首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Damoshan deposit is a small B-F-Sn Bi exoskarn deposit and contains a distinctive mineral assemblage comprising andradite,vesuvianite,calcite,diopside,magnetite,hematite,nordenskioldine,cassiterite,varlamoffite,schenfliesite,native bismuth,eulytite,bismite and bismuthite,in which the occurrence of eulytite is the first reported in China.Textures of the mineral paragenses show that andradite,vesuvianite and diopside were the earliest phases formed during metasomatism,i.e.,the skarn forming stage.Then nordenskioldine,magnetite and native bismuth,perhaps together with eulytite,were precipitated at the stage of retrograde alteration.The minerals varlamoffite,schoenfliesite,hematite ,bismite and bismuthite were probably the product of supergene alteration.The minerals were analyzed by means of electron microprobe.The data on the ,coexisting phases and their compositons show that during the metasomatism reduced F-and Sn-rich primary mineralizing solutions reacted with highly oxidized carbonated of the Gejie Formation,producing a high Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(andradite skarn)in the outer zone of the skarn body in which andradite is extremely tin-bearing up to 5.14 wt% SnO2),In the retrograde alteration stage ,B-rich,but F-and Si-deficient mineralizing solutions replaced the tin-bearing andradite,forming an association of nordenskioldine and magnetite,No sulphides were deposited at this stage because of the oxidization ambient conditions in the andradite skarn.In the spergene oxidation zone,the nordenskioldine was dissolved into varlmoffite and calcite,the native bismuth was transformed into bismite or bismuthite ,and the magnetite was altered into hematite under the action of the CO2-rich supergene solutions.  相似文献   

2.
为探究不同类型锡矿床所反映出的自然重砂矿物组合特征,统计了云南、福建、江西、浙江、湖南、青海和广西7省共35个典型锡矿床的自然重砂情况,通过计算和分析各自然重砂矿物在所对应类型矿床中的报出频率,得出矽卡岩型、热液脉型和斑岩型3种锡矿所对应的自然重砂矿物组合。所反映出的重砂矿物组合既有相似之处,如均出现锡石+白钨矿(或黑钨矿)的矿物组合,亦反映出不相同的地方,如矽卡岩型锡矿石榴子石报出率高,斑岩型锡矿锆石报出率高等。因此,按照矿床类型建立的自然重砂矿物组合对于建立自然重砂找矿模型具有重要意义。  相似文献   

3.
An extensive complex zoned skarn is developed at the contact of a leucoadamellite intrusive at Doradilla, NW New South Wales. The skarn is a disequilibrium assemblage resulting from a progressive sequence of replacement of a carbonate precursor. Early grossular‐clinopyroxene rocks are replaced by andradite with 0.5–3.5 wt.% SnO2 clinopyroxene and quartz. Later alteration along fractures and bedding planes of the garnet‐clinopyroxene quartz assemblage has produced calcite‐malayaite (CaSn0.95Ti0.05SiO5) veins. The final replacement stage was the overprinting of the silicate phases by assemblages containing sulphides, cassiterite, magnetite, titanite, fluorite, biotite and chlorite. The tin content of garent increases with increasing andradite component suggesting replacement of Fe3+ by Sn4+. Associated clinopyroxenes contain 0.1% SnO2. The coexistence of titanite and its tin isomorph malayaite with extremely limited solid solution indicates late stage skarn temperatures of less than 400°C.  相似文献   

4.
朱艺婷  李晓峰  余勇  李祖福  吴永 《岩石学报》2021,36(7):2179-2188
松山锡矿位于滇西临沧花岗岩基的西北侧。矿体主要赋存于临沧黑云母二长花岗岩与松山组绢云石英片岩接触带矽卡岩以及花岗岩和围岩的裂隙中。由于缺乏精确的成矿年代学数据,在一定程度上限制了对矿床成因的认识,并制约了进一步的找矿勘查工作。本文首次利用LA-SF-ICP-MS微区原位U-Pb同位素测年技术对松山锡矿床矽卡岩型和电气石石英脉型矿石中的锡石矿物开展了 U-Pb年代学研究获得2件锡石样品的~(207) Pb/~(206)Pb-~(238) U/~(206) Pb谐和年龄分别为76.6±1.5Ma和79.6±3.6Ma,说明松山锡矿锡的成矿作用主要发生在晚白垩世,与临沧花岗岩主体侵位时间(三叠纪)明显不同。结合地质特征和前人年代学研究成果本文认为该地区存在明显的晚白垩世锡的成矿事件,研究区下一步的找矿工作应围绕岩体与围岩接触带,以及岩体和围岩中的断裂展开。  相似文献   

