首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
通过对柴达木盆地东北缘大红沟剖面古近纪地层沉积特征的详细研究,识别出冲积扇相、辫状河相、湖泊三角洲相和湖泊相4类沉积相,整体表现为自下而上由粗到细、水深逐渐增大的退积序列.进一步详细的沉积亚相和微相分析、露头准层序叠置方式和水进—水退转换面的分析,在大红沟古近纪地层剖面上划分出6个三级层序和27个四级层序(准层序组),...  相似文献   

2.
笔者从冲断活动的产物———各种成因扇体(冲积扇、水下扇、扇三角洲)出发,由160口单井剖面、15条联井剖面、8个层位平面渐次展开了准噶尔西北缘前陆冲断带三叠—侏罗纪逆冲断裂活动的沉积响应研究。三叠纪扇体在乌尔禾—夏子街地区发育叠置程度最好,T1b到T3b,其由盆内向盆缘老山方向退缩迁移明显,并具T1b到T2k1由盆缘向盆内、T2k2到T3b由盆内向盆缘迁移的2个进退波动变化。侏罗纪扇体在八道湾组最为发育,总体叠置关系较差,J1b到J2t,均呈由盆内向盆缘老山退缩沉积的退覆式迁移特征。三叠纪到侏罗纪,总体为由强到弱的退覆式冲断活动及扇体迁移模式,即随主要同生控扇断裂分布由盆缘向老山方向退缩迁移,冲断活动强度由盆缘向盆地方向逐渐减弱直至停息;相应地,各期扇体平面上分布规模渐小,总体呈由盆内向盆缘老山退缩迁移的沉积响应,两者耦合性良好。各类扇体的沉积分布受不同时期同生断裂活动的严格控制,其时空叠置及迁移规律的差异是红山嘴—车排子、克拉玛依—百口泉及乌尔禾—夏子街各构造带冲断作用地域性及作用强度差异性的沉积响应。进而引入“活动性指数”的概念与方法,对前陆冲断带同生断裂的冲断活动强度进行了定量化统计分析,并根据冲断推覆事件的地层、沉积标识划分出T1b-T3b、J1b-J2x、J2t三套构造层序,识别出三叠—侏罗纪的3个逆冲推覆幕、6次逆冲推覆事件。  相似文献   

3.
鄂尔多斯盆地三叠系延长组发育多套生储盖组合,其中陇东地区是延长组主要的产油区之一。充分利用最新的三维地震资料,结合大量钻井和测井资料,针对研究区广泛发育的前积型地震连续强反射现象,开展地震地层对比划分、沉积演化及砂体展布规律研究。以湖泛期凝缩层对应的地震同相轴作为地层界面的对比标志,将研究区延长组中段划分出7个层序组,表现为震荡性湖退充填沉积特征,沉积单元呈透镜体依次向湖盆中心叠置,每个沉积单元均发育上部三角洲前缘、中部富泥斜坡和下部深水重力流的三段式沉积相组合,砂体主要分布在沉积单元的上部和下部,平面上具有明显的分带特征。本次研究成果与传统等厚地层对比方案存在明显差异,尤其在顺物源方向,单井之间的小层连通性和叠置关系差异较大,其认识更符合震荡性湖退沉积背景,对油田勘探开发更具有指导性。  相似文献   

