首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Quseir Formation consists mainly of dark gray mudstones with a high organic matter content and excellent hydrocarbon-generating potential. The main objectives of this study are to highlight the dominant structural elements in the Komombo Basin, Egypt, and evaluate the geochemical characteristics of the Quseir Formation. Depth maps and a 3D structural model indicate two normal fault trends NW–SE and ENE–WSW. The NW–SE trend is the dominant one that created the primary half-graben system. The depth to the top of the Quseir Formation gradually decreases from the eastern and central parts towards the corners of the basin. The thickness of the Quseir Formation ranges from about 300 to 1000 ft. The 3D facies model shows that the shale has a large probability distribution in the study area, compared with the sandstone and siltstone. The source rock potential varies between good in the western part to very good in the eastern part of the basin. The organic-rich interval is dominated by gas-prone kerogen type III based on TOC and Rock-Eval. The pyrolysis data vitrinite reflectance (%Ro) (0.5–0.74%) and Tmax values (406–454C°) suggest a maturity level that ranges from immature to early maturity stage for hydrocarbon generation.  相似文献   

2.
Three tectonic units have been recognized in the Chifeng area, Inner Mongolia, from north to south, including the Qiganmiao accretionary prism, Jiefangyingzi arc belt and Sidaozhangpeng molasse basin, which formed an Andeantype active continent margin during the early to middle Paleozoic. The Qiganmiao accretionary prism is characterized by a mélange that consists of gabbro, two-mica quartz schist and basic volcanic rock blocks and heterogeneously deformed marble matrix. Two zircon U-Pb ages of 446.0±6.3 Ma and 1104±27 Ma have been acquired and been interpreted as the metamorphic and forming ages for the gabbro and two-mica quartz schist, respectively. The prism formed during the early to middle Paleozoic southward subduction of the Paleo Asian Ocean(PAO) and represents a suture between the North China craton(NCC) and Central Asian Orogenic Belt(CAOB). The Jiefangyingzi arc belt consists of pluton complex and volcanic rocks of the Xibiehe and Badangshan Formations, and Geochronology analysis indicates that the development of it can be divided into two stages. The first stage is represented by the Xibiehe Formation volcanic rocks, which belong to the subalkaline series, enriched LREE and LILE and depleted HFSE, with negative Eu anomalies, and plot in the volcanic arc field in discrimination diagrams. These characters indicate that the Xibiehe Formation results from to the continental arc magmatic activity related to the subduction of the PAO during 400–420 Ma. Magmatism of the second stage in 380–390 Ma consists of the Badangshan Formation volcanic rocks. Geochemistry analysis reveals that rhyolite, basaltic andesite and basalt of the Badangshan Formation were developed in continental margin arc setting. Moreover, the basaltic andesite and basalt display positive Sr anomalies, and the basalt have very low Nb/La values, suggesting that fluid is involved in magma evolution and the basalts were contaminated by continental crust. The sequence of Sidaozhangpeng molasse basin is characterized by proximity, coarseness and large thickness, similar to the proximity molasses basin. According to our field investigation, geochronological and geochemical data, combined with previous research in this area, a tectonic evolutionary model for Andes-type active continental margin of the CAOB has been proposed, including a development of the subduction-free PAO before 446 Ma, a subduction of the PAO and arc-related magmatism during 446–380 Ma, and formation of a molasse basin during 380–360 Ma.  相似文献   

