首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The water quality of the Vacacaí River was assessed at different sites in the period between winter 2005 and autumn 2006. All samples were analyzed for 52 elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, In, Cs, Ba, Tl, Pb, Bi, U, Na, K, Hg, B, Mo, Sn, Te, Ti), temperature, pH, ammonia, and alkalinity levels. Water from the Vacacaí River ranged from slightly acidic to alkaline. No difference was observed in the chemical composition at different sites of the Vacacaí River. Levels of Ba, Ca, Sr and Mg increase in the dry seasons and reach their highest concentrations in autumn; Be and U decrease in the dry season and reach their highest concentration in spring. Al, Fe, Cr, Ni, Th, U Mn, Ca and Mg are highly positively related, indicating a common origin. Se and Cu are probably from anthropogenic source, from the rice crops of the margins of the river. Waterborne Al and Fe levels were above the desirable level for drinking water at all sites during all seasons. These results demonstrate the need for constant monitoring of water parameters, which is crucial to ensure water quality for the population of this region.  相似文献   

2.
Factors controlling the distribution of mining-derived Cu, Pb and Zn in the waters and bottom sediments of a large Andean lake (Lago Junin, Peru) have been assessed based on sample collections in May/June 1997 (dry season) and February/March 1998 (wet season). Relatively low levels of trace metals detected in surface waters of the lake during the dry season contrasted greatly with the high values observed during the wet period. Dry season concentrations of total Zn, Cu and Pb in the central lake basin averaged 41, 4.4 and 0.24 µg/L, respectively. In contrast, the respective wet season concentrations of total Zn, Cu and Pb in areas of the main basin ranged up to 387, 52 and 40 µg/L. The seasonal variability in metal concentrations largely reflects an increase in the concentration of particulate metal phases during the wet season. Such observations can be attributed to changes in sediment loadings associated with mining-derived river inputs and changes in lake circulation resulting from hydroelectric dam operations. Surface sediments are characterized by lake-wide enrichments of Zn, Cu and Pb, with maximum concentrations reaching as high as 5, 0.25 and 0.7 wt%, respectively. Estimated rates of authigenic metal accumulation are not sufficient to account for the elevated metal concentrations in the main basin of the lake, indicating that metal distributions are governed by the accumulation of metal-rich particulates. Variations in the spatial distributions of Zn, Cu and Pb are suggested to be a function of varying host phases and textural sorting.  相似文献   

3.
沉积物的元素地球化学特征是对沉积盆地水体环境以及古气候条件变化的响应。本文根据元素(Al、Fe、Mg、Ca、K、Na、P、V、Ni、Co、Cr、Cu、Zn、Sr、Ba、Cd、Li、Mn、Pb、Ti)的含量及其比值(Al/Ti、Fe/Mn、Sr/Ba、Mg/Ca、Sr/Ca、Na/Ca、V/Cr、Ni/Co、Ni/V)的变化,对三水盆地古近系心组红岗段生油层的沉积条件进行了系统分析。心组红岗段下部(亚段A)表现为较稳定的地球化学特征。各元素丰度及其比值指示这一时期陆源输入持续较高、且物源组成变化不大。由于海水入侵的影响,湖盆水体盐度相对较高,底部水体以弱氧化条件为主,O2-H2S界面位于水/沉积物界面附近。红岗段中上部(亚段B、C)的元素地球化学特征变化较为频繁且幅度很大,反映古气候和湖盆沉积条件的迅速变迁。在潮湿气候条件下,沉积物的地球化学特征表现为以Al、Ti为代表的外源元素含量及其比值较高,而Mg、Ca等盆内化学沉积元素含量较低。古氧气指标指示底部水体为还原环境,有利于有机质保存。因而,相应于较高的有机碳含量。在间歇性干旱时期,陆源输入减少,外源元素含量及其比值显著降低。随着蒸发作用的加强,水体盐度加大,内源元素丰度以及Mg/Ca、Sr/Ba、Sr/Ca和Na/Ca比值大幅度上升。底部水体为氧化环境,O2-H2S界面多位于水/沉积物界面或沉积物中。上述两种气候条件在红岗段中上部沉积时期交替出现。红岗段沉积后期由于淡水的长期输入,湖水出现逐渐淡化趋势。  相似文献   

4.
《Applied Geochemistry》2000,15(7):1003-1018
Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (<10%) of colloidal Al, Fe and Zn from the water column.  相似文献   