4.
笔者从160口单井剖面、15条联井剖面及5个层位平面渐次展开了准噶尔西北缘前陆冲断带二叠纪逆冲断裂活动的沉积响应研究。各种成因扇体(冲积扇、水下扇、扇三角洲)在佳木河组和上乌尔禾组地层中最为发育,其沉积分布严格受不同时期活动的同生断裂控制。由早二叠世佳木河期至晚二叠世上乌尔禾期,扇体在克拉玛依-夏子街地区叠置程度较好,由盆缘向盆内迁移、推进明显;在车排子中拐地区叠置程度相对较差,局部略呈向盆缘老山收缩、后退趋势,表明红山嘴车排子断裂带与克拉玛依-百口泉断阶带、乌尔禾-夏子街断褶带逆冲活动的强度及地域迁移性有明显差异。二叠纪总体为一由弱到强的前展式推覆冲断及渐进式扇体迁移模式,即随同生控扇断裂由老山向盆缘的前展式推覆活动,相应地,各构造带扇体逐渐由盆缘向盆地方向发育、推进,扇体面积不断扩大,显示出明显的渐进式迁移的沉积响应,两者形成良好的耦合性。进而引入“活动性指数”的概念与方法,对前陆冲断带同生断裂的冲断活动强度进行了定量化统计分析,据二叠纪冲断推覆事件的地层、沉积标识,识别出3个逆冲推覆幕、7个逆冲推覆事件,划分出P1j-P1f、P2x—P2w、P3w三套构造层序,并指出在P1f、P2x及P2 3w各时期,由红山嘴-车排子→克拉玛依-百口泉→乌尔禾-夏子街构造带,同生断裂活动性趋于增强;在乌尔禾-夏子街断褶带,由早二叠世佳木河期到中、晚二叠世乌尔禾期,冲断推覆强度逐渐增大。  相似文献   

5.
南祁连南缘弧形逆冲推覆构造是一个具有双重叠置结构的推覆系统。原地系统主要为侏罗—白垩纪的含煤岩系和磨拉石建造,外来系统由元古界、古生界和三叠系组成。推覆体滑动的总体方向为SSW,最大推移距离在10km以上。该推覆构造形成于燕山晚期,是在地幔底辟影响下盆地内产生伸展作用和特提斯地体碰撞过程中与板内应力复合作用的结果。  相似文献   

6.
一种新的造山类型—江苏南部茅山叠覆造山   总被引:1,自引:0,他引:1  
徐学思  胡连英 《江苏地质》1996,20(4):211-216
褶皱造山,推覆造山,火山造山,断块造山等造山类型已屡人们所认识。江苏南部茅山等地存在一种新的造山类型滑覆叠置造山,简称叠覆造山,其概念是:构成原始山体的岩片沿其底部拆离面滑移,并脱离母体叠覆于异地低洼处形成新的山体,多个岩片可依次滑覆呈反序叠置。以茅山叠覆造山为例,论述了叠覆造山的特征,构造要素,形成机制及叠覆构造与推覆构造之区别  相似文献   

7.
在系统回顾传统三角洲成因模式基础上,介绍了一种发育于低可容纳空间背景条件下,由内部结构相对简单、规模相对局限的多个朵体相互叠置而成的叠覆式浅水三角洲。以现代浅湖沉积过程分析、实验模拟等为基础探讨了此类三角洲的形成过程、内部结构特征与解剖思路、连片性与连通性及沉积发育条件等。结果表明,叠覆式浅水三角洲发育过程分为2个阶段:单一朵体发育与复合朵体发育。单一朵体发育又可分为舌状向前伸展式和帚状侧向加积式,复合朵体发育则表现为进积、退积、侧积等多种叠置方式,进而以不同时期分流河道为纽带叠合成大面积的沉积体;朵体发育过程中遵循"填洼"原理,即优先沉积于可容纳空间发育的低洼处,一旦有效可容纳空间被填满,朵体或复合朵体将会迁移至其他低洼处;叠覆式浅水三角洲不具有传统三角洲以分流河道为骨架的层状结构特征,而是由不同时期三角洲朵体相互叠置而成,具有典型的"同层不同期"特征;不同时期三角洲朵体受可容纳空间与动态地貌控制而呈三维叠置,而非简单的层状叠加,使得三角洲内部呈现出立体拼合的结构特征,单一朵体是地层对比的基本单元,展布范围有限,与相邻朵体发育于不同时间单元,只能在复合朵体约束下小范围追踪。不同时期朵体之间的连通性受控于分流河道下切能力、沉积物供给沙泥比、湖平面升降周期等因素;沉积物供给充足、地形坡度低、湖平面长距离迁移造成的河道稳定性弱是此类三角洲发育的重要条件。叠覆式浅水三角洲成因模式的提出为此类发育于低可容纳空间背景下大型河流-湖泊三角洲提供了一种合理的地质成因解释模型,进一步深入分析其内部结构特征将为提高此类三角洲的勘探开发效率提供有益指导。  相似文献   

