首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 784 毫秒
1.
在缺水地区开展找水水文地质勘查工作,如何提高成井供水效率,科学的找水方法至关重要。笔者介绍近10年来在我国西部地区300多个缺水村镇找水水文地质勘查实践中,总结出"逐步逼近式"找水方法。主要包括利用前人调查成果通过预研究确定找水方向、应用遥感解译方法圈定找水靶区、辅以简易快速物探方法的中比例尺地面调查确定富水地段、详细地面调查与物探组合技术结合优化确定钻探孔位、不同含水层选择相应钻探方法和成井工艺5个步骤。以及针对不同找水区在遥感数据源选择、简易快速物探方法应用与多方法有效组合探测的技术要点。  相似文献   

2.
The geospatial mapping of groundwater prospective zones is essential to support the needs of local inhabitants and agricultural activities in arid regions such as El-Qaà area, Sinai Peninsula, Egypt. The study aims to locate new wells that can serve to cope with water scarcity. The integration of remote sensing, geographic information systems (GIS) and geophysical techniques is a breakthrough for groundwater prospecting. Based on these techniques, several factors contributing to groundwater potential in El-Qaà Plain were determined. Geophysical data were supported by information derived from a digital elevation model, and from geologic, geomorphologic and hydrologic data, to reveal the promising sites. All the spatial data that represent the contributing factors were integrated and analyzed in a GIS framework to develop a groundwater prospective model. An appropriate weightage was specified to each factor based on its relative contribution towards groundwater potential, and the resulting map delineates the study area into five classes, from very poor to very good potential. The very good potential zones are located in the Quaternary deposits, with flat to gentle topography, dense lineaments and structurally controlled drainage channels. The groundwater potential map was tested against the distribution of groundwater wells and cultivated land. The integrated methodology provides a powerful tool to design a suitable groundwater management plan in arid regions.  相似文献   

3.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.An erratum to this article can be found at  相似文献   

4.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

5.
An integrated approach using hydrogeochemical analysis, remote sensing, GIS, and field data was employed to characterize the groundwater resources in southern Wadi Qena, Egypt. Various thematic maps showing topography, lineaments, wadi deposits, slope, and stream networks were combined through GIS analysis to discriminate groundwater potential zones on the valley floor. The resulting map classifies the area into five groups of groundwater potentiality from very high to very low zones, supported by the groundwater level, well locations, and by the results of previous geophysical studies. Thirty-seven groundwater well data were tested from the Quaternary and Nubian Sandstone aquifers and analyzed for physio-chemical parameters. Results of hydrochemical analysis show that water quality varies widely through the aquifers, and groundwater in the Quaternary aquifer shows the highest salinity values and a predominance of Na and Cl in water chemical facies. Overlay GIS maps of alkalinity (SAR and RSC) and salinity hazards (EC and Cl) of the Quaternary aquifer were prepared. The resulting maps show that samples do not present an alkalinity hazard in most areas but are potentially salinity hazard. Therefore, the water is fit for agricultural use with certain restrictions, but is not suitable for direct human consumption because it is either very hard or too saline.  相似文献   

6.
The increasing demand for freshwater has necessitated the exploration for new sources of groundwater, particularly in hard rock terrain, where groundwater is a vital source of freshwater. A fast, cost effective, and economical way of exploration is to study and analyze geophysical resistivity survey data. The present study area Omalur taluk, Salem District, Tamil Nadu, India, is overlain by Archaean crystalline metamorphic complex. The study area is a characteristic region of unconfined aquifer system. The potential for occurrence of groundwater in the study areas was classified as very good, good, moderate, and poor by interpreting the subsurface geophysical investigations, namely vertical electrical soundings, were carried out to delineate potential water-bearing zones. The studies reveal that the groundwater potential of shallow aquifers is due to weathered zone very low resistivity and very high thickness and the potential of deeper aquifers is determined by fracture zone very low resistivity and very high thickness area. By using conventional GIS method, the spatial distribution maps for different layer (top soil, weathered zone, first fracture zone, and second fracture zone) thicknesses were prepared. The geoelectrical approach was successfully applied in the study area and can be therefore easily adopted for similar environments.  相似文献   

7.
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest–southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.  相似文献   

8.
This paper attempts an overview of the application of remote sensing to groundwater studies. Its objective is to define the role of the geological features in the underground hydrodynamic in the aquifer system of the Chott El Gharbi Basin (Algerian western high plains) and identify a link between the fracturing and the meteoric water supply of this deep aquifer. The methodology followed consists to study the fracturing map of studied area which is obtained after Landsat 7 ETM+ processing images. It is based on structural lineaments mapping. The obtained map has been validated by geophysical results and geological map. Statistical analysis of the lineaments network shows the presence of about 537 lineaments divided into four families oriented according to the following directions NE-SW, NW-SE, N-S, and E-W. The lineament analysis of the studied basin provides important information on subsurface fractures that may control the circulation and storage of groundwater. These fractures have an undeniable hydrogeological interest because of their size, a priori favorable for the aquifers recharge in the region. The probable link between the Chott El Gharbi implementation and the presence of mega fractures which some of them correspond actually to Wadis is confirmed. The correlation between the productivity of high debit drillings and the closest lineament confirms that these lineaments are surface traces of regional discontinuities and act as main groundwater flow paths.  相似文献   