3.
The Neoproterozoic Jiangnan orogen plays an important role in the study of the Precambrian tectonic evolution of South China. The tectonic nature of the Neoproterozoic sedimentary basins is still controversial, due to poor understanding of the sedimentary sequences and the lack of geochronological data. Here, we present sedimentological, provenance and geochronological data from the Heshangzhen Group in the eastern Jiangnan orogen. Sedimentological analysis shows that the Luojiamen Formation was deposited in a submarine fan, and the overlying Hongchicun Formation was deposited in front of a fan delta. The youngest detrital zircons constrain the lower Luojiamen and Hongchicun formations with ages of 827.3 ± 8.4 Ma and 825 ± 12 Ma, respectively. The sandstones of the Luojiamen Formation are characterized by a large number of intermediate to felsic volcanic grains, suggesting a volcanic arc source. In contrast, quartz and sedimentary lithic grains increase in the Hongchicun Formation, showing a new input from a collisional orogenic source. Detrital zircon from six sandstone samples in the Luojiamen and Hongchicun formations yield similar age spectra of 930–820 Ma with a peak at ca. 845–860 Ma, with one main cluster at 930–820 Ma. Detrital zircons of 930–845 Ma show a positive value of εHf(t)(+2.4 to +11, mean +7.6), which is similar to the volcanic arc of the nearby Shuangxiwu Group. There are a minor group of zircons with U-Pb ages ranging from 820 Ma to 845 Ma from the middle part of the Luojiamen Formation and Hongchicun Formation, with εHf(t) values between-20 to +2.4, which are consistent with the characteristics of the Shuangqiaoshan Group. within light of the bidirectional paleocurrents in the Luojiamen Formation, it is speculated that the zircons of 820–845 Ma were recycled from the Shuangqiaoshan Group, which is derived from a continental arc to the northwest. Our data suggests that the Luojiamen Formation was formed in an inter-arc basin, while the Hongchicun Formation was formed in an accretionary wedge-top basin. When juxtaposed with the conglomeratic characteristics at the bottom of the Luojiamen Formation, it is believed that the unconformity represented by the ‘Shen Gong Movement' reflects the rapid erosion and accumulation process of island arc volcanic material. The disconformity between the Luojiamen and Hongchicun formations is the imprint of transition from inter-arc basin to accretionary wedge-top basin,which represents the collision between the Shuangxiwu arc and the Yangtze Plate.  相似文献   

4.
The northeastern Tibetan Plateau is located at the convergence of the Asian winter and summer monsoons and westerlies; thus, this area has witnessed historic climate changes.The Xunhua basin is an intermontane basin on the northeastern margin of the Tibetan Plateau.The basin contains more than 2000 m of Cenozoic fluvial–lacustrine sediments, recording a long history of climate and environmental changes.We collected the mid-Miocene sediments from the Xunhua basin and used palynological methods to discuss the relationship between aridification in the interior of Asia, global cooling, and uplift of the Tibetan Plateau.Based on the palynological analysis of the Xigou section, Xunhua basin, the palynological diagram is subdivided into three pollen zones and past vegetation and climate are reconstructed.Zone I, Ephedripites–Nitraridites–Chenopodipollis–Quercoidites(14.0–12.5 Ma), represents mixed shrub–steppe vegetation with a dry and cold climate.In zone II, Pinaceae–Betulaepollenites–Ephedripites–Chenopodipollis–Graminidites(12.5–8.0 Ma), the vegetation and climate conditions improved, even though the vegetation was still dominated by shrub–steppe taxa.Zone III, Ephedripites–Nitrariadites–Chenopodipollis(8.0–5.0 Ma), represents desert steppe vegetation with drier and colder climate.The palynological records suggest that shrub–steppe dominated the whole Xigou section and the content gradually increased, implying a protracted aridification process, although there was an obvious climate improvement during 12.5–8.0 Ma.The aridification in the Xunhua basin and surrounding mountains during 14.0–12.5 Ma was probably related to global cooling induced by the rapid expansion of the East Antarctic ice-sheets and the relatively higher evaporation rate.During the 12.5–8.0 Ma period, although topographic changes(uplift of Jishi Shan) decreased precipitation and strengthened aridification in the Xunhua basin on leeward slopes, the improved vegetation and climate conditions were probably controlled by the decrease in evaporation rates as a result of continuous cooling.From 8.0 to 5.0 Ma, the rapid development of the desert steppe can be attributed to global cooling and uplift of the Tibetan Plateau.  相似文献   