8.
大青山逆冲推覆体系含义及地质特征   总被引:10,自引:0,他引:10  
大青山逆冲推覆体系是三叠纪中后期至白垩纪漫长的脉动式的造山过程形成的一套完整的逆冲推覆体系,是由一系列由南向北逆冲推覆构造岩片相互叠置构成。它涉及了前寒武纪变质杂岩,古生代沉积地层和中生代陆相沉积地层,并伴随有印支期岩浆活动。在变形旋回上表现为多期和多阶段的脉动式,印支期表现为南向北逆冲推覆和强烈的岩浆活动,燕山期表现为南南东向北北西推覆,形成了褶皱系统和劈理系统。  相似文献   

9.
郭川  陈代钊  付勇  宋亚芳  汪远征 《地质学报》2022,96(11):3924-3942
塔里木盆地中奥陶统一间房组沉积演化和沉积层序的发育特征及其控制因素目前还存在争议。选择塔里木盆地西部良里塔格山地区一间房组为研究对象,基于沉积相和高频米级沉积旋回类型的识别及其垂向叠置样式的分析,明确一间房组的沉积演化和沉积层序的发育特征及其控制因素。研究表明:① 一间房组沉积时期,良里塔格山地区整体为一个碳酸盐岩缓坡沉积体系,主要发育10种岩相类型和2个沉积相带(潮缘—局限潮下带和开阔潮下带);② 一间房组发育两种高频米级沉积旋回,分别为潮缘—局限潮下沉积旋回和开阔潮下沉积旋回;③ 识别出2个半三级层序,层序界面主要为岩性转换面,其中一个完整的三级层序包括海侵体系域和海退体系域两部分;④ 沉积演化与层序发育的主要控制因素包括古地理格局、沉积微地貌及不同级次的相对海平面变化。其中古地理格局控制着整体的沉积相带分布,沉积微地貌决定着特定岩相(如瓶筐石礁)发育的优势部位,不同级次相对海平面变化则制约着沉积相的时空演化。  相似文献   

10.
叠覆式三角洲——一种特殊的浅水三角洲   总被引:2,自引:0,他引:2  
不同于常规三角洲以分流河道体系所形成的分流河道、河口坝、席状砂等微相为三角洲朵体的基本单元,叠覆式三角洲以内部结构简单的朵体为基本构成单元,朵体相互叠置,形成复合叠合体,进而构成三角洲骨架。单个朵体由河道扫描或扩展而成,复合朵体则是由单朵体侧向迁移或前(退)积而成。三角洲因大量朵体叠置而形成厚层状、内部结构复杂的复合砂体。不同朵体形成于不同时期,因而不存在统一的分流体系,单一沉积体具有层状特征,但不同期朵体受可容空间和地貌控制,呈三维叠置,而非简单的层状叠加,从而使得三角洲内部呈现出拼合式、立体式特点。单朵体是结构的基本单元,发育范围有限,与相邻朵体发育于不同时间单元,因而只能在复合体约束下小范围追踪。单一朵体接触关系及接触界面的渗流能力决定了油气富集和注水开发响应特征。朵体迁移、叠置造成大面积、巨厚的砂层可形成大型油气藏,而同时朵体间泥岩的不均匀分布也造就了砂体局部不连通或朵体间连通性变化,为岩性油气藏形成创造了条件,并且影响了注水开发中的注采对应性,进而影响水驱采油效果。  相似文献   