9.
The groundwater is the most precious resources around the world and is shrinking day by day. In connection, there is a need for demarcation of potential ground-water zone. The geographical information system (GIS) and remote sensing techniques have become important tools to locate ground-water potential zones. This research has been carried out to identify groundwater potential zone in Ariyalur of south India with help of GIS and remote sensing techniques. To identify the groundwater potential zone used by different thematic layers of geology, geomorphology, drainage, drainage density, lineaments, lineaments density, soil, rainfall, and slope with inverse distance weightage (IDW) methods. From the overall result the potential zone of groundwater in the study area classified into five classes named as very good (13.34 %), good (51.52 %), moderate (31.48 %), poor (2.82 %) and very poor (0.82 %). This study suggested that, very good potential zone of groundwater occur in patches in northern and central parts of Jayamkondam and Palur regions in Ariyalur district. The result exhibited that inverse distance weightage method offers an effective tool for interpreting groundwater potential zones for suitable development and management of groundwater resources in different hydro-geological environments.  相似文献   

10.
在遥感影像中,一些断层和断裂受侵蚀作用会显现出线形特征,即线性构造。本文对个旧矿区高松矿田区域遥感影像经降噪处理后采用线段追踪法(STA:Segment Tracing Algorithm)提取线性构造并进行线素连接,连接后的影像进行解译并做数据提取,最终将提取出的对比数据与实测断裂数据进行再对比和相关性分析,分析结果表明:断裂长度和走向的Pearson相关系数分别为0.67和0.987,双尾显著性值分别为0.048和0,说明线段追踪法提取的断层长度和走向与实测数据相关性较高,可以较好地解译出个旧矿区断裂的分布情况;同时,还可以看出部分大断裂交汇处的小断裂发育良好,可为圈定预测成矿靶区提供参考。但是,矿区影像东北区的线性构造分布较少,个松断裂的长度连贯性和芦塘坝断裂的走向都没有得到很好的解译,这可能与图像降噪不完善和线性构造提取中的程序参数设定不准确以及线素连接过程中线素之间的联系和转折过大有关,这些问题有待于在下一步的工作中逐步完善。  相似文献   

11.
Identifying a good site for groundwater exploitation in hard-rock terrains is a challenging task. In Sinai, Egypt, groundwater is the only source of water for local inhabitants. Interpretation of satellite data for delineation of lithological units and weathered zones, and for mapping of lineament density and their trends, provides a valuable aid for the location of groundwater promising areas. Complex deformational histories of the wide range of lithological formations add to the difficulty. Groundwater prospect mapping is a systematic approach that considers the major controlling factors which influence the aquifer and quality of groundwater. The presented study aims to delineate, identify, model and map groundwater potential zones in arid South Sinai using remote sensing data and a geographic information system (GIS) to prepare various hydromorphogeological thematic maps such as maps of slope, drainage density, lithology, landforms, structural lineaments, rainfall intensity and plan curvature. The controlling-factor thematic maps are each allocated a fixed score and weight, computed by using a linear equation approach. Furthermore, each weighted thematic map is statistically computed to yield a groundwater potential zone map of the study area. The groundwater potential zones thus obtained were divided into five categories (very poor, poor, moderate, good and very good) and were validated using the relation between the zone and the spatial distribution of productive wells and of previous geophysical investigations from a literature review. The results show the groundwater potential zones in the study area, and create awareness for better planning and management of groundwater resources.  相似文献   

12.
This paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.  相似文献   

13.
Various hydrological, geological and geomorphological factors play a major role in the occurrence and movement of groundwater in different terrains. With advances in space technology and the advent of powerful personal computers, techniques for the assessment of groundwater potential have evolved, of which remote sensing (RS) and geographic information systems (GIS) are of great significance. The application of these methods is comprehensively reviewed with respect to the exploration and assessment of groundwater potential in consolidated and unconsolidated formations in semi-arid regions, and specifically in India. The process of such assessment includes the collection of remotely sensed data from suitable sensors and the selection of thematic maps on rainfall, geology, lithology, geomorphology, soil, land use/land cover, drainage patterns, slope and lineaments. The data are handled according to their significance with the assignment of appropriate weights and integrated into a sophisticated GIS environment. The requisite remote sensing and GIS data, in conjunction with necessary field investigations, help to identify the groundwater potential zones effectively.  相似文献   