5.
This study focuses on the zircon U–Pb geochronology and geochemistry of the Bairiqiete granodiorite intrusion(rock mass) from the Buqingshan tectonic mélange belt in the southern margin of East Kunlun. The results show that the zircons are characterized by internal oscillatory zoning and high Th/U(0.14–0.80), indicative of an igneous origin. LA–ICP–MS U–Pb dating of zircons from the Bairiqiete granodiorite yielded an age of 439.0 ± 1.9 Ma(MSWD = 0.34), implying that the Bairiqiete granodiorite formed in the early Silurian. Geochemical analyses show that the rocks are medium-K calc-alkaline, relatively high in Al2O3(14.57–18.34 wt%) and metaluminous to weakly peraluminous. Rare-earth elements have low concentrations(45.49–168.31 ppm) and incline rightward with weak negative to weak positive Eu anomalies(δEu = 0.64–1.34). Trace-element geochemistry is characterized by negative anomalies of Nb, Ta, Zr, Hf and Ti and positive anomalies of Rb, Th and Ba. Moreover, the rocks have similar geochemical features with adakites. The Bairiqiete granodiorite appears to have a continental crust source and formed in a subduction-related island-arc setting. The Bairiqiete granodiorite was formed due to partial melting of the lower crust and suggests subduction in the Buqingshan area of the Proto-Tethys Ocean.  相似文献   

6.
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.  相似文献   

7.
Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-rich brine. However, no soluble potassium salt deposit were found. In this study, the halite in well Changping 3 which is located at the eastern part of the Sichuan basin was studied using the characteristics, hydrogen and oxygen isotopes of the fluid inclusion in halite to reconstruct the paleoenvironment. The salt rocks in well Changping 3 can be divided into two types: grey salt rock and orange salt rock. The result shows that the isotopic composition of the halite fluid inclusion is distinct from the global precipitation line reflecting that the salt formation process is under strong evaporation conditions and the climate is extremely dry. At the same time, compared with the hydrogen and oxygen isotopes of brine in the Sichuan Basin and the hydrous isotope composition of the inclusions in the salt inclusions of other areas in China, it is shown that the evaporation depth of the ancient seawater in the Sichuan Basin was high and reached the precipitation of potassium and magnesium stage.  相似文献   

8.
The Bayanhot Basin is a superimposed basin that experienced multiple-staged tectonic movements; it is in the eastern Alxa Block, adjacent to the North China Craton(NCC) and the North Qilian Orogenic Belt(NQOB).There are well-developed Paleozoic–Cenozoic strata in this basin, and these provide a crucial window to a greater understanding of the amalgamation process and source-to-sink relationships between the Alxa Block and surrounding tectonic units.However, due to intensive post-depositional modification, and lack of subsurface data,several fundamental issues—including the distribution and evolution of the depositional systems, provenance supplies and source-to-sink relationships during the Carboniferous– Permian remain unclear and thus hinder hydrocarbon exploration and limit the geological understanding of this basin.Employing integrated outcrop surveys, new drilling data, and detrital zircon dating, this study examines the paleogeographic distribution and evolution, and provenance characteristics of the Carboniferous–Permian strata in the Bayanhot Basin.Our results show that the Bayanhot Basin experienced a long-term depositional evolution process from transgression to retrogression during the Carboniferous–late Permian.The transgression extent could reach the central basin in the early Carboniferous.The maximum regional transgression occurred in the early Permian and might connect the Qilian and North China seas with each other.Subsequently, a gradual regression followed until the end of the Permian.The northwestern NCC appeared as a paleo-uplift area and served as a sediments provenance area for the Alxa Block at that time.The NCC, Bayanwula Mountain, and NQOB jointly served as major provenances during the Carboniferous–Permian.There was no ocean separation, nor was there an orogenic belt between the Alxa Block and the NCC that provided sediments for both sides during the Carboniferous–Permian.The accretion of the Alxa and North China blocks should have been completed before the Carboniferous period.  相似文献   