11.
The stratigraphic record of many cratonic carbonate sequences includes thick successions of stacked peritidal deposits. Representing accumulation at or near sea‐level, these deposits have provided insights into past palaeoenvironments, sea‐level and climate change. To expand understanding of carbonate peritidal systems, this study describes the geomorphology, sedimentology and stratigraphy of the tidal flats on the Crooked‐Acklins Platform, south‐east Bahamas. The Crooked Island tidal flats extend continuously for ca 18 km on the platformward flank of Crooked Island, reaching up to 2 km across. Tidal flats include four environmental zones with specific faunal and floral associations and depositional characteristics: (i) supratidal (continuous supratidal crust and pavement); (ii) upper intertidal, with the mangrove Avicennia germinans and the cyanobacteria Scytonema; (iii) lower intertidal (with the mangrove Rhizophora mangal) and (iv) non‐vegetated, heavily burrowed subtidal (submarine). These zones have gradational boundaries but follow shore‐parallel belts. Coring reveals that the thickness of this mud‐dominated sediment package generally is <2 m, with depth to Pleistocene bedrock gradually shallowing landward. The facies succession under much of the tidal flat includes a basal compacted, organic‐rich skeletal‐lithoclast lag above the bedrock contact (suggesting initial flooding). This unit grades upward into rhizoturbated skeletal sandy mud (subtidal) overlain by coarsening‐upward peloid‐foraminifera‐gastropod muddy sand (reflecting shallowing to intertidal elevations). Cores from landward positions include stacked thin indurated layers with autoclastic breccia, root tubules and fenestrae (interpreted as supratidal conditions). Collectively, the data reveal an offlapping pattern on this prograding low‐energy shoreline, and these Holocene tidal flats may represent an actualistic analogue for ancient humid progradational tidal flats. Nonetheless, their vertical facies succession is akin to that present beneath channelled belt examples, suggesting that facies successions alone may not provide unambiguous criteria for prediction of the palaeogeomorphology, lateral facies changes and heterogeneity in stratigraphic analogues.  相似文献   

12.
Subtidal, intertidal, and supratidal carbonate facies are recognized in the Upper Jurassic (Kimmeridgian)-Upper Cretaceous (Cenomanian) peritidal carbonates of the Fele area (Western Taurides, Turkey). Vertical stacking patterns of these facies are of a cyclical character; shallowing upward is the trend of the cyclicity in these carbonate facies. In-situ karstic breccias, collapse breccias, caliche (laminar calcrete), “Microcodium” accretion, and root casts are structures commonly indicative of third-order sequence boundaries. However, mud cracks, solution pores or vugs, sheet cracks, loferites, and birds-eye structures are commonly delineated by parasequence boundaries. In-situ or collapse breccias can be genetically derived from sheet cracks, mud cracks, solution pores or vugs, and birds-eye structures with increasing exposure time. The use of such sedimentary structures in the recognition of sequence boundaries is highly practical in the ancient carbonate platforms of the world, inasmuch as the sequence boundaries, as demonstrated in this study, correlate with the eustatic sea level curves.  相似文献   

