首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil ecosystem functions are derived from plant, animal and microorganism communities and the non-living environment interacting as a unit. Human activities have affected soil ecosystem functions and in many cases caused soil ecosystem collapse. This review provides a synthesis of current knowledge of human impacts on soil ecosystems, with a special focus on knowledge gaps regarding soil ecosystem shifts and tipping points, using the island of Crete, Greece as an example. Soil ecosystem shifts are abrupt changes that occur at “tipping points” and have long-lasting effects on the landscape and both the biotic and abiotic structure of the soil. These shifts can occur due to climate change, land use change, fertilization, or above-ground biodiversity decline. The environmental pressures in the agricultural land of Crete, place the island very close to tipping points, and make it an “ideal” area for soil ecosystem shifts. Reversing the trend of the shift while using the soil ecosystem services, means that significantly more organic matter needs to be added to the soil compared to the amount added under set-aside conditions. Potential nutrient supply and demand calculations indicate that fertilizer demand in Crete can be satisfied by recycling of bio-residue and livestock excreta produced on the island. Soil fertility improves faster if, in addition to bio-fertilization, farmers use traditional agricultural practices such as crop rotations and legume row plantings within olive trees and orchards. A renewed soil fertility paradigm shift requires a “holistic” management of biotic-soil–water resources in order to provide sufficient and an appropriate type of organic matter to the plant–microorganism system to maximize food production.  相似文献   

2.
严重威胁可持续发展的土壤退化问题   总被引:21,自引:2,他引:21  
土壤退化已成为严重的全球性环境问题之一,全球共有20亿hm 2的土壤资源受到土壤退化的影响,即全球农田、草场、森林与林地总面积大约22%的土壤发生了不同程度的退化。土壤侵蚀、化学退化、物理退化是全球范围内最主要的退化形式。土壤退化是人类活动诱导和加速的一种自然过程,其中最主要的人为驱动因素为农业土壤不适当的利用与管理、森林破坏以及过度放牧等。土壤退化的直接后果是导致土壤生产力的大幅度下降,在过去50年中,由于土壤退化而导致的全球农业产量下降幅度为11.9%~13.4%。此外,土壤退化还造成如河流与湖泊淤积、土壤有机碳储量变化、特殊生境消失以及生物多样性减少等其它环境与生态问题,对人类的生存与可持续发展形成极大威胁。因此,为了确保粮食安全与维护生态环境健康,全球在不同尺度、不同水平上防治土壤退化、修复与重建退化土壤,切实有效地实施土壤资源可持续利用战略已经成为公众关注的重要议题。  相似文献   

3.
The absence of environmentally sensitive soil management systems can be considered as one of the major risks to sustainability of agricultural soils in Iran. Tillage is the most critical operation in soil management designed to achieve high crop yield, but it can adversely affect the soil fauna in several ways. In the present study, assessment of soil fauna was carried out in Western Iran in 2008 and 2009 in soil subjected to conventional (CT), minimum (MT) and no (NT)-tillage systems and amended with three levels of cattle manure (CM). Earthworm, mite, springtail and nematode populations were measured as indicators of macro, meso and micro fauna groups, respectively. Soil moisture and bulk density were also determined. Generally, low populations of soil fauna were observed consistent with expectations under similar conditions for this region. Earthworm populations were low and had a patchy distribution. Tillage and CM were found to have no effects on soil mites in both years. Soil springtails were reduced by soil tillage, indicating their sensivity to soil disturbance induced by tillage. In 2008, the nematode population was greater with application of 40 ton ha?1 CM applications (113 N.100 g soil?1). Soil tillage-induced disturbance reduced nematode population in 2009 (214 N.100 g soil?1 at CT). Minimum seedbed preparation besides less soil disturbance makes MT a proper tillage system for Zea mays cultivation. Cattle manure application increased Z. mays’ biomass, but according to our results its annual application is not recommended. There were no changes in BD in both years. We conclude that in short-term studies, soil nematode populations are suitable biological indices (under similar soil and climatic conditions) for the ecological comparison of agricultural management systems in Iran.  相似文献   