9.
A highly-fractionated garnet-bearing muscovite granite represents the marginal granitic facies of the Abu-Diab multiphase pluton in the Central Eastern Desert of Egypt. New electron microprobe analyses(EMPA) and laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) data from garnets are reported, in order to constrain their origin and genesis. Garnet in the Abu-Diab host granite is euhedral to subhedral, generally homogeneous and, in rare cases, it shows weak zonation. The garnet contains appreciable amounts of MnO and FeO, with lesser amounts of MgO and CaO, yielding an end-member formula of Sps_(61–72)Alm_(25–35)Prp_(1–4)Adr_(0–1). Moreover, it is depleted in large ion lithophile elements(LILE) with lower values of Ba, Nb and Sr relative to the primitive mantle. Additionally, it contains high concentrations of HREE and Y and their REE pattern shows strong negative Eu anomalies. The garnet was crystallized under relatively low temperature(646°C–591°C) and pressure( 3 kbar) conditions. The textural and chemical features indicate that the garnet is magmatic in origin and is chemically similar to that from highly-fractionated A-type granite. It was probably formed at the expense of biotite in a highly-evolved MnO-rich magma and/or by hydroxyl complexing of Mn during the ascending fluid phases.  相似文献   

10.
The Changning–Menglian Belt represents the main Paleo-Tethyan Suture in the southeastern Tibetan Plateau, which divides Gondwana- and Eurasia-derived continental fragments from each other. The belt contains ultramafic–mafic volcanic rocks that provide evidence of the tectonic processes which operated during the evolution of the Paleo-Tethyan Ocean. New geochemical data for Early Carboniferous volcanics in the southern Changning–Menglian Belt show that wehrlites have cumulate and poikilitic textures, and contain low-Fo (84.2–87.2) olivine, clinopyroxene with low Mg# values (79.4–85.6), and spinel with high Cr# values (67.8–72.4). Estimated equilibrium temperatures obtained using olivine-spinel Fe-Mg exchange geothermometry range from 978°C to 1373°C (mean = 1205°C; n = 3). These observations combined with a lack of reaction or melt impregnation textures indicate that these units represent magmatic cumulates rather than having formed as a result of mantle-melt reactions. Both wehrlites and basalts in the belt have subparallel rare earth element (REE)-and primitive-mantle-normalized multi-element patterns with slightly positive Nb-Ta anomalies, but negligible Eu and Zr-Hf anomalies. The volcanics have similar Sr-Nd-Pb isotopic compositions with εNd(t) values of 4.2–4.5 (mean = 4.3; n = 3) and 4.0–4.4 (mean 4.2; n = 4), respectively, and also have similar immobile element ratios, such as Nb/La, Nb/U, Th/La, Zr/Nb, Th/Ta, La/Yb, Nb/Th, Nb/Y, and Zr/Y. These characteristics indicate both units have ocean island basalt (OIB)-like geochemical affinities, consistent with the fact that the clinopyroxene in the wehrlites is compositionally similar to OIB-related cumulus clinopyroxene. This suggests that both the wehrlites and basalts were derived from similar parental magmas that underwent generally closed-system magmatic differentiation dominated by fractionation of the olivine and clinopyroxene. This parental magma was likely generated in an oceanic seamount setting from an OIB-type mantle source (i.e., asthenospheric mantle) containing garnet-spinel lherzolite material. Combing this new data with that from oceanic seamount volcano-sedimentary suites derived from previous research enables the identification of a mature late Paleozoic ocean basin between the passive northeastern Gondwanan margin and the northward-migrating microcontinent of Lanping–Simao.  相似文献   

11.
Previous studies have postulated the contribution of present-day low-total organic carbon(TOC) marine carbonate source rocks to oil accumulations in the Tabei Uplift, Tarim Basin, China. However, not all present-day low-TOC carbonates have generated and expelled hydrocarbons; therefore, to distinguish the source rocks that have already expelled sufficient hydrocarbons from those not expelled hydrocarbons, is crucial in source rock evaluation and resource assessment in the Tabei Uplift. Mass balance can be used to identify modern low-TOC carbonates resulting from hydrocarbon expulsion. However, the process is quite complicated, requiring many parameters and coefficients and thus also a massive data source. In this paper, we provide a quick and cost effective method for identifying carbonate source rock with present-day low TOC, using widely available Rock-Eval data. First, we identify present-day low-TOC carbonate source rocks in typical wells according to the mass balance approach. Second, we build an optimal model to evaluate source rocks from the analysis of the rocks' characteristics and their influencing factors, reported as positive or negative values of a dimensionless index of Rock-Eval data(IR). Positive IR corresponds to those samples which have expelled hydrocarbons. The optimal model optimizes complicated calculations and simulation processes; thus it could be widely applicable and competitive in the evaluation of present-day low TOC carbonates. By applying the model to the Rock-Eval dataset of the Tabei Uplift, we identify present-day low-TOC carbonate source rocks and primarily evaluate the contribution equivalent of 11.87×10~9 t oil.  相似文献   