13.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

14.
In the Late Cambrian, the North China Platform was a typical carbonate ramp platform. The Upper Cambrian of the northern part of the North China Platform is famous for the development of bioherm limestones and storm calcirudites and can be divided from bottom to top into the Gushan, Changshan and Fengshan formations. In this set of strata, the deep-ramp mudstone and marls and the shallow-ramp packstones and grainstones constitute many carbonate meter-scale cycles of subtidal type. More tidal-flat dolomites axe developed in the Upper Cambrian of the southern margin of the North China platform, in which limestone and dolomite beds also constitute many carbonate meter-scale cycles of the peritidal type. These cycles are marked by a variety of litho-facies successions. There are regularly vertical stacking patterns of meter-scale cycles in long-term third-order sequences, which is the key to discerning such sequences. Third-order sequence is marked by a particular sedimentary-facies succession that is the result of the environment-changing process of deepening and shoaling, which is genetically related to third-order sea level changes. Furthermore, four third-order sequences can be grouped in the Upper Cambrian of the North China Platform. The main features of these four third-order sequences in the northern part of the platform can be summarized as follows: firstly, sequence-boundaries are characterized by drowning unconformities; secondly, the sedimentary-facies succession is generally constituted by one from deep-ramp facies to shallow-ramp facies; thirdly, a succession of “CS (?) HST” (i.e., “condensed section and highstand system”) forms these four third-order sequences. The chief features for the third-order sequences in the southern part of the North China Platform comprises: more dolomites are developed in the HSTs of third-order sequences and also developed more carbonate meter-scale cycles of peritidal types; the sedimentary-facies succession of the third-order sequences is marked by “shallow ramp-tidal flat”; the sequence boundaries are characterized by exposure punctuated surfaces. According to the changes for the third-order sequences from the north to the south, a regular sequence-stratigraphic framework can be established. From cycles to sequences, the study of sequence stratigraphy from litho-facies successions to sedimentary-facies successions exposes that as follows: meter-scale cycles that are used as the basic working unit actually are litho-facies successions formed by the mechanism of a punctuated aggradational cycle, and third-order sequences that are constituted by regularly vertical stacking patterns of meter-scale cycles are marked by sedimentary-facies successions. On the basis of the changing curve of water depth at each section, the curve of the relative third-order sea level changes in the late Cambrian of the North China Platform can be integrated qualitatively from changing curve of water depth. The correlation of Late Cambrian long-term sea level changes between North China and North America demonstrates that there are not only similarities but also differences, reflecting control of long-term sea level changes both by global eustacy and by regional factors.  相似文献   

15.
陆表海台地沉积充填模式及内克拉通碳酸盐岩勘探新启示   总被引:1,自引:0,他引:1  
内克拉通陆表海盆地是古老碳酸盐建造形成的重要场所。除其顶部风化壳岩溶储层外,广泛分布的内幕非岩溶改造的白云岩勘探长期未受到足够的重视。近年来,随着深层、超深层勘探技术的进步,内幕陆表海白云岩陆续获得油气勘探新发现,但其预测难度远比镶边台地中的礁滩"移动靶"更大。为更好地揭示这类未经岩溶改造的白云岩储层的宏观发育分布规律,本文研究了鄂尔多斯盆地奥陶系马家沟期和四川盆地雷口坡期陆表海台地的高精度岩相古地理和沉积充填模式。结果表明:陆表海台地一般形成于温室期低纬度干燥气候下的稳定内克拉通盆地,与盐湖伴生的台地潮坪广泛分布是其标志性的沉积特征,微环境可进一步划分为潮上带泥云坪、上潮间带云坪、上潮间带微生物席、下潮间带席状潮缘滩、上潮下带灰云质澙湖、下潮下带膏云质澙湖;虽然内克拉通陆表海台地是一个相对静态的沉积环境,其沉积建造并非平板一块,海平面的升降变化往往会在相对平坦的陆表海内引起大幅度的相带迁移,造成潮上带、潮间带、潮下带频繁交互;相带频繁往复迁移过程中,潮间带的晶粒/颗粒/微生物白云岩受到盐湖、古隆起或潮坪岛的制约,形成大面积分布的席状富孔白云岩透镜体;陆表海沉积层序结构为典型的向上变浅序列,主要发育潮坪进积楔和潮坪岛拼嵌两种沉积充填模式,这两种模式形成的席状白云岩透镜体在层序结构和厚度都能很好地对比,通常延伸都在100km以上,甚至可跨越整个陆表海台地,是一个能够媲美台缘礁滩相的油气勘探新领域。  相似文献   