4.
This study concerns post-cultural dynamics in the semi-arid South-West of Madagascar (Analabo area, near the Mikea Forest). A synchronic comparison was performed on a set of abandoned fields plots aged from 2 to 30 years and on forest and savanna reference ecosystems, located on cambic arenosols developed from same Quaternary dune sands. The studied parameters concerned mainly a few physical and chemical soil properties (density, permeability, compaction, texture, C, N, K, P content). Important changes occur in the post-cultural succession: an increase of the soil density and compaction, and decrease of the soil upper layer permeability. Consequently, slash and burn cultivation leads to a packing and an induration of the soil surface. Results about edaphic indicators have shown that the physical parameters used better discriminate various stages of evolution than the chemical parameters do. The multivariate analysis of soil indicators shows that vegetative succession over 30 years in a forest ecosystem cleared, burnt, cultivated and left, does not lead to features corresponding to a closed-canopy forest but rather to those of a tree savanna with open, mixed woody-herbaceous vegetation. The primary dense dry deciduous regeneration of the primary forest is very low or nil. In the semi-arid SW Madagascar (Analabo region), post-cultural dynamics conditions consists in a savanna-formation process, controlled by: (1) the intensity and duration of the disturbance (during the cultivation phase); and (2) the more drastic environmental conditions (including both climate and soil).  相似文献   

5.
Soil disturbance caused during the installation of vertical drains reduces the in situ hydraulic conductivity of soft deposits in the immediate vicinity of the drains, resulting in a slower rate of consolidation than would be expected in the absence of disturbance. Experimental investigations have revealed the existence of two distinct zones, a smear zone and a transition zone, within the disturbed zone around the vertical drain. The degree of change in the hydraulic conductivity in the smear and transition zones is difficult to assess without performing of laboratory tests. Based on the available literature, four different profiles of hydraulic conductivity versus distance from the vertical drain were identified. Closed-form solutions for the rate of consolidation for each of these four hydraulic conductivity profiles were developed. It is found that different variations of the hydraulic conductivity profiles in the disturbed zone result in different rates of consolidation.  相似文献   

6.
Soil is a vital biological habitat, which is of primary importance in determining and regulating biological activity and biodiversity. Therefore, it is Earth’s most important resource in sustaining both belowground and aboveground biological activities. Biodiversity versus landscape diversity and land use practices in multifunctional landscapes have been addressed. Humans have so manipulated nature that few locations in the world remain without human influence, causing unforeseen changes in ecosystem continuously and biodiversity. Among the environmental compartments, about 90 % of environmental pollutants are bound with soil particles. The soil-bound pollutants may be released to the soil solution through physical, chemical and biological interfacial interactions and pose a threat to biodiversity and ecosystem integrity. These interfacial interactions are especially important in the rhizosphere, where the kinds and concentrations of biomolecules are different from the bulk soil because of intense biological activity. These biomolecules affect biogeochemical processes, soil microbial ecology, nutrient and contaminant dynamics, abiotic and biotic factors, and soil biodiversity through allelopathic interactions. Soil interfacial interactions under different pedogenic processes and anthropogenic activity in relation to belowground biodiversity and the impact on aboveground biodiversity, productivity and integrity should be an important and exciting area of science for years to come.  相似文献   

7.
宜宾江安桐梓镇土地整理区耕地土壤重金属含量及评价   总被引:1,自引:0,他引:1  
土壤重金属污染问题已成为环境问题中备受关注的一个焦点,而重金属污染严重的土壤会影响到农作物产量的质量和安全性,进而对人类自身健康造成一定危害。这里以地质地球化学调查填图为基础,以土壤采样分析成果为依据,以地球化学研究方法为手段,查明了桐梓镇土地整理区耕地土壤重金属元素含量特征和分布现状,为当地无公害食品等农业生产基地优选,农业种植结构调整等方面,提供了翔实的地球化学方面的基础资料。  相似文献   

8.
Increasing CO2 levels and its consequent effects have been prominent with climate change. Three out of ten transgressed planetary boundaries reflect our planet’s status at tipping point. Soil Organic Carbon (SOC) which helps soil supply water and nutrients to plants through roots is inherently related to various ecological systems and needs urgent attention. Although the total SOC globally is more than the total carbon in biosphere and atmosphere, the vulnerability of SOC due to anthropogenic activities is unavoidable. The environmental factors affecting sequestration of SOC, soil fertility, crop production, accelerated SOC removal with rising temperatures, green-house gases emissions and climate change are interrelated. Thus, it is impossible to understand and estimate the various scenarios of impacts on SOC pool with ever-changing ecosystems and related processes in soil environment completely. Based on currently predicted climate change scenarios, if deforestation is controlled and reestablishment is achieved, tropical forests can trap atmospheric CO2 in the cheapest way and function as the largest sink on earth. The agricultural management practices (AMPs), which have been practiced in the last two decades and found helpful are suitable. However, some innovative adaptations such as crop modelling, selecting types of residue to change microbial communities, practices of grassland-grazing and low-C-emission AMPs are also necessary. To achieve the millennium development goals, we must accomplish food security, which relates all 17 sustainable development goals (SDGs) also relays agricultural systems, soil systems, ecosystem services, soil fertility and how best we nurture SOC pool with supportive AMPs.  相似文献   