5.
Phytoplankton samples, collected in Monterey Bay, California, were analyzed for their Pb, Hg, Cd, Co, Ag, Cr, Ti, V, Mn, Ni, Cu, Fe, Zn, AI, Mo, Ba, Sr, K, Ca, Mg, Na and SiO2 content. The results of these analyses were categorized on a chemical basis and the sample data were placed in three groups: Group I, Ti not detected; Group II, Ti detected; and Group III, Sr concentrators present. Levels of most elements were higher in Groups II and III for a variety of reasons that are discussed in the text. The siliceous frustules, remaining after organic-matter digestion, were also analyzed for the elements listed above. Significant amounts of Al, Ti, Fe, Mn, Cu and Zn were found.Zooplankton and microplankton samples, collected in Monterey Bay, California; off the coast of Oregon; and on a transect between Hawaii and Monterey, were also analyzed for the elements listed above (except Si). In general, element levels in the inshore and offshore zoo-plankton were similar; however, the microplankton samples, in which strontium was highly concentrated, were almost always higher in Pb, Hg, Cu, Fe and Zn.  相似文献   

6.
Two hundred and forty water samples (in four seasons) and seventeen sediment samples have been analyzed to monitor the natural and anthropogenic influences on the water and sediment chemistry of the Dal Lake, Kashmir Himalaya. The scatter diagrams [(Ca+Mg)/total cations (TZ+), (Ca+Mg)/HCO3, (Ca+Mg)/(HCO3+SO4), (Na+K)/TZ+; (Ca+Mg)/(Na+K)] and the geological map of the study area suggest predominance of carbonate and silicate weathering. Lower pH and high total dissolved solids, electrical conductivity and values in the Gagribal basin and in some patches of other basins reflect anthropogenic inputs in the form of sewage from surrounding population, houseboats, hotels, etc. The Dal Lake is characterized by high chemical index of alteration (CIA: 87–95), reflecting extreme weathering of the catchment area. Relative to the average carbonates, the lakebed sediments are enriched in Al, Ti, Zn, Cu and Co and depleted in Ni and Mn. Compared to the post-Archean Shale the sediments have higher Al, Zn and Cu contents and lower Ni and Co. There are distinct positive anomalies of Al, Mn, Zn and Cu and negative anomalies of Ni and Pb with respect to the upper continental crust. Geoaccumulation index (I geo) and the US Environmental Protection Agency sediment quality standards indicate that the Gagribal basin and some patches of the Nagin basin are polluted with respect to Zn, Cu and Pb. These data suggest that the Dal Lake is characterized by differential natural and anthropogenic influences.  相似文献   

7.
This paper describes the use of multivariate statistical analysis to trace hydrochemical evolution in a limestone terrain at Zagros region, Iran. The study area includes a deep confined aquifer, overlaid by an unconfined aquifer. The method involves the use of principal component analysis (PCA) to assess and evaluate the hydrochemical evolution based on chemical and isotope variables of 12 piezometers drilled in both the unconfined and confined aquifers. First PCA on all variables shows that water–rock interaction under different conditions with respect to the atmospheric CO2 is the main process responsible for chemical constituents. As a result, combinations of several ratios such as Ca/TDS, SO4/TDS and Mg/TDS with physico-chemical and isotope variables reveal different hydrochemical evolution trend in the aquifers. Second PCA on the selective samples and variables reveals that displacement of the unconfined samples from dry to wet season follows a refreshing trend towards river samples that is characterized by reducing electrical conductivity and increasing sulphate and tritium contents. However, the refreshing trend cannot be traced in the confined aquifer samples suggesting no recharge from river to the confined aquifer. Third PCA reveals that, chemical composition of water samples in the unconfined aquifer tends to have considerable difference from each other in the end of recharge period. In contrast, the confined aquifer samples have a tendency to show similar chemical composition during recharge period in comparison to end of dry period. This difference is caused by different mechanism of recharge in the unconfined aquifer (through the whole aquifer surface) and the confined aquifer (through the limited recharge area).  相似文献   

