneath the Massif Central (Granet et al. 1995). A relationship between textural deformation, equilibration temperature and geochemistry of the xenoliths suggests that the hotter (> 900 °C) undeformed regions are LREE-enriched and tend to have more enriched isotope ratios, whereas the cooler (< 900 °C) regions have undergone more deformation and are more depleted both in LREE and in isotope compositions. Received: 27 July 1996 / Accepted: 25 November 1996  相似文献   

10.
Unspiked K–Ar ages, petrological, geochemical and isotopic data are reported on samples from southern Libya (Wan an Namous—Al Haruj area). The Wan an Namous intracaldera cone dated at 0.2?Ma consists of unusually undersaturated foidite, representing the most extreme compositions among Libyan and Tibestian lavas. A basanitic and a basaltic lava flow located north-west of Wan an Namous, and probably belonging to the Al Haruj volcanic field, were dated at 5.1?Ma and 8.1?Ma. These data extend the range of ages previously reported for Al Haruj lavas. REE and multi-element patterns are typical of alkaline intraplate magmas. Sr ratios range from 0.70314 to 0.70812, whereas Nd ratios are very homogeneous (0.51290–0.51293). Pb ratios (19.231?<?206Pb/204Pb?<?19.547, 15.607?<?207Pb/204Pb?<?15.641 and 38.859?<?208Pb/204Pb?<?39.242) are typical of HIMU-FOZO compositions. Such isotope characteristics are very similar to those available on two Gharyan (northern Libya) lavas and largely overlap those of Hoggar and Cameroon Line alkaline rocks. These lavas were produced by low and variable degrees of partial melting of a garnet- and amphibole-bearing mantle source, constraining the depth of melting between 80 and 150?km. Crustal contamination was also probably involved for the oldest sample. Mineral compositions of a dunite–harzburgite xenolith clearly indicate that the lithospheric mantle was affected by partial melting and metasomatic processes by magmatic liquids, probably associated with the genesis of Cenozoic lavas. Lithospheric delamination and asthenospheric upwelling, due to the reactivation of lithospheric megastructures induced by the Africa-Europe convergence, could represent a model for the genesis of Libyan lavas, as in Hoggar.  相似文献   

11.
Lavas from Santiago Island attest to a complex magmatic history, in which heterogeneous mantle source(s) and the interactions of advecting magmas with thick metasomatised oceanic lithosphere played an important role in the observed isotopic and trace element signatures. Young (<3.3 Ma) primitive lavas from Santiago Island are characterised by pronounced negative K anomalies and trace element systematics indicating that during partial melting DK>DCe. These features suggest equilibration with an oceanic lithospheric mantle containing K-rich hydrous mineral assemblages, consistent with the occurrence of amphibole + phlogopite in associated metasomatised lherzolite xenoliths, where orthopyroxene is partially replaced by newly formed olivine + (CO2 + spinel + carbonate inclusion-rich) clinopyroxene. Metasomatism induced a decrease in $ a ^{{{\text{melt}}}}_{{{\text{SiO}}_{{\text{2}}} }} $ and Ti/Eu ratios, as well as an increase in fO 2 , Ca/Sc and Sr/Sm in the Santiago magmas, suggesting a carbonatitic composition for the metasomatic agent. Santiago primitive lavas are highly enriched in incompatible elements and show a moderate range in isotopic compositions (87Sr/86Sr?=?0.70318–0.70391, 143Nd/144Nd?=?0.51261–0.51287, 176Hf/177Hf?=?0.28284–0.28297). Elemental and isotopic signatures suggest the involvement of HIMU and EM1-type mantle end-members, in agreement with the overall isotopic characteristics of the southern Cape Verde Islands. The overall geochemical characteristics of lavas from Santiago Island allow us to consider the EM1-like end-member as resulting from the involvement of subcontinental lithospheric mantle in the genesis of magmas on Santiago.  相似文献   