9.
2015 is the International Year of Soil (IYS) adopted by the 378th Congress of the United Nations. The Status of the World’s Soil Resources was released by the Food and Agriculture Organization of the United Nations, which was the policy report about the status of the world soil resources for the first time. The universal values of the global community were strengthened by the challenges for the global society from the risk and safety of the change of soil quality, functions, services and soil health. One third of the world soil resources were suffering serious degradation, which could affect the food security in the future, regional development and local conflicts in the report. The major task of the global monitoring, regulation and management of the world soil resources and the social responsibility of supporting the sustainable soil management by education, research and technology development were highlighted. The social responsibility and global development trends of soil science and management strategies were discussed by the keywords, the distribution of contributing authors and the citation of the references, as well as the main contents of the report. The keywords distribution of the report showed that the focus of the soil research included the change of soil quality, processes, functions and services induced by the natural driving forces, human’s activity and soil degradation, as well as the hotspots covered soil carbon/nitrogen-water-biological pool and distribution related with the biogeochemistry, global climate change and ecosystem functions and human health. The number and structure of the cited papers showed that the integration research based on the mega-data analysis were the prominent development trend of the soil science. The geographic distribution of all the contributing authors showed that dominant discourse of the global soil science were grasped by the developed countries including Europe and the United States, China had just limited effects on the global soil science. It is urgent to promote China’s soil science research and the services for global society.  相似文献   

10.
The aim of this article is to analyse the influence of commodified cotton production on soil fertility in southern Mali. From the late 1950s and until recently, production of both cash-crop cotton and food crops have increased rapidly in this region, giving it a reputation of being an African ‘success story’. The flip side of this economic success is, however, said to be environmental degradation especially in terms of loss of soil fertility. We collected 273 soil samples in 19 villages located in various zones of land use intensity. In each village, the samples were collected on up to six different land use types varying with intensification. The analysis of the soil samples showed that soil fertility was highest in the sacred groves that have been protected and never cultivated. However, comparing soils under continuous cultivation and soils under fallow no clear trends in soil fertility were found. Cotton yields have declined since the early 1990s, while the total use of fertilisers has increased. This is often interpreted as proof of soil exhaustion, but there is no clear indication in this study that cotton-cereal rotation as practiced by smallholders in southern Mali reduces soil fertility. We argue that the decline in yields has been caused by an extensification process. Cotton fields expanded rapidly, due to attractive cotton prices in the 1990s, leading to falling investments per ha and cultivation of more marginal lands. These findings also have implications for a political ecology of commodity production and lead us to argue for an open-ended and empirically based ‘critical political ecology’.  相似文献   

11.
The study presents the effect of soil erosion on vegetation, soil accumulation (SA), SA rate (SAR), soil quality, soil mass, and the soil organic carbon (SOC) pool in Brown Andosols and Histosols in a 24-km2 area in southwest Iceland. Undisturbed prehistoric soils were distinguished from disturbed historic soils using tephrochronology. Soil erosion has been severe during historic time (last 1135 yr), resulting in the increase of the soil mass deposited in soils covered by vegetation by a factor of 7.3-9.2 and net loss of soil in unvegetated areas. The SAR correlated positively with SOC sequestration. SOC is easily transported and, given the extensive accumulation of soil, the net effect of burial and subsequent reduction in decomposition is to increase SOC storage. Nevertheless, the increased accumulation and soil depletion has decreased soil quality, including the SOC, and reduced soil resistance to erosion with the depleted SOC contributing to enrichment of atmospheric CO2. The initial terrestrial disturbance was triggered by anthropogenic land use during the Medieval Warm Period, followed by volcanic activity approximately three centuries later. The combination of harsh climate during the Little Ice Age and drastic anthropogenic perturbations has led to land degradation at a catastrophic scale.  相似文献   