16.
In the Oulad Abbou syncline, western coastal Meseta, the Silurian deposits exhibit siliciclastic or mixed siliciclastic/carbonate tidal facies that recorded alkaline basalt flows and syn-sedimentary deformations. These facies are staked into peritidal shallowing upward sequences reflecting the evolution from an infratidal to a supratidal environment. These sequences recorded low-amplitude and high-frequency sea-level variations. The built-up of these rhythmic sequences is related to distensive tectonic that allowed the development of isolated platform from extensive siliciclastic influx. This tectonic event is well recorded in the palaeogeographic evolution of the northern Gondwana platform during the Lower Palaeozoic time. To cite this article: A. Attou, N. Hamoumi, C. R. Geoscience 336 (2004).  相似文献   

17.
Metre‐scale cycles in ancient peritidal carbonate facies have long been thought to represent the product of shallow water carbonate accumulation under orbitally controlled sea‐level oscillations. The theory remains somewhat controversial, however, and a contrasting view is that these cycles are the product of intrinsic, and perhaps random, processes. Owing to this debate, it is important to understand the conditions that do, or do not, favour the preservation of orbital forcing, and the precise stratigraphic expression of that forcing. In this work, a one‐dimensional forward model of carbonate accumulation is used to test the ability of orbitally paced sea‐level changes to reconstruct cyclicities and cycle stacking patterns observed in greenhouse peritidal carbonate successions. Importantly, the modelling specifically tests insolation‐based sea‐level curves that probably best reflect the pattern and amplitude of sea‐level change in the absence of large‐scale glacioeustasy. This study found that such sea‐level histories can generate precession and eccentricity water depth/facies cycles in models, as well as eccentricity‐modulated cycles in precession cycle thicknesses (bundles). Nevertheless, preservation of orbital forcing is highly sensitive to carbonate production rates and amplitudes of sea‐level change, and the conditions best suited to preserving orbital cycles in facies/water depth are different to those best suited to preserving eccentricity‐scale bundling. In addition, it can be demonstrated that the preservation of orbital forcing is commonly associated with both stratigraphic incompleteness (missing cycles) and complex cycle thickness distributions (for example, exponential), with corresponding implications for the use of peritidal carbonate successions to build accurate astronomical timescales.  相似文献   

18.
During the early Middle Devonian in South China, an extensive carbonate platform was broken up through extension to create a complex pattern of platforms, and interplatform basins. In Givetian and Frasnian carbonate successions, five depositional facies, including peritidal, restricted shallow subtidal, semi‐restricted subtidal, intermediate subtidal and deep subtidal facies, and 18 lithofacies units are recognized from measured sections on three isolated platforms. These deposits are arranged into metre‐scale, upward‐shallowing peritidal and subtidal cycles. Nine third‐order sequences are identified from changes in cycle stacking patterns, vertical facies changes and the stratigraphic distribution of subaerial exposure indicators. These sequences mostly consist of a lower transgressive part and an upper regressive part. Transgressive packages are dominated by thicker‐than‐average subtidal cycles, and regressive packages by thinner‐than‐average peritidal cycles. Sequence boundaries are transitional zones composed of stacked, high‐frequency, thinner‐than‐average cycles with upward‐increasing intensity of subaerial exposure, rather than individual, laterally traceable surfaces. These sequences can be further grouped into catch‐up and keep‐up sequence sets from the long‐term (second‐order) changes in accommodation and vertical facies changes. Catch‐up sequences are characterized by relatively thick cycle packages with a high percentage of intermediate to shallow subtidal facies, and even deep subtidal facies locally within some individual sequences, recording long‐term accommodation gain. Keep‐up sequences are characterized by relatively thin cycle packages with a high percentage of peritidal facies within sequences, recording long‐term accommodation loss. Correlation of long‐term accommodation changes expressed by Fischer plots reveals that during the late Givetian to early Frasnian increased accommodation loss on platforms coincided with increased accommodation gain in interplatform basins. This suggests that movement on faults resulted in the relative uplift of platforms and subsidence of interplatform basins. In the early Frasnian, extensive siliceous deposits in most interplatform basins and megabreccias at basin margins correspond to exposure disconformities on platforms.  相似文献   