5.
It remains poorly constrained whether remobilization of Sn from granites and prograde skarns plays an essential role in forming economic (skarn-type) tin mineralization. Using both electron probe microanalysis and laser ablation–inductively coupled plasma–mass spectrometry methods, in-situ Sn contents, as well as major elements, were analyzed for numerous silicates and magnetite from fresh granite, altered granite, and skarn at the large Furong Sn deposit (530,000 t Sn @ 0.8% Sn) in the Nanling Range, South China. Hornblende and biotite in fresh granite are the main Sn-bearing phases (Sn = 44–321 ppm), while plagioclase and K-feldspar are poor in Sn (< 5 ppm). In altered granite, tin is hosted mainly by hydrothermal muscovite (299–583 ppm) replacing plagioclase, but rarely by chlorite (mostly <10 ppm) replacing hornblende and biotite. In contrast, most silicates (garnet, diopside, vesuvianite, pargasite and epidote) and magnetite from tin skarn are Sn-rich (47–44,241 ppm), except for Sn-poor phlogopite and scapolite (< 10 ppm). In particular, garnet, pargasite, and epidote reach tin concentrations in the percent range. Tin generally enters the stannous silicates and magnetite through substitutions for octahedral Alvi and Fe3+. Comparisons of Sn contents between magmatic and hydrothermal minerals in granite, prograde and retrograde minerals related to tin skarn indicate that remobilization of Sn from granite and prograde skarn is not a pre-requisite to form tin mineralization.  相似文献   

6.
Sn4+ is generally the dominant form of tin in magnetite-series granites as shown by the presence of cassiterite or its incorporation into Ti-bearing minerals such as biotite and titanite. Little is known about the behavior of tin in magnetite. The Huashan granite is an oxidized tin granite in the Nanling Range, southern China, where it contains magnetite as the dominant Fe oxide mineral. It is included in biotite as an early phase and also as interstitial grains spatially associated with ilmenite, cassiterite, Sn-rich titanite (SnO2 up to 5.9?wt.%), fluorite and apatite. This association indicates that tin enrichment occurred during the late stage of magma crystallization. Ilmenite lamellae display a trellis structure consistent with features of the “oxy-exsolution” process of Sn-bearing titanomagnetite precursor. Micro-inclusions of cassiterite (<1?μm in size) are found only within ilmenite lamellae. This suggests that magnetite with cassiterite inclusions is likely an indicator mineral of oxidized tin granites. Although rare in nature, Sn-bearing magnetite from weathered granites where concentrated in stream sediments, may serve as a strategic tracer for tin exploration in granite districts and in placer deposits, in general.  相似文献   

7.
Huashan, Guposhan and Qitianling are three similar and representative metaluminous A-type tin granites in the western Nanling Range, China. They all have a high oxidization state with magnetite as the dominant Fe–Ti oxide. This study presents an understanding of systematic mineralogy of Sn-bearing minerals (biotite, titanite, magnetite and cassiterite) in the three granites. Biotite has an annite composition and both electron-microprobe and LA-ICP-MS analyses indicate trace amounts of tin in biotite (approximately 100–20 ppm). Chloritization of biotite is accompanied by formation of Sn-rich rutile and cassiterite. Titanite has a long history of crystallization from the early-magmatic stage through the late-magmatic stage to the hydrothermal stage. Owing to its solid-solution relationship with malayaite (CaSnSiO5), titanite always contains tin to various extents. Early-magmatic titanite contains about 0.5 wt.% SnO2, while the late-magmatic titanite is markedly enriched in tin (on average 14.8 and 3.4 SnO2 in titanite from the Qitianling and Huashan granites, respectively). Magnetite grains typically display a trellis structure with ilmenite lamellae, where microinclusions of cassiterite (<1 μm in size) are present. This is likely consistent with features of the “oxy-exsolution” process of Sn-bearing titanomagnetite precursor. Cassiterite may be observed as late-magmatic phase, but most commonly appears as an alteration product of other primary minerals. All tin-bearing minerals in the three granites record a complete process of tin mineralization in granite. The features of tin in primary biotite, titanite and magnetite reflect an initial enrichment during the early stage of magmatic crystallization of the Huashan, Guposhan and Qitianling granites. Association of interstitial Sn-titanite and cassiterite suggests further tin enrichment related to fractional crystallization of granitic magmas. Fluids and alteration of primary minerals play an important role in the leaching, concentration and transportation of Sn during hydrothermal processes, which favors vein-type Sn mineralization.  相似文献   