12.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

13.
The Alligator Lake complex is a Quaternary alkaline volcanic center located in the southern Yukon Territory of Canada. It comprises two cinder cones which cap a shield consisting of five distinct lava units of basaltic composition. Units 2 and 3 of this shield are primitive olivine-phyric lavas (13.5–19.5 cation % Mg) which host abundant spinel lherzolite xenoliths, megacrysts, and granitoid fragments. Although the two lava types have erupted coevally from adjacent vents and are petrographically similar, they are chemically distinct. Unit 2 lavas have considerably higher abundances of LREE, LILE, and Fe, but lower HREE, Y, Ca, Si, and Al relative to unit 3 lavas. The 87Sr/86Sr and 143Nd/144Nd isotopic ratios of these two units are, however, indistinguishable. The differences between these two lava types cannot be explained in terms of low pressure olivine fractionation, and the low concentrations of Sr, Nb, P, and Ti in the granitoid xenoliths relative to the primitive lavas discounts differential crustal contamination. The abundance of spinel lherzolite xenoliths and the high Mg contents in the lavas of both units indicates that their compositional differences originated in the upper mantle. The Al and Si systematics of these lavas suggests that, compared to unit 3 magmas, the unit 2 magmas may have segregated at greater depths from a garnet lherzolite mantle. The identical isotopic composition and similar ratios of highly incompatible elements in these two lava units argues against their differences being a consequence of random metasomatism or mantle heterogeneity. The lower Y and HREE contents but higher concentrations of incompatible elements in the unit 2 lavas relative to unit 3 can be most simply explained by differential partial melting of similar garnet-bearing sources. The unit 2 magmas thus appear to have been generated by smaller degrees of melting at a greater depth than the unit 3 magmas. The contemporaneous eruption of two distinct but volumetrically restricted primary magmas from adjacent vents at the Alligator Lake volcanic complex suggests that volcanism in this region of the Canadian Cordillera is controlled by localized, small batch processes.  相似文献   

14.
Basanites and alkali basalts from Mahabad in the West Azerbaijan province of Iran are part of a widespread series of Late Miocene–Quaternary mantle-derived magmas erupted within the Turkish–Iranian orogenic plateau, itself part of the active Arabia–Eurasia collision zone. New elemental and Sr–Nd isotopic results are combined with geophysical and geological constraints to suggest that these lavas formed predominantly by small degrees of partial melting of the thick (≫100 km) Eurasian lithospheric mantle within the garnet facies. Samples are highly enriched in large ion lithophile elements (LILE) and the light rare earth elements (LREE), up to 600 times chondritic values. They mostly possess negative primitive mantle-normalised Rb, K, Nb–Ta, Zr–Hf and Ti anomalies, with an overall signature that indicates a mantle source metasomatised by fluids or melts derived from crust during continental collision or the Tethyan oceanic subduction that preceded it. Sr–Nd isotopic values are similar to other Quaternary centres in NW Iran; 87Sr/86Sr is slightly depleted with respect to Bulk Silicate Earth, at ∼0.7045, and 143Nd/144Nd is slightly enriched, at ∼0.5127. Crustal contamination does not appear to be an important process in the chemistry of these samples. Possible triggers for melting may include: breakdown of hydrous phases during lithospheric thickening; hydration of the mantle lithosphere by underthrusting of the Arabian passive margin; small-scale sub-lithospheric convection due to a significant thickness gradient in the Zagros lithosphere. Such processes may account for small-volume syn-collisional mantle-derived magmatism elsewhere in regions of thick lithosphere where recent slab break-off or lithospheric delamination cannot be proven.  相似文献   