8.
Balram Ambade 《Natural Hazards》2014,70(2):1535-1552
In the present work, chemical characterization and sources of fog water contaminants in the most polluted area of central India, Raipur, and its surroundings are described. The fog water (n = 22) was collected during 2010–2011 from six sites. The physical (i.e., pH, fog amount, electrical conductivity and TDS) and chemical (i.e., F?, Cl?, NO3 ?, SO4 2?, NH4 +, Na+, K+, Mg2+, Ca2+, Al, Mn, Fe, Cu, Zn, Pb and Hg) parameters of the fog water were investigated. The effect of meteorology, i.e., temperature, humidity and wind speed, on the precipitation of the fog water contaminants is discussed. The cluster and factor analysis are used to apportion the sources of the contaminants in the fog water.  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

10.
Mine tailings discharged to river systems have the potential to release significant quantities of major and trace metals to waters and soils when weathered. To provide data on the mechanisms and magnitudes of short- and long-term tailings weathering and its influence on floodplain environments, three calendar year-long column leaching experiments that incorporated tailings from Potosí, Bolivia, and soil from unaffected downstream floodplains, were carried out. These experiments were designed to model 20 cycles of wet and dry season conditions. Two duplicate columns modeled sub-aerial tailings weathering alone, a third modeled the effects of long-term floodplain tailings contamination and a fourth modeled that of a tailings dam spill on a previously contaminated floodplain. As far as was practical local climatic conditions were modeled. Chemical analysis of the leachate and column solids, optical mineralogy, XRD, SEM, EPMA, BCR and water-soluble chemical extractions and speciation modeling were carried out to determine the processes responsible for the leaching of Al, Ca, Cu, K, Na, Mg, Mn, Sn, Sr and Ti. Over the 20 cycles, the pH declined to a floor of ca. 2 in all columns. Calcium, Cu, Mg, Mn and Na showed significant cumulative losses of up to 100%, 60%, 30%, 95% and 40%, respectively, compared to those of Al, K, Sr, Sn and Ti, which were up to 3%, 1.5%, 5%, 1% and 0.05%, respectively. The high losses are attributed to the dissolution of relatively soluble minerals such as biotite, and oxidation of chalcopyrite and Cu-sulfosalts, while low losses are attributed to the presence of sparingly soluble minerals such as svanbergite, cassiterite and rutile. These results strongly suggest that the release of tailings to floodplains should be limited or prohibited, and that all tailings should be removed from floodplains following dam spills.  相似文献   

11.
The coastal marine atmosphere adjacent to large urban and industrial centers is in general strongly impacted by pollution emissions, resulting in high loading of pollutants in the ambient air. Among the airborne substances are certain trace elements from a variety of emission sources that can serve as micronutrients to marine organisms in coastal waters. High concentrations of such elements in coastal air can result in enhanced air-to-sea deposition fluxes to coastal waters. They could also be transported over the open ocean, affecting the composition of the remote marine atmosphere and then ocean ecosystems. To provide better understanding of the extent of air-to-sea deposition processes on the New Jersey coast, a heavily polluted coastal region on the US East Coast, a synthesis of observation data was carried out for selected trace elements, including Fe, Cd, Cr and Cu, derived from measurements of both size-segregated and bulk aerosol particles, as well as precipitation around the New Jersey coast. The atmospheric input of Hg was also estimated based on measurement data. Results indicated that the total deposition fluxes of most trace elements were higher in Northern coastal NJ compared to Southern coastal NJ, reflecting the differences in the source strengths of these element emissions between the two coastal regions. Dry deposition processes were more significant for common dust-derived elements, particularly Fe and Al, compared with their wet deposition fluxes. However, the processes of precipitation scavenging appeared to be more important for the elements that were often enriched in fine particles including Zn, Cu, Pb and Ni. The removal of Hg from the ambient air was overwhelmingly dominated by atmospheric wet deposition. In the future, atmospheric measurements at more sites on the NJ coast should be performed simultaneously to reduce the spatial and temporal uncertainties associated with atmospheric deposition fluxes estimated in this study.  相似文献   