14.
Geophysical and hydrogeological investigations have been carried out around Sawmills in Zimbabwe, Africa. The investigations are components of a larger investigation to assess the groundwater potential of the Karoo sedimentary basin with regards to supplying water to Bulawayo City. The Sawmills area was selected due to the availability of borehole logs indicating favourable stratigraphy for groundwater availability and due to the high yields from the aquifers measured from these boreholes. Data collected using two geophysical methods are presented here: transient electromagnetic (TEM) and continuous vertical electrical sounding (CVES) data. The data have also been processed using laterally constrained inversion (LCI). Because the CVES provides greater detail in the shallow subsurface, whereas TEM is more effective at depth, a more accurate image of the entire subsurface profile is provided based on using both methods. The results suggest that LCI of CVES and TEM data, in the subsurface at the required depths at Sawmills, is able to provide a substantially more accurate image of the subsurface than either method alone. The hydrogeological interpretation of the geophysical data is valuable for determining the depth to and thickness of the potential aquifer horizon(s) and for identifying the position of potential recharge zones.  相似文献   

15.
Shortage of water required for drinking and agricultural uses is a subject with a vital importance in most arid and semi-arid regions. The area of this study is one of the semi-arid regions located in southwest of Urmieh lake, northwest of Iran, between N 37°00′, 37°15′ latitude and E 45°05′, 45°30′ longitude which is composed of Permian dolomitic limestone, limestone, and post-Jurassic granite with a very low primary porosity/permeability character. In order to delineate groundwater potential zones in this area, the study focused on identifying secondary porosity/permeability indicators such as lineaments, vegetation cover, lithology, drainage pattern, drainage density, etc. In this regard, a remote sensing and geographic information system-based methodology was selected. Landsat ETM, IRS (pan), SPOT data, digital elevation model, and digital image processing techniques such as filtering, false color composite, principal component analysis, band rationing and classification have been applied to reach the purposes. Information layers extracted for analysis and interpretation stage were then integrated with other data and modeled through the use of existing geographic information system (GIS) software and their related analytical functions. Finally, based on determined ground water favorability index for different sub zones, layers, weighting, and overlapping, a ground water potential index (GWPI) was defined which respectively was utilized to groundwater potential zoning and preparation of GWPI map of the region. Within the six different sub zones defined, two sub zones labeled with high and very good potential areas were highly recommended for further development and exploration purposes. Geophysical investigations in target areas confirm the labeled subzones. Based on the obtained results of the study, it can be concluded that remote sensing data are very useful tool to extract information of groundwater exploration. Also, application of geographic information systems to find target areas for groundwater exploration are effective to save time and cost.  相似文献   

16.
复杂条件下地下水磁共振探测与灾害水源探查研究进展   总被引:4,自引:0,他引:4  
磁共振地下水探测是一种直接非侵害性探测地下水的地球物理新方法,与传统地球物理探测地下水方法相比,具有高分辨力、高效率、信息量丰富和解唯一等优点。近年来地下水磁共振探测技术发展迅速,不仅用于缺水地区的地下水勘查,还在地下灾害水源(由于地下水引起的灾害如堤坝渗漏、隧道/矿井水害、滑坡、海水入侵等)的探测预警中进行了探索性研究。综述了复杂条件下地下水磁共振探测技术的研究现状,包括强电磁干扰环境的自适应噪声压制、地下小水体的2D/3D磁共振探测、复杂条件的数据处理与反演、针对喀斯特地貌等地质环境的地下水磁共振与瞬变电磁联合探测研究成果,简要介绍了磁共振技术用于滑坡、海水入侵和隧道涌水等灾害水源探查的探索性研究示例,展望了地下水磁共振探测技术的未来发展趋势。  相似文献   

17.
Multiple geographic information system (GIS) datasets, including joint orientations from nine bedrock outcrops, inferred faults, topographic lineaments, geophysical data (e.g. regional gravity, magnetic and stress field), 290 pre-gas-drilling groundwater samples (Cl–Br data) and Appalachian Basin brine (ABB) Cl–Br data, have been integrated to assess pre-gas-drilling salinization sources throughout Susquehanna County, Pennsylvania (USA), a focus area of Marcellus Shale gas development. ABB has migrated naturally and preferentially to shallow aquifers along an inferred normal fault and certain topographic lineaments generally trending NNE–SSW, sub-parallel with the maximum regional horizontal compressive stress field (orientated NE–SW). Gravity and magnetic data provide supporting evidence for the inferred faults and for structural control of the topographic lineaments with dominant ABB shallow groundwater signatures. Significant permeability at depth, imparted by the geologic structures and their orientation to the regional stress field, likely facilitates vertical migration of ABB fluids from depth. ABB is known to currently exist within Ordovician through Devonian stratigraphic units, but likely originates from Upper Silurian strata, suggesting significant migration through geologic time, both vertically and laterally. The natural presence of ABB-impacted shallow groundwater has important implications for differentiating gas-drilling-derived brine contamination, in addition to exposing potential vertical migration pathways for gas-drilling impacts.  相似文献   

18.
The remotely sensed data provides synoptic viewing and repetitive coverage for thematic mapping of natural resources. In the present study hydrogeomorphological mapping has been carried out