15.
The Camusú Aike volcanic field (CAVF), part of the discontinuous N–S-trending belt of Cenozoic mafic lava formations that occur in a backarc position along extra-Andean Patagonia, is located in southern Patagonia (∼50°S, Santa Cruz province), approximately 70 km east of the extensive Meseta de las Vizcachas and just south of the upper Río Santa Cruz valley. The CAVF volcanics cover a surface of ∼200 km2 and occur mainly as lava flows and scoria cones. They are subdivided into two groups: Group I volcanics are high-TiO2, low-Mg# olivine-hypersthene-normative basalts and trachybasalts that erupted at about 2.9 Ma; Group II lavas are much less abundant, more primitive basaltic andesites that erupted at about 2.5 Ma. Both groups show a within-plate geochemical signature, though it is more marked in Group I lavas.The main geochemical characteristics, age, and location of CAVF volcanics are consistent with the slab window opening model proposed by different authors for the genesis of the Miocene-Recent mafic magmatism of Patagonia south of 46.5°S. The whole-rock geochemical and Sr–Nd isotope features of Group I lavas (87Sr/86Sr=0.7035–0.7037; 143Nd/144Nd=0.51288–0.51291) indicate a genetic link between these lavas and the primitive basalts in southernmost Patagonia (Pali Aike volcanic field and Estancia Glencross area), which have been interpreted as melting products of an isotopically depleted asthenosphere. The relatively evolved compositions of the erupted Group I magmas are modeled by a polybaric crystal fractionation process without significant involvement of crustal contamination. The more primitive Group II lavas are strongly depleted in incompatible elements, have slightly higher (LREE+Ba+Th+U)/HFSE ratios, and have more enriched Sr–Nd isotope compositions (87Sr/86Sr≈0.7039; 143Nd/144Nd≈0.51277) that are more akin to the Patagonian basalts farther to the north. The most likely explanation for the geochemical features of Group II lavas is the occurrence in their mantle source of a small proportion of a subduction-related, enriched component that likely resides in the former mantle wedge or the basal continental lithospheric mantle.  相似文献   