12.
Palynological analysis were done on 12 rock samples for Ratawi Formation from Rumailah well 131 and eight samples for the same formation from Zubair well 47, South Iraq, to extract sedimentary organic matters. Microscopic examination led to diagnose large numbers of spores, pollen, dinoflagellates (proximat, cavate, and chorate), foraminifera, melanogen, hylogen, and amorphogen. Three palynological facies were determined on the bases of percentages of sedimentary organic matter and palynomorphs from two sections. Analysis of these palynofacies clarified Ratawi Formation as deposited from environments ranging from delta and lagoon (suboxic–dysoxic) to shelf facies (anoxic near the shore–suboxic) with the presence of some layers deposited from semideep open marine environment (bathyal). Organic geochemical analysis of total organic carbon and Rock Eval pyrolysis were done to determine quantity, quality, and degree of maturation of the kerogen. Poor to medium proportion of total organic carbon of kerogen types II and III within a catagenesis stage are recorded in these rocks, and hence, poor hydrocarbon generation could be suggested for these strata.  相似文献   

13.
The Shoushan Basin is an important hydrocarbon province in the northern Western Desert, Egypt, but the burial/thermal histories for most of the source rocks in the basin have not been assigned yet. In this study, subsurface samples from selected wells were collected to characterize the source rocks of Alam El-Bueib Formation and to study thermal history in the Shoushan Basin. The Lower Cretaceous Alam El-Bueib Formation is widespread in the Shoushan Basin, which is composed mainly of shales and sandstones with minor carbonate rocks deposited in a marine environment. The gas generative potential of the Lower Cretaceous Alam El-Bueib Formation in the Shoushan Basin was evaluated by Rock–Eval pyrolysis. Most samples contain sufficient type III organic matter to be considered gas prone. Vitrinite reflectance was measured at eight stratigraphic levels (Jurassic–Cretaceous). Vitrinite reflectance profiles show a general increase of vitrinite reflectance with depth. Vitrinite reflectance values of Alam El-Bueib Formation range between 0.70 and 0.87 VRr %, indicating a thermal maturity level sufficient for hydrocarbon generation. Thermal maturity and burial histories models predict that the Alam El-Bueib source rock entered the mid-mature stage for hydrocarbon generation in the Tertiary. These models indicate that the onset of gas generation from the Alam El-Bueib source rock began in the Paleocene (60 Ma), and the maximum volume of gas generation occurred during the Pliocene (3–2 Ma).  相似文献   

14.
利用广泛应用的高压釜和Rock Eval热解实验技术,对松辽盆地3个有机质样品同时进行了密闭条件下的加水恒温热解实验和开放条件下的恒速升温热解实验。利用后一实验数据所标定得到的化学动力学模型计算了与高压釜相同实验条件下的有机质产油、产气率。结果表明,在线计量的恒速升温Rock Eval实验方法由于不损失C6—C13的轻质烃组分,在计量液态油的产量方面较需要抽提、恒重的高压釜实验方法更为准确。因此为解决热模拟实验中难以计量、但对成烃评价有重要意义的C6—C13组分的计量问题提供了一条有效的途经。这可能也表明,先由实验数据建立有关的化学动力学模型,之后由它来进一步计算有机质的成烃率,不仅是可行的,而且应该更为准确。  相似文献   