8.
湖南香花岭矽卡岩型锡矿床是南岭地区一个重要的锡多金属矿床,发育有丰富的含锡矿物。在野外和显微镜下观察 基础上,文章利用电子探针技术系统分析了香花岭矽卡岩中含锡矿物的矿物学特征,探讨了锡的成矿过程、成矿流体以及 锡的来源。研究结果表明,香花岭矽卡岩中含锡矿物由锡矿物(锡石、尼日利亚石、孟宪民石等)和富锡矿物(韭闪石、 尖晶石、葡萄石、塔菲石等)组成。锡的成矿有三个阶段:矽卡岩早阶段,Sn进入尖晶石、韭闪石等造岩矿物中,形成富 锡矿物;氧化物阶段,锡矿物如锡石、尼日利亚石、孟宪民石等逐渐晶出;晚期热液阶段,早期含锡矿物热液蚀变原位析 出锡石,或富Sn热液交代早期矿物形成了富锡环边。矽卡岩中成矿流体富含F,CO2,Li等挥发组分,控制了Sn的富集、迁 移、结晶等过程。香花岭矽卡岩中Sn根本上来源于地层,锡的成矿过程反映了Sn在地壳中的地球化学循环过程。  相似文献   

9.
《International Geology Review》2012,54(10):1532-1542
The paper shows differences in character of tin mineralization in skarns which develop after dolomites (magnesial) and limestones (limy). Cassiterite is not deposited in the former, since because of the relatively high alkalinity and the high activity of boron (B203), tin preferentially enters the crystal structures of Sn-borates such as hulseite, ludwigite, and nordenskioldine rather than cassiterite. In limy skarns, tin is largely dissipated in garnets (up to 0.62%), axinites (up to 0.2%), and other minerals. It is only at the end of the appropriate stage, at relatively high acidity, that tin is deposited as cassiterite in magnetitic and amphibole-axinitic skarns. The latter are very favorable for development of economic ore bodies. Conclusions are made to the effect that a) tin is present in the postmagmatic solutions during each of the three stages, and also b) concerning optimum conditions for deposition of tin minerals in any stage (depending on magnitudes of Eh and pH environments and B2O3 and S2- activities. -- Author.  相似文献   

10.
柿竹园矿床大理岩型锡矿石工艺矿物学研究   总被引:1,自引:0,他引:1  
谭延松 《湖南地质》1991,10(3):223-228
大理岩型锡矿石产于燕山早、中期千里山花岗岩与中、上泥盆统灰岩的外接触带。矿石呈细脉、网脉浸染状,锡矿物有:锡石、黄锡矿,富钛尼日利亚石、尼日利亚石和木锡矿,脉石矿物绿帘石、石榴石、电气石、萤石、方解石及磁黄铁矿等亦含锡,锡主要呈锡的浊立矿物存在,占总锡量的89.78%,其中锡石锡占总锡量的80.01%,其次有呈类质同象形式存在的锡,在绿帘石、石榴石、电气石等矿物中以Sn~(4+)取代Fe~(3+),这类锡占总量的8.33%。工艺矿物学研究表明,该类锡矿石以“贫”、“细”、“杂”为特征。锡不仅十分分散,而且品位偏低,矿石矿物组合及镶嵌关系复杂、相互包裹,紧密连生;锡矿物粒度微细,粒径一般为0.2~0.01mm,部分为<0.0l~0.002mm,是一种难选的锡矿石类型。通过锡的回收试验,采用选冶联合工艺流程,预测锡的最佳回收率可达50%以上。  相似文献   