16.
The geologic evolution of the New Zealand microcontinent was characterised by intermittent Cretaceous to Quaternary episodes of intraplate volcanism. To evaluate the corresponding mantle evolution beneath New Zealand with a specific focus on the tectonic evolution, we performed a combined major and trace element and Hf, Nd, Pb, Sr isotope investigation on a suite of representative intraplate volcanic rocks from both main islands and the Chatham Islands. Isotopically, the data set covers a range between “HIMU-like” end member compositions (206Pb/204Pb: 20.57, 207Pb/204Pb: 15.77, 87Sr/86Sr: 0.7030, εHf: + 3.8, εNd: + 4.2), compositions tending towards MORB (206Pb/204Pb: 19.01, 207Pb/204Pb: 15.62, 87Sr/86Sr: 0.7028, εHf: + 9.9, εNd: + 7.0) and compositions reflecting the influence of subducted sediments (206Pb/204Pb: 18.99, 207Pb/204Pb: 15.67, 87Sr/86Sr: 0.7037, εHf: + 4.4, εNd: + 3.9). Whereas volcanism on the Chatham Islands constitutes the HIMU end member of our data set, intraplate volcanic rocks from the North Island are dominated by MORB-like compositions with relatively radiogenic 206Pb/204Pb signatures. Volcanic rocks from the South Island form a trend between the three end members. Assuming a polybaric melting column model, the primary melt compositions reflect variations in the degree of melting, coupled to variable average melting depths. As the three isotope and trace element end members occur throughout the volcanic episodes, the “HIMU-like” and the sediment influenced signatures most likely originate from a heterogeneous subcontinental lithospheric mantle, whereas an asthenospheric origin is inferred for the MORB-like component. For the South Island, affinities to HIMU wane with decreasing average melting depths whereas MORB and sediment-like signatures become more distinct. We therefore propose a polybaric melting model involving upper asthenospheric mantle and a lithospheric mantle source that has been modified by subduction components and veins of fossil “HIMU-like” asthenospheric melts. The proportion of asthenospheric versus lithospheric source components is controlled by variations in lithospheric thickness and heat flow, reflecting the different tectonic settings and rates of extension. Generally, low degree melts preferentially tap enriched vein material with HIMU signatures. The widespread occurrence of old Gondwana-derived lithospheric mantle beneath intraplate volcanic fields in East Gondwana is suggested by overall similarities between New Zealand intraplate volcanic rocks and volcanic rocks in East Australia and Antarctica. The petrogenetic model proposed here may therefore serve as a general model for the petrogenesis of Cretaceous to Recent intraplate volcanic rocks in former East Gondwana. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
《International Geology Review》2012,54(12):1456-1474
We present new major element, trace element, and Sr–Nd–Pb isotope data for 18 basaltic lavas and six glasses collected in situ from the Eastern Lau Spreading Centre (ELSC) and the Valu Fa Ridge (VFR). All lava samples are aphanitic and contain rare plagioclase and clinopyroxene microlites and microphenocrysts. The rocks are sub-alkaline and range from basalt and basaltic andesite to more differentiated andesite. In terms of trace element compositions, the samples are transitional between typical normal mid-ocean ridge basalt (MORB) and island arc basalt. Samples from the VFR have higher large ion lithophile element/high field strength element ratios (e.g. Ba/Nb) than the ELSC samples. VFR and ELSC Sr–Nd isotopic compositions plot between Indian MORB and Tonga arc lavas, but VFR samples have higher 87Sr/86Sr for a given 143Nd/144Nd ratio than ELSC analogues. The Pb isotopic composition of ELSC lavas is more Indian MORB-like, whereas that of VFR lavas is more Pacific MORB-like. Our new data, combined with literature data for the Central Lau Spreading Centre, indicate that the mantle beneath the ELSC and VFR spreading centres was originally of Pacific type in composition, but was displaced by Indian-type mantle as rifting propagated to the south. The mantle beneath the spreading centres also was variably affected by subduction-induced metasomatism, mainly by fluids released from the altered, subducting oceanic crust; the influence of these components is best seen in VFR lavas. To a first approximation, the effects of underflow on the composition and degree of partial melting of the mantle source of Lau spreading centre lavas inversely correlate with distance of the spreading centres from the Tonga arc. Superimposed on this general process, however, are the effects of the local geographic contrasts in the composition of subduction components. The latter have been transferred mainly by dehydration-generated fluids into the mantle beneath the Tonga supra-subduction zone.  相似文献   

18.
We present the first report of geochemical data for submarine basalts collected by a manned submersible from Rurutu, Tubuai, and Raivavae in the Austral Islands in the South Pacific, where subaerial basalts exhibit HIMU isotopic signatures with highly radiogenic Pb isotopic compositions. With the exception of one sample from Tubuai, the 40Ar/39Ar ages of the submarine basalts show no significant age gaps between the submarine and subaerial basalts, and the major element compositions are indistinguishable at each island. However, the variations in Pb, Sr, Nd, and Hf isotopic compositions in the submarine basalts are much larger than those previously reported in subaerial basalts. The submarine basalts with less-radiogenic Pb and radiogenic Nd and Hf isotopic compositions show systematically lower concentrations in highly incompatible elements than the typical HIMU basalts. These geochemical variations are best explained by a two-component mixing process in which the depleted asthenospheric mantle was entrained by the mantle plume from the HIMU reservoir during its upwelling, and the melts from the HIMU reservoir and depleted asthenospheric mantle were then mixed in various proportions. The present and compiled data demonstrate that the HIMU reservoir has a uniquely low 176Hf/177Hf decoupled from 143Nd/144Nd, suggesting that it was derived from an ancient subducted slab. Moreover, the Nd/Hf ratios of the HIMU basalts and curvilinear Nd–Hf isotopic mixing trend require higher Nd/Hf ratios for the melt from the HIMU reservoir than that from the depleted mantle component. Such elevated Nd/Hf ratios could reflect source enrichment by a subducted slab during reservoir formation.  相似文献   