15.
Total organic carbon (TOC) determination, Rock‐Eval pyrolysis, extractable organic matter content (EOM) fractionation, gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS) analyses, were carried out on 79 samples from eleven outcrop cross sections of the Bahloul Formation in central and northern Tunisia. The TOC content varied between 0.23 to 35.6%, the highest average values (18.73%, 8.46% and 4.02%) being at the east of the study area (at Ain Zakkar, Oued Bahloul and Dyr Ouled Yahia localities, respectively). The Rock‐Eval maximum pyrolysis temperature (Tmax) values in the 424–453°C range delineated a general east‐west trend increase in the organic matter (OM) maturity. The disparity in hydrogen index (HI) values, in the range 114–824 mg hydrocarbons (HC) g?1 TOC, is relevant for the discrepancy in the level of OM preservation and maturity among localities and samples. The n‐alkane distributions, maximizing in the C17 to C20 range, are typical for a marine planktonic origin, whereas pristine/phytane (Pr/Ph) average values in the 1–2 range indicate an oxic to suboxic depositional environment. Pr/n‐C17 and Ph/n‐C18 ratios in the 0.38–6.2 and 0.68–3.25 range, respectively, are consistent with other maturity indicators and the contribution of specific bacteria to phytol as a precursor of isoprenoids. The thermal maturity varies between late diagenesis to main‐stage of petroleum generation based on the optic and the cis‐trans isomerisation of the C29 sterane [20S/(20S+20R) and 14β(H),17β(H)/(14β(H),17β(H)+14α(H),17α(H)), respectively] and the terpane [18α(H)22,29,30‐Trisnorneohopane/(18α(H)22,29,30‐Trisnorneohopane+17α(H)22,29,30‐Trisnorhopane): Ts/(Ts+Tm)] ratios. The Bahloul OM is represented by an open marine to estuarine algal facies with a specific bacterial contribution as revealed by the relative abundance of the ααα‐20R C27 (33–44%), C28 (22–28%) and C29 (34–41%) steranes and by the total terpanes/total steranes ratio (1.2–5.33). These results attested that the Bahloul OM richness was controlled both by an oxygen minimum zone induced by high productivity and restricted circulation in narrow half graben structures and around diapirs of the Triassic salt.  相似文献   

16.
The international interest in shale oil has recently provoked special attention to the Russian unconventional oil-source formations, including the Bazhenov Formation of West Siberia, domanik deposits in the Volga–Ural region, and the lower Maikop Group of the Cis-Caucasus. High contents of para-autochthonous soluble organic matter (bitumen) in clayey–carbonate, clayey–siliceous, carbonate–clayey–siliceous rocks with low filtration–capacity properties results in significant uncertainties in the identification of the generation potential of organic matter (OM). Examination of a large database on the OM of the Bazhenov Formation allowed us to propose an optimum complex technique for study of the source rock potential and assessment of the amount of produced hydrocarbons in the kerogen-rich sediments. The investigations include a combination of Rock Eval pyrolysis prior to and after extraction with different solvents, the comparison of bituminological and pyrolytic characteristics, and the determination of the group composition of soluble organic matter, as well as chromatography and chromato-mass spectrometry.  相似文献   

17.
This study provides coal quality, petrological, palynological and geochemical (Rock Eval) data on Permian coal seams and associated shales and mudstones of the Karoo Supergroup of the Songwe-Kiwira Coalfield, Tanzania. The coal seams, which have a cumulative thickness of 6.80 m, occur in the shale–coal–sandstone facies of the Mchuchuma Formation of Artinskian to Kungurian(?) age.Coal quality data (calorific values, volatile matter contents) and vitrinite reflectances indicate high volatile C bituminous to high volatile A bituminous coals, having relatively high ash yields (22–49 wt.%) and highly variable sulphur contents (0.17–9.2 wt.%). They could be used to fuel small-scale power generation units thereby providing electricity to nearby towns and villages. Also, the coals could be used as a substitute for wood, which is becoming increasingly scarce. In rural Tanzania, charcoal is still the main energy source for cooking, and wood is used extensively in brick kilns and for making roofing tiles.Petrological analysis indicated that the coals are dominated by dull to banded dull lithotypes, with seams at the base of the Mchuchuma Formation enriched in inertinite macerals (up to 83 vol.%), whereas up-section vitrinite contents increase. Palynological analyses indicated that the assemblage in the lower Mchuchuma Formation (Scheuringipollenites assemblage) is dominated by trilete spores, whereas in the remainder of the section, non-taeniate disaccates dominate (Scheuringipollenites–Protohaploxypinus assemblage). Facies critical macerals suggest for most seams a marsh/wet forest swamp depositional setting, which is consistent with the palynological data.Rock Eval analyses indicate type II/III kerogen, with Tmax (°C) values ranging from 426 to 440, corresponding to the early stage of hydrocarbon generation. Thermal Alteration Indices (2 to 2+) and vitrinite reflectance levels (0.60–0.83 Ro (%) support the Rock Eval maturity assessment, and despite the predominance of terrestrial-derived organic matter, there is evidence of oil generation and expulsion in the form of cavity and fracture filling exsudatinite.  相似文献   