12.
While national figures of land availability are used to justify accepting large-scale land investors, not very much is known about the local level realities of land availability. By combining remotely sensed data with fieldwork, system dynamics modelling and qualitative research methods, we examine local level realities of land use and availability in the Malen Chiefdom of Southern Sierra Leone. Here, local communities are experiencing the outcomes of large-scale investments in oil palm for biodiesel and other industrial purposes by the SOCFIN Agricultural Company. We find that beyond agricultural production, there are other land uses that are vital for the socio-cultural, economic and environmental realities of communities. The Company does not respect engagements promised to local people to set aside buffer zones around living areas to serve as biodiversity corridors. Local communities are severely deprived of agricultural land and other land resources. The operations of SOCFIN do not take account of present or future land needs of local people. A baseline requirement of food crop land should be set aside for each community, to ensure the attainment of food security in communities affected by land acquisitions. Such baseline requirement should be augmented with local level needs assessments to meet new demand for cropland necessitated by changing demography. This model of land planning can be applied to other land use and additional engagements of large-scale land investors.  相似文献   

13.
Biodiversity provides many ecosystem functions and services in the coal mine areas and plays an important role in improving the environment and sustainable development of mining area. From the view of coal mining-damage-the whole process of reclamation, the biodiversity conservation planning and biodiversity survey, monitoring and evaluation technology were briefly introduced before coal exploiting. The main contents for biodiversity conservation and technology including the protection of topsoil seed bank, soil fauna, biological soil crusts and optimization techniques of concurrent mining and reclamation during coal mining and the operational phase were elaborated. The key factors affecting biodiversity restoration in land reclamation stage were analyzed. The research on soil improvement and revegetation was discussed. Finally, the development direction of research about conservation and restoration of biodiversity in land reclamation of coal mine were proposed. It may provide some ideas for further promoting the research in this area.  相似文献   

14.
Effects of soil factors on physiological indicators ofSpartina patens and live standing crop of the macrophyte community were investigated in a brackish marsh. Three distinct physiognomic zones were studied along a transect perpendicular to a tidal creek: the marsh edge, which was directly adjacent to the creek; the levee berm, 6 to 8 m from the creek; and the inland zone, which extended through the marsh interior. Soil physicochemical factors (soil moisture, redox potential, interstitial pH, salinity, and ammonium and sulfide concentrations) were compared to physiological indicators ofSpartina patens (leaf adenine nucleotides, root alcohol dehydrogenase (ADH) activity, and levels of ethanol, lactate, alanine and malate in the roots). In correlation matrices of soil and plant factors, increases in soil moisture and decreases in redox potential were associated with depressed leaf adenylate energy charge ratios (AEC, an integrative measure of plant stress) and elevated ADH activities and metabolite levels in the roots. ADH activity was greatest in roots from the inland zone where soil waterlogging was greatest and exhibited seasonal increases that followed seasonal declines in soil redox potential. Leaf AEC was greatest in the berm and generally lowest in the inland plants. End of season live standing crop was also greatest on the berm, but did not closely follow any edaphic trends across the three zones. This suggests that several factors, (i.e., soil aeration, and sulfide and nitrogen levels) may be of greater importance to standing crop than any single factor, as is thought for salt marshes dominated byS. alterniflora.  相似文献   

15.
Soil gas approaches have been proven useful for detecting buried faults in field survey. How about their applicability in urban area? A trial soil gas survey has been conducted in an attempt to evaluate this in Fuzhou City, Southeastern China. The detection was performed by measuring the adsorbed mercury, free mercury and radon gases in soil in the sites such as crop soil, refilled soil and those with shallow groundwater levels. The resulting distributions show that anomalous concentrations of soil gases over faults are generally two to four times as much as those in the surrounding areas. The locations of peak values of absorbed and free mercury could possibly be applied to assist to determine the trend of faults. The background values of free mercury seems to be more stable and the anomalous zones narrower than those of radon gas, therefore, the free mercury method seems to be good for detection at this area, especially in those sites with shallow groundwater levels. The false gas anomalies may occur in such a site as refilled with external soil, refilled pond and abandoned construction bases.  相似文献   