19.
The Plio-Pleistocene volcanic rocks of the Bohemian Massif comprise a compositional spectrum involving two series: an older basanitic series (6.0–0.8 Ma) and a younger, melilititic series (1.0–0.26 Ma). The former consists of relatively undifferentiated basaltic rocks, slightly silica-undersaturated, with Mg# ranging from 62 to almost primitive mantle-type values of 74. The major and trace element characteristics correspond to those of primitive intra-plate alkaline volcanic rocks from a common sub-lithospheric mantle source (European Asthenospheric Reservoir – EAR) including positive Nb, and negative K and Pb anomalies. 87Sr/86Sr ratios of 0.7032–0.7034 and 143Nd/144Nd of 0.51285–0.51288 indicate a moderately depleted mantle source as for other mafic rocks of the central European volcanic province with signs of HIMU-like characteristics commonly attributed to recycling of subducted oceanic crust in the upper mantle during the Variscan orogeny. The melilititic series is characterized by higher degrees of silica-undersaturation, and high Mg# of 68–72 values, compatible with primitive-mantle-derived compositions. The high OIB-like Ce/Pb (19–47) and Nb/U (32–53) ratios indicate that assimilation of crustal material was negligible. In both series, concentrations of incompatible elements are mildly elevated and 87Sr/86Sr ratios (0.7034–0.7036) and 143Nd/144Nd ratios (0.51285–0.51288) overlap. Variations in incompatible element concentrations and isotopic compositions in the basanitic series and melilititic series can be explained by a lower degree of mantle melting for the latter with preferential melting of enriched mantle domains. The Sr and Nd isotopic compositions of both rock series are similar to those of the EAR. Minor differences in geochemical characteristics between the two series may be attributed to: (i) to different settings with respect to crust and lithospheric mantle conditions in (a) Western Bohemia (WB) and (b) Northeastern Bohemia (NEB) and the Northern Moravia and Silesia (NMS) areas, (ii) a modally metasomatized mantle lithosphere in WB in contrast to cryptically metasomatized domains in the NEB and NMS, (iii) different degrees of partial melting with very low degrees in WB but higher degrees in NEB and NMS. The geochemical and isotopic similarity between the Plio-Pleistocene volcanic rocks and those of the late Cretaceous and Cenozoic (79–6 Ma) suggests that their magmas came from compositionally similar mantle sources, that underwent low degrees of melting over an interval of ∼80 Ma. The Oligocene to Miocene basanitic series that accompanied the Plio-Pleistoicene basanitic series in the NMS region indicate that they shared a common mantle source. There is no geochemical evidence for thermal erosion of the lithospheric mantle or significant changes in mantle compositions within the time of a weak thermal perturbation in the asthenospheric mantle. These perturbations were caused by a dispersed mantle plume or passively upwelling asthenosphere in zones of lithospheric thinning.  相似文献   

20.
The DUPAL anomaly, a radiogenic isotope anomaly discovered in the Indian Ocean mantle, has been interpreted as due to a large-scale mantle heterogeneity. To provide new constraints on the DUPAL origin, we analyzed isotope ratios of Li, Sr, and Nd in fresh N-MORB glasses recovered from the Rodrigues Triple Junction in the Indian Ocean, and from the North Atlantic. The Li isotopic compositions of the Indian Ocean DUPAL N-MORBs were comparable to those of the North Atlantic non-DUPAL N-MORBs. The source of the DUPAL signature in Indian Ocean MORBs and the E-MORB-type enriched mantle source have quite different Li isotopic compositions. The 143Nd/144Nd values of both sources are significantly lower than those of the North Atlantic N-MORBs. The δ7Li values of most oceanic island basalts with similar low 143Nd/144Nd signatures are also higher than those of the North Atlantic N-MORBs, except for several Koolau lavas. The Li isotope results support the recent proposal that significant amounts of recycled lower continental crust might produce the radiogenic isotope signatures of the Indian Ocean DUPAL source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号