12.
River waters play a significant role in supplying naturally- and anthropogenically-derived materials to Lake Qinghai, northeastern Tibetan Plateau. To define the sources and controlling processes for river water chemistry within the Lake Qinghai catchment, high precision ICP-MS trace element concentrations were measured in water samples collected from the Buha River weekly in 2007, and from other major rivers in the post-monsoon (late October 2006) and monsoon (late July 2007) seasons. The distributions of trace elements vary in time and space with distinct seasonal patterns. The primary flux in the Buha River is higher TDS and dissolved Al, B, Cr, Li, Mo, Rb, Sr and U during springtime than those during other seasons and is attributed to the inputs derived from both rock weathering and atmospheric processes. Among these elements, the fluxes of dissolved Cr, B and Rb are strongly influenced by eolian dust input. The fluxes of dissolved Li, Mo, Sr and U are also influenced by weathering processes, reflecting the sensitivity of chemical weathering to monsoon conditions. The anthropogenic sources appear to be the dominant contribution to potentially harmful metals (Ni, Cu, Co, Zn and Pb), with high fluxes at onset of the main discharge pulses due, at least partially, to a runoff washout effect. For other major rivers, except for Ba, concentrations of trace elements are higher in the monsoon than in the post-monsoon season. A total of 38.5 ± 3.1 tons of potentially harmful elements are transported into the lake annually, despite human activities within the catchment being limited. Nearly all river water samples contain dissolved trace elements below the World Health Organization guidelines for drinking water, with the exception of As and B in the Daotang River water samples collected in late July probably mobilized from underlying lacustrine sediments.  相似文献   

13.
Metal fluxes to the sediments of the Moulay Bousselham lagoon,Morocco   总被引:2,自引:0,他引:2  
The metal content in surface sediments (0–2 cm, 26 samples), in a sediment core (120, 1 cm slices), taken from Moulay Bousselham (Morocco) was investigated. Concentrations of Al, Fe, Mn, Pb, Zn, Cu, Ni, Cr, Cd, As, and Hg were evaluated in surface and cored sediments of Moulay Bousselham lagoon. Significantly high concentrations in μg g−1 dw of Pb (31.7–6.2), Zn (758.9–167), Cu (310.7–22), Ni (96–10.5), Cr (113–18.9), Cd (0.84–0.02), As (1–0.1), and Hg (0.61–0.02) were found in sediment samples from Moulay Bousselham lagoon. Calculated enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background], using Al as a normalizer, and correlation matrices showed that metal pollution in Merja Zerga of Moulay Bousselham lagoon was the product of anthropogenic sources, while the metal content in Merja Kehla was of natural origins. The results suggest that a major change in the sedimentary regime of the lagoon, associated with internal trapping and re-distribution of heavy metal, has been occurring in the past few decades. The cause would appear to be the construction of a Nador Canal at the lagoon. Probable effects concentrations (PEC) were often exceeded for heavy metals in the lagoon sediments, especially for Zn, Cu, Ni, and Cr, and four stations, stations MZ-11, MZ-12, MZ-13, MZ-14, MZ-16, and MZ-17, had multiple metals at presumptively toxic levels. These comparisons suggest that sediment metal levels in the river are clearly high and probably pose an environmental risk at some stations. The levels of most of the metals were not greatly enriched, a consideration that is of the utmost importance when contamination issues are at stake. Metal concentrations found in Moulay Bousselham lagoon were comparable to aquatic systems classified as contaminated from other regions of the world.  相似文献   

14.
The objective of this study was to quantify by experiments the initial seawater–suspended basaltic glass interactions following the 1996 outburst flood from the Vatnajökull glacier, Iceland. The altered basaltic glass dissolved in seawater as recorded by the Si release from the glass. The dissolved concentrations of Na, Ca, Si, Ba, Cd, Co, Cu, Hg, Mn, Ni and total dissolved inorganic N increased with time but the concentrations of Mg, K, S, Sr, Fe, Pb and Zn decreased. Calculated 1 to 10 day fluxes for Si range from 38,000 tons/day to 70,000 tons/10 days. The fluxes for other major elements are more uncertain, but the positive flux (release from suspended matter to seawater) of Ca and Na, and negative flux of Mg, K and S are greater than the Si flux.  相似文献   