11.
江西永平铜矿矽卡岩矿物特征及其地质意义   总被引:4,自引:3,他引:1  
田明君  李永刚  万浩章  张宇  高婷婷 《岩石学报》2014,30(12):3741-3758
永平铜矿含矿岩石主要为绿帘石透辉石石榴石矽卡岩,这种岩石类型是与斑岩体有关的矽卡岩铜矿的典型赋矿岩石。通过对这一主要赋矿矽卡岩的研究,我们发现石榴石生长分为两个阶段:(1)早期石榴石:主要分布在石榴石颗粒核部,XAdr=1.0,主要以钙铁榴石为主,说明早期流体中可能含有较多的铁,是在较氧化条件下形成的;(2)晚期石榴石,沿石榴石裂隙重新成核或者在靠近流体通道的早期石榴石表面生长,出现震荡环带,XAdr=0.46~0.99,为钙铁-钙铝石榴石系列。石榴石发生变化的期间也形成新的矿物,如绿帘石、萤石、方解石和石英等。共存石榴石和绿帘石矿物中存在Fe3+-Al3+之间的替代,说明流体的氧逸度、组分浓度或aFe3+/aAl3+可能发生了变化。金属矿物也可能是在这一阶段形成的。永平铜矿矽卡岩从接触带到大理岩空间上有分带现象。从岩体到围岩的变化趋势为:石榴石含量减少,颜色存在红棕色-棕色-棕绿色-黄绿色-浅黄色的变化趋势;矿石品位降低,这与石榴石中Al2O3含量的变化较一致。我们认为这种变化是含矿热液对早期矽卡岩进行再交代改造的结果,表现为石榴石和绿帘石中Fe3+-Al3+含量的变化,并将Cu等金属沉淀下来。根据矽卡岩矿物的这些特征,在矿床勘探时,可依据棕色石榴石来追踪主矿体的位置。  相似文献   

12.
安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律   总被引:1,自引:0,他引:1  
阎磊  范裕  刘一男 《岩石学报》2021,37(9):2778-2790
中国东部的长江中下游、莱芜、邯邢和临汾等矿集区中发育大量的矽卡岩型铁矿床,其中普遍伴生钴,部分矿床估算伴生钴资源量大于1万t,达到中型钴矿床的规模。已有研究表明,中国东部富钴矽卡岩型铁矿床的成矿时代相同,成矿特征相似,均为中国东部130Ma大规模成矿作用的产物,反映较大规模的铁钴成矿作用受统一的动力学背景控制。钴与其他伴生组分一样,其工业价值主要不取决于矿石中钴的含量,而取决于钴的赋存状态,因此开展矽卡岩型铁矿床中钴的赋存状态和分布规律研究具有重要的理论和实践意义。龙桥矽卡岩型铁矿床位于长江中下游成矿带,是目前发现的成矿带内伴生钴含量最高的矿床。矿床主矿体长1000m,成矿岩体位于矿体中部,黄铁矿分布范围广,距离岩体中心不同距离均有分布,是研究矽卡岩型铁矿床中钴赋存状态和空间分布规律的理想对象。本次研究在龙桥铁矿床勘探巷道-370m平面自西向东采集了9件含黄铁矿样品,黄铁矿主要呈浸染状-细脉状交代磁铁矿。研究表明,龙桥铁矿床中钴主要赋存在黄铁矿和磁铁矿中,其次为独立钴矿物(主要为辉砷钴矿)。黄铁矿的LA-ICP-MS微区微量元素分析结果表明,龙桥黄铁矿中Co(0.019×10~(-6)~5639×10~(-6))、Ni(0.025×10~(-6)~5798×10~(-6))和As(0.46×10~(-6)~14526×10~(-6))的含量均具有较大的变化范围,黄铁矿总体上具有边缘富钴、核部贫钴的特征,黄铁矿边部的钴含量是核部的100~1000倍。通过对LA-ICP-MS测试数据以及时间分辨率剖面的逐一对比,推测Co主要以类质同象形式替代Fe进入黄铁矿晶格。由于钴在黄铁矿中分布极不均匀,不同空间位置采集的黄铁矿样品中Co含量平均值和变化范围没有明显规律。本文通过类比,提出中国东部矽卡岩型铁矿床中钴矿物可能是普遍存在的,但以前受限于分析测试手段未能发现;如何在选矿过程中分离富集钴矿物和富钴黄铁矿,是矽卡岩型铁矿床硫精粉中钴回收利用的关键。  相似文献   