16.
2005年中国地质调查局与广东省人民政府联合开展珠江三角洲经济区农业地质与生态地球化学调查项目。通过开展多目标区域地球化学调查、区域生态地球化学评价、局部生态地球化学评价和总体综合评价,系统完成了珠江三角洲经济区47 954 km2(包括10 m水深以浅的近岸海域)的生态地球化学调查与评价。按照双层网格化方法系统采集了陆域土壤、近岸海域和珠江水系主要河流沉积物表层和深层样品,测试了71项元素和指标,建立了珠江三角洲经济区土壤、沉积物地球化学背景值和基准值,全面查明了珠江三角洲经济区土壤环境质量状况。定量计算了镉、铅、汞等主要异常元素经河流、成土过程等自然来源和大气干湿沉降、施肥、灌溉、使用农药等人为来源贡献量,阐明了其迁移转化途径及生态安全性。项目紧密结合本地区特点,在国内首次开展了三角洲形成演化过程地球化学研究、区域辐射环境质量评价、酸雨对土壤质量影响的模拟实验、土壤环境质量地方标准研究与制订等工作。  相似文献   

17.
土壤碳循环研究进展   总被引:82,自引:4,他引:82  
土壤碳是陆地碳库的主要组成部分,全球土壤有机碳总量达1270 Gt。气候变化影响植物生长、植物碎屑分解速率以及土壤—大气碳通量,这对大气CO2含量有重要影响。土壤有机质模型是研究生态系统尺度土壤碳循环的唯一可用工具,目前已开发出多种。大量研究表明,14C测试是研究土壤有机碳组成及驻留时间的重要手段,土壤有机碳由一系列具不同更新时间的组分构成。土壤粒级组成、矿物特征及土体结构等内在因素制约土壤有机碳存量及状态,对于长时间尺度碳的更新具有重要意义。研究不同气候带土壤有机碳储量及动态变化特征,可为预测未来农、林生态系统变化提供理论依据。  相似文献   

18.
珠江三角洲经济区生态地球化学评价   总被引:2,自引:0,他引:2  
土壤重金属污染是珠江三角洲地区主要的生态环境问题之一,直接影响到区域生态系统的稳定和食品安全。通过开展多目标区域地球化学调查、区域生态地球化学评价、局部生态地球化学评价和总体综合评价,系统完成了珠江三角洲经济区47954 km2(包括10 m水深以浅的近岸海域)的生态地球化学调查与评价。按照双层网格化方法系统采集了陆域土壤、近岸海域和珠江水系的主要河流沉积物表层和深层样品,测试了71项元素和指标,建立了珠江三角洲经济区土壤、沉积物地球化学背景值和基准值,首次对珠江三角洲地区区域地球化学特征进行了系统全面的调查,全面查明了珠江三角洲经济区土壤环境质量状况,区内一级和二级土壤分别占总面积的19.9%和57.3%,三级和三级以上土壤占22.8%。定量计算了镉、铅、汞等主要异常元素经河流、成土过程等自然来源和大气干湿沉降、施肥、灌溉、使用农药等人为来源贡献量,阐明了其迁移转化途径及生态安全性。结合研究区特点,系统开展了三角洲形成演化过程的地球化学研究,并在国内首次制定了符合地区特点的珠江三角洲经济区土壤环境质量地方标准。  相似文献   

19.
A sealed vegetation chamber was designed and constructed for physical simulation of climate conditions in the Subarctic zone during the spring–summer time. The small laboratory tundra-simulating ecosystem (TSE) was created for comparative evaluation of the rates of soil respiration and of the total balance of carbon fluxes in tundra ecosystems. The test experiment was performed to study the TSE response to a temperature rise in air and soil by 2°C in terms of the intensity of the СО2 flux. It was shown that this increase in temperature would cause a pronounced shift in the balance of СО2 production and utilization in the ecosystem from near-zero values to a stable generation of 24 μmol/h of CO2 per 1 kg of dry biomass.  相似文献   

20.
干旱区土壤种子库的研究进展   总被引:24,自引:0,他引:24  
土壤种子库在连接过去、现在和将来的植物种群和群落的结构和动态中起着重要的生态和进化作用,对保护和恢复干旱区植被起着重要的作用。从土壤种子库的研究方法、数量特征、分布格局、时空动态、与地上植被关系、年龄结构及影响因素等方面论述了干旱区土壤种子库研究的若干进展,展望了干旱区土壤种子库的研究趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号