15.
Basalt weathering in Central Siberia under permafrost conditions   总被引:2,自引:0,他引:2  
Chemical weathering of basalts in the Putorana Plateau, Central Siberia, has been studied by combining chemical and mineralogical analysis of solids (rocks, soils, river sediments, and suspended matter) and fluid solution chemistry. Altogether, 70 large and small rivers, 30 soil pore waters and groundwaters and over 30 solids were sampled during July to August 2001. Analysis of multiannual data on discharge and chemical composition of several rivers of the region available from the Russian Hydrological Survey allowed rigorous estimation of mean annual major element concentrations, and dissolved and suspended fluxes associated with basalt weathering. For the rivers Tembenchi and Taimura that drain monolithologic basic volcanic rocks, the mean multiannual flux of total dissolved cations (TDS_c = Ca + Mg + Na + K) corrected for atmospheric input is 5.7 ± 0.5 t/km2/yr. For the largest river Nizhniya Tunguska—draining essentially basic rocks—the TDS_c is 6.1 ± 1.5 t/km2/yr. The overall CO2 consumption flux associated with basalt weathering in the studied region (∼700,000 km2) achieves 0.08 × 1012 mol/yr, which represents only 2.6% of the total CO2 consumption associated with basalt weathering at the Earth’s surface. The fluxes of suspended matter were estimated as 3.1 ± 0.5, 9.0 ± 0.8, and 6.5 ± 2.0 t/km2/yr for rivers Taimura, Eratchimo, and Nizhniya Tunguska, respectively. Based on chemical analyses of river solutes and suspended matter, the relative dissolved versus particulate annual transport of major components is Cinorg ≥ Corg > Na + K > Ca > Mg > Si > Fe ≥ Mn ≥ Ti ≥ Al which reflects the usual order of element mobility during weathering.According to chemical and mineralogical soil and sediment analyses, alteration of basalt consists of (1) replacement of the original basaltic glass by Si-Al-Fe rich amorphous material, (2) mechanical desegregation and grinding of parent rocks, leading to accumulation of “primary” hydrothermal trioctahedral smectite, and (3) transformation of these trioctahedral (oxy)smectites and mixed-layer chlorite-smectite, into secondary dioctahedral smectite accompanied by removal of Ca, Mg, and Fe, and enrichment in Al. No vertical chemical differentiation of fluid and solid phases within the soil profile was identified. All sampled soil pore waters and groundwaters were found to be close to equilibrium with respect to chalcedony, gibbsite, halloysite, and allophanes, but strongly supersaturated with respect to goethite, nontronite, and montmorillonite.Over the annual cycle, the contribution of atmospheric precipitation, permafrost melting, underground reservoirs, litter degradation, and rock and soil mineral weathering for the overall TDS_c transport in the largest river of the region (Nizhniya Tunguska) is 9.3 ± 3, 10 ± 5, 10.5 ± 5, 25 ± 20, and 45 ± 30%, respectively. In the summertime, direct contribution of rocks and soil mineral weathering via solid/fluid interaction does not exceed 20%. The main unknown factors of element mobilization from basalt to the river is litter degradation in the upper soil horizon and parameters of element turnover in the vegetation.  相似文献   

16.
Hypogene uytenbogaardtite, acanthite, and native gold parageneses have been revealed at the epithermal Yunoe gold-silver deposit, Magadan Region, Russia. Thermodynamic calculations in the system Si–Al–Mg–Ca–Na–K–Fe–Pb–Zn–Cu–Ag–Au–S–C–Cl–H2O were carried out at 25–400 °C and 1–1000 bars to elucidate the role of hydrothermal solutions in the formation of gold and silver sulfides. Several most probable scenarios for ore-forming processes in the deposit are considered: (1) interaction between cold and heated meteoric waters percolating along cracks from surface to depth and reacting with the host rock—rhyolite; (2) evolution of ascending postmagmatic fluid resulting in chloride–carbonic acid solution, which interacts with rhyolite at 100–400 °C; (3) stepwise cooling of hydrothermal ore-bearing solutions; (4) rapid cooling of ore-bearing hydrotherms on their mixing with cold surface waters. Rhyolite with Pb, Zn, Cu, Cl, S, Ag, and Au clarke contents was taken as an initial host rock. Calculations by model 3 showed the possible formation of uytenbogaardtite and petrovskaite at low-temperature stages. Gold and silver sulfides can be deposited during the mixing of ore-bearing acid chloride–carbonic acid hydrothermal solutions with surface alkaline waters.  相似文献   

17.
利用中国癌死亡率与土壤坏境中化学元素的相关性成果,研究了四川省癌死亡率与土壤环境中化学元素:As、Cd、Co、Cu、Hg、Mn、Ni、Pb、Se、V、Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Al、Ga、In、Tl、Sc、Y、La、Ce、Pr、Nd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Th、U、Sn、Ti、Zr、Hf、Sb、Bi、Ta、Te、Mo、W、Br、I、Fe等52个元素含量的关系  相似文献   