13.
大东山锡矿田矿化类型复杂,其中矽卡岩型锡矿规模大,可分含锡矽卡岩型和硫化物矽卡岩型。岩体区有脉状和面状云英岩产出,前者多具锡矿化,后者具钨矿化。燕山第四期花岗岩是锡(钨)成矿母岩,含SiO274.96%~75.28%,K2O+Na2O7.37%~8.54%,K2O>Na2O,与南岭地区钨锡成矿岩体具有相似的岩石化学特征。锡矿成因类型可划分为接触交代型、侵入岩浆热液型和风化矿床。根据成矿地质条件,认为在接触带寻找硫化物矽卡岩、硫化物型锡矿有较大前景,而在岩体区具有寻找云英岩型钨矿的潜力。  相似文献   

14.
The Mössbauer spectra of 119Sn and 57Fe in three natural and a synthetic garnet were studied between 20 and 300 K. These spectra reveal the presence of octahedral Sn4+ as well as octahedral Fe3+ and Fe2+. Sn2+ could not be detected. On the basis of these results the following cation substitution can be derived for the tin-bearing Silicate garnets of this study: Sn4+ (oct)+Fe2+ (oct) ? 2 Fe3+ (oct).  相似文献   

15.
Extraction of lattice-bound tin from calc-silicate minerals in the determination of tin in skarn rocks by NH4I volatilisation is reported. This analytical technique has previously been regarded as specific for cassiterite and stannite. Although the NH4I volatilisation reaction does not decompose calc-silicate minerals there is an increase in the yield of NH4I-volatilised tin when the volatilisation temperature is raised above 500°C. The temperature effect is only observed for whole-rock samples and the type of behaviour appears related to the mineralogy of the rock. For instance, magnetite-bearing rocks have a different temperature yield curve to pyrrhotite-bearing rocks. When concentrates of single minerals are reacted with NH4I this temperature dependence is not observed, although there is an increase in tin yield with decreasing grainsize.  相似文献   

16.
The occurrence of fluorite deposits in Japan is limited in the provinces characterized by tin and tungsten mineralization within Southwest Japan. The deposits were formed near acidic igneous rocks of Cretaceous to Tertiary age. The ores in limestone are generally associated with skarn and metallic ore minerals such as cassiterite, scheelite and chalcopyrite. Granitic rocks in the provinces are the ilmenite-series (Ishihara, 1977) having enhanced fluorine contents and high initial strontium ratios. A reducing condition of the ilmenite-series granitic magma may have been more favorable for the concentration of fluorine in the residual magma because of the crystallization of relatively Fe-rich mafic minerals. Presence of thick crust bearing carbonaceous matter at the site of magmatism could have involved in the enrichment of fluorine as well as the reducing condition.  相似文献   

17.
矽卡岩锡矿石中锡的赋存状态与锡物相   总被引:4,自引:0,他引:4  
锡矿物约有六十种,含锡矿物约有二十种。胶态锡是化学物相的概念,是指能溶于1∶3的硫酸中的各类矿物中的锡。它不是某一矿物物相。木锡石、胶状锡石均为锡石的一种,水锡石则是研究得不很清楚的一种矿物。硅酸盐矿物和磁铁矿中都存在类质同象态锡。根据锡矿物和含锡矿物的特性,将矽卡岩锡矿石中的锡分成氧化物相、硫化物相、水锡石相、硅酸锡相四个化学物相,它们各有相对应的矿物,新的化学物相方法利于指导选冶生产。  相似文献   

18.
湖南骑田岭芙蓉锡多金属矿田锡的赋存状态及迁移形式   总被引:1,自引:0,他引:1  
芙蓉矿田锡矿床按成因可分为构造蚀变带-矽卡岩复合型、构造蚀变带型、蚀变岩体型、矽卡岩型、脉状云英岩型等五种类型。各类型矿体中锡主要以锡石锡的形式出现,其分布率由92.17~97.77%,硫化锡、胶态锡、硅酸锡的分布率<8%。锡元素在钠长石化成矿作用阶段,很可能是以氧的络阴离子SnO33-、氢氧络阴离子〔Sn(OH)6〕2-的形式迁移;在云英岩化成矿作用阶段,主要以氟的络合物,如Na2SnF6,Na2〔Sn(OH、F)6,〕SnF4,K2SnF6等形式搬运;到了绿泥石化锡石硫化物阶段,锡又以硫化锡酸盐、硫化物(Na2SnS3,SnS2,SnS)和氯的络合物(Na2SnC l6)、氟的络合物等形式进行迁移和搬运。  相似文献   