19.
ANNA BREDA  NEREO PRETO 《Sedimentology》2011,58(6):1613-1647
The Travenanzes Formation is a terrestrial to shallow‐marine, siliciclastic–carbonate succession (200 m thick) that was deposited in the eastern Southern Alps during the Late Triassic. Sedimentary environments and depositional architecture have been reconstructed in the Dolomites, along a 60 km south–north transect. Facies alternations in the field suggest interfingering between alluvial‐plain, flood‐basin and shallow‐lagoon deposits, with a transition from terrestrial to marine facies belts from south to north. The terrestrial portion of the Travenanzes Formation consists of a dryland river system, characterized by multicoloured floodplain mudstones with scattered conglomeratic fluvial channels, merging downslope into small ephemeral streams and sheet‐flood sandstones, and losing their entire discharge subaerially before the shoreline. Calcic and vertic palaeosols indicate an arid/semi‐arid climate with strong seasonality and intermittent discharge. The terrestrial/marine transition shows a coastal mudflat, the flood basin, which is usually exposed, but at times is inundated by both major river floods and sea‐water storm surges. Locally coastal sabkha deposits occur. The marine portion of the Travenanzes Formation comprises carbonate tidal‐flat and shallow‐lagoon deposits, characterized by metre‐scale shallowing‐upward peritidal cycles and subordinate intercalations of dark clays from the continent. The depositional architecture of the Travenanzes Formation suggests an overall transgressive pattern organized in three carbonate–siliciclastic cycles, corresponding to transgressive–regressive sequences with internal higher‐frequency sedimentary cycles. The metre‐scale sedimentary cyclicity of the Travenanzes Formation continues without a break in sedimentation into the overlying Dolomia Principale. The onset of the Dolomia Principale epicontinental platform is marked by the exhaustion of continental sediment supply.  相似文献   

20.
Many pre‐Mesozoic records of Earth history are derived from shallow water carbonates deposited on continental shelves. While these carbonates contain geochemical proxy records of climate change, it is the stratal architecture of layered carbonate units that often is used to build age models based on the idea that periodic astronomical forcing of sea‐level controls the layering. Reliable age models are crucial to any interpretation of rates and durations of environmental change, but the physical processes that actually control this stratal architecture in shallow water carbonates are controversial. In particular, are upward‐shallowing stacks of carbonate beds bounded by flooding surfaces (‘parasequences’) truly a record of relative sea‐level change? The purpose of this study is to examine a tidal flat that is actively accumulating carbonate stratigraphy, and to determine the relative importance of tidal channel migration (poorly known, but investigated here) and Holocene sea‐level rise (well‐known) in controlling post‐glacial parasequence architecture. This work represents a field study of peritidal carbonate accumulation at Triple Goose Creek, north‐west Andros Island. By integrating surface facies maps with differential global positioning system topographic surveys, a quantitative relationship between facies and elevation is derived. Sedimentary facies are sensitive to elevation changes as small as 5 cm, and are responding to both internal (distance to nearest tidal channel) and external (sea‐level rise) controls. The surface maps also are integrated with 187 sediment cores that each span the entire Holocene succession. While flooding of the Triple Goose Creek area should have occurred by ca 4500 years ago, preservation of Holocene sediment did not begin until 1200 years ago. The tidal channels are shown to be stationary, or to migrate sluggishly at up to 6 cm per year. Therefore, while the location of tidal channels is responsible for the modern mosaic of surface facies, these facies and the channels that control them have not migrated substantially during the ca 1200 years of sediment accumulation at Triple Goose Creek. Once the region was channellized, vertical and lateral shifts in facies, such as the landward retreating shoreline, expanding mangrove ponds and seaward advancing inland algal marsh, are driven by changes in relative sea‐level and sediment supply, not migrating channels. While stratigraphic columns look different depending on the distance to the nearest tidal channel, the overall parasequence architecture everywhere at Triple Goose Creek records an upward‐shallowing trend controlled by the infilling of accommodation space generated by post‐glacial sea‐level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号