18.
Upper Triassic to Middle Jurassic coals from the Alborz region of northern Iran were analyzed by reflected light-fluorescence microscopy and Rock Eval 6® pyrolysis to evaluate their regional rank variation, degree of hydrothermal alteration, and petroleum generative potential. The coal ranks in the region range from a low of 0.69%RoR in the Glanddeh-Rud area to a high of 1.02%RoR in the Gajereh area. Tmax (°C) values (Rock Eval 6 pyrolysis) also increase progressively with increasing vitrinite %Ro values, however Tmax is suppressed lower than would be expected for each rank ranging from 428 °C for the Glandeeh coal to 438 °C for the Gajereh coal. Tmax suppression may be caused by maceral composition and soluble organics within the coal. Moderately high hydrogen indices, persistent and oily exudations from the coals during UV exposure, and traces of hydrocarbon fluid inclusions suggest that liquid petroleum was likely generated within some of the coals.  相似文献   

19.
Rock‐Eval pyrolysis provides a quick, relatively inexpensive means of characterizing organic‐rich strata, and has been used for decades to understand global petroleum systems. Although designed to characterize ancient kerogens, pyrolysis is increasingly being used to understand Holocene systems as well. The ability of this technique to distinguish between types of preserved organic matter is useful in characterizing climatic evolution, particularly in systems sensitive to climatic fluctuation such as isolated fens and bogs. Cores collected from the Tokewanna and Garden Basin Cattail fens in central/eastern Utah exhibit variability of organic source, with the mixture of terrestrial and algal sources varying through time, as shown through the hydrogen index (HI) and oxygen index pyrolysis parameters. A sediment core was collected at each fen, and 176 samples were taken from the cores at 6‐cm intervals. Total organic carbon (TOC) for all samples ranges from 1.3 to 44.2%, with an average of 18.2% TOC. Samples range from 84 to 687 HI, equivalent to Type I (lacustrine algal) to Type III (terrestrial) organic material (OM). Variability in HI response represents mixing of the two OM sources, and the relative amount of aqueous organic input can be estimated through time based on age‐calibrated HI curves at the two sites. The balance of organic input serves as an accurate, high‐resolution proxy for climate, and calibration with palynological data near both sites confirms patterns shown by pyrolysis, showing the utility of this method in quickly, affordably and accurately characterizing Holocene sediments for use in understanding palaeoclimate.  相似文献   

20.
The Avengco Basin is located in the western part of the Tibetan Plateau and is similar to the Nima Basin in the central part of the plateau and the Lunpola Basin in the eastern part in terms of sedimentary characteristics and tectonic settings, which are well known to provide a good source rock potential. However, the organic geochemical characteristics of the Paleocene-Eocene potential source rocks in the Avengco Basin have been under debate. Thirty-four marl and mudstone outcrop samples of the Niubao Formation in the Avengco Basin were collected and subjected to the following analyses: total organic carbon (TOC), Rock–Eval pyrolysis, stable carbon isotopes of kerogen, gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). Here, we present the results indicating the organic matter of the upper Niubao Formation is mainly composed of Type II kerogen with a mixed source, which is dominated by algae. However, the lower Niubao Formation has the less oil-prone Type II–III kerogen, and the sources of the organic matter are mainly terrestrial plants with less plankton. In addition, the samples are thermally immature to marginally mature. The Niubao Formation was deposited in an anoxic–oxic environment which was brackish with an imperceptible stratified water column. The upper Niubao Formation has a medium to good hydrocarbon-generating potential. However, the lower Niubao Formation has a zero to poor hydrocarbon-generating potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号