19.
Metacarbonate rocks (including marble and skarn deposits) at Bahrah area are confined to a Precambrian island-arc suite made up mostly of massive basalts and volcaniclastics aligned in a NE-trending belt. The marbles are either pure (almost made up of calcite) or contain considerable amounts of tremolite, actinolite, epidote, and diopside. Garnet-bearing rocks at Bahrah area are classified into garnetiferous marble and skarn calc-silicate assemblages that are described here for the first time. The calc-silicates become more abundant when the marble becomes interbedded with foliated metabasalt. Such contact is delineated by an epidote zone of variable thickness. Microscopically, the skarns are enriched in Ca-bearing minerals such as grossular garnet, epidote, titanite, diopside, and augitic salite. There are evidence that calc-silicate skarns were formed due to a thermal effect of a concealed underground shallow granitic intrusion. The basaltic rocks furnished Mg2+, Fe2+, Ti4+, and Al3+ that were first concentrated in the epidote zone. This was followed by pervasive replacement of epidote by large idiomorphic garnet (grossularite) that attains up to ~1.5 cm wide. It is evident that diopside is earlier than garnet with no replacement fabrics between the two minerals. Two types of titanite (sphene) can be distinguished: The first is secondary in the metabasalt host where titanite develops after titanomagnetite during regional metamorphism (i.e., metamorphic). On the other hand, the second type of titanite is found in the garnet-bearing calc-silicate skarn where it is typically euhedral with no link to any opaque phase and it is believed to be formed due to the event of superimposed thermal metamorphism (i.e., metasomatic). There are several evidence of the thermal metamorphic effect such as distinct granoblastic and annealing textures and K-metasomatism and formation of phlogopite at the expense of tremolite in the marble, in addition to poikiloblastic hornblende in the metabasalt host with distinct recrystallization. Also, there are some evidence of shearing such as brecciation along microshear planes, microfolding, introduction of fine euhedral pyrite, and presence of injected silica postdating crystallization of garnet in the calc-silicates.  相似文献   

20.
Orthorhombic magnesium-iron ludwigite-vonsenite forms a continuous isomorphic series Mg2Fe3+[BO3]O2-Fe 2 2+ Fe[BO3]O2; its composition at the magnesioskarn and other deposits varies from magnesian to ferriferous members. In addition, they demonstrate isovalent substitution of Mn for Mg (in pinakiolite, blatterite, and others) and practically complete substitution of Ni for Mg (in bonaccordite). Ferric iron in the borates is substituted by isovalent Al and Cr. The incorporation of Ti, Sn, Sb, and V via heterovalent substitution has been studied in less detail. Our research revealed new manifestations of Ti-and Sn-bearing borates. They are magnesioludwigite and azoproite with variable Ti content, as well as by Sn-bearing aluminian borates formed via the 2Fe3+ → (Ti4+ + Mg)6+ and/or (Sn4+ + Mg)6+ substitution. The incorporation of pentavalent elements according to the scheme 3Fe3+ → (Sb5+ + 2Mg)9+ or (V5+ + 2Mg)9+ is not excluded. The highest Ti borates were found in the marbles and calciphyres of the Tazheran deposit in the Baikal region and Nalednoe, Dokuchan, and Titovskoe deposits in Yakutia, where azoproites contain more than 50 and even higher 75 mol % of the Mg2(TiMg)0.5[BO3]O2 end member. Aluminum magnesioludwigites from Yakutia and Chukotka simultaneously contain tin and titanium. Mount Brooks, Alaska, contains tin-bearing azoproite or its tin-bearing varieties. New data are reported on Sb-and V-bearing orthoborates. Calciphyres of Alaska contain monoclinic magnesiohulsite (Mg,Fe)2(SnMg) 0.5 6+ [BO3]O2, which is replaced by schoenfliesite MgSn(OH)6. The studied borate occurrences belong to hypabyssal magnesian skarns of the periclase and monticellite metasomatic PT facies at contacts of dolomites with granitoid intrusions of increasing alkalinity or leucocratic granites. Their formation was related to interaction between disequilibrium kotoite and early oxides and spinellides of various compositions, on the one hand, and, on the other hand, to the influx of Ti-and Sn-bearing hydrothermal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号