18.
Microscopic morphology and elemental composition of atmospheric particulate matter (PM) in 13 different size fractions from 0.01 to 10 μm were studied using a Field Emission Scanning Electron Microscope with Energy-Dispersive Spectrometer (FESEM–EDX). The relative mass fractions exhibited a bimodal distribution with a major mode in the fine range (0.18–1 μm) and a minor mode in the coarse range (>1 μm), suggesting that the major pollution of PM is fine particles in this area of Urumqi atmosphere. The PM could be classified as follows: aluminosilicate/silica mineral, Si–Al rich fly ash, Fe oxide particle, Ti dominant particle, sulfate/carbonate crystal, carbonaceous aerosols (including soot, organic carbon, tar ball and irregularly shaped carbon). The soot and organic carbon with anthropogenic sources are dominant types in fine range samples (<1 μm). The natural source minerals and secondary synthesized sulfate/carbonate crystals were accumulated in the coarse range (>1 μm). Elemental composition of various types of particles (0.056–5.6 μm) was also analyzed by EDX. C, S, O, N, Si, Al, Fe, Ca, Na, K, Mg, Cl, F, Hg were detected in most samples. Si, Al and Ca accumulated in coarse fractions, while S and Hg mainly accumulated in fine fractions. Concentrations of 15 metallic elements in size range from 0.1 μm to 5.6 μm were divided into three groups based on their possible sources. (1) The crustal elements (Al, Mg, Fe, Mn and V), mainly present in coarse particles (>1 μm); and (2) the anthropogenic source elements (Ca, Ni, As, Cu, Pb, Cd and Hg). The concentrations of Ca and Ni increased with increasing particle size, while As, Cu, Pb, Cd and Hg showed opposite trends. As, Cu, Pb, Cd and Hg accumulated mainly in fine fraction (<1 μm). (3) The multi sources elements (Cr, Co and Se) possibly come from both natural and anthropogenic sources. High levels of heavy metals, especially Hg in nanosize particles, may pose great risk to human health.  相似文献   

19.
Semnan thermal springs with high TDS and moderate temperature are located northwest of Semnan, the northern part of Iran. The spatial and temporal variations of physicochemical characteristics of the thermal and cold springs were investigated for the recognition of origin and dominant hydrogeochemical processes. Results show that the thermal springs have the same origin, but due to different ascending flow paths and different conductive cooling mechanism, their temperatures vary. The chemical composition of thermal waters is controlled by dolomite, halite and sulfate minerals dissolution and calcite precipitation and bacterial sulfate reduction. The concentration of major and trace elements in the thermal springs does not change in wet and dry seasons notably because they are derived from old groundwater with deep circulation and high temperature. Seasonal change in the concentration of some trace elements is due to the seasonal variation of pH, Eh, temperature and dilution by shallow waters. Decreasing SO4 and carbonate saturation index and increasing Na/Cl ratios and Ca content in the dry season show dilution effect caused by the previous heavy rainfall events. The temperature of the heating reservoir based on K–Mg, chalcedony, quartz and chemical equilibrium approach was approximately estimated in the range of 60–80 °C. Hydrogeologically, a conceptual model was suggested for the thermal springs. The general groundwater flow direction is probably from the dolomite Lar Formation in Chenaran anticline toward the adjacent syncline in a confined condition, and then a thrust fault acts as a conduit and redirects the thermal water to the emerging springs at the surface.  相似文献   

20.
A total of 1785 European bottled water samples were analyzed using standard laboratory methods. The bottled water samples were purchased in 2008 at supermarkets throughout 40 European countries. The samples were analyzed for 71 chemical parameters (As, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, Br, HCO3, Cl, F, NH4+, NO2, NO3, PO43−, SO42−, SiO2, pH, and EC) by quadrupole inductively coupled emission spectroscopy (ICP-QMS, trace elements), inductively coupled plasma atomic emission spectroscopy (ICP-AES, major elements), ion chromatography (IC, anions), atomic fluorescence spectrometry (AFS, Hg), titration (alkalinity), photometric methods (NH4+), potentiometric methods (pH), and conductometric methods (specific electrical conductivity, EC). A very strict quality control procedure was followed by analysing blanks, international reference materials, an internal project standard, and duplicate analyses, as well as by analysing 23 elements by both ICP-QMS and ICP-AES. Analysis of marketed bottled water from springs, wells or boreholes, apart from the evaluation of its quality with respect to inorganic elements, it may provide a cheap alternative to obtain a first impression about groundwater chemistry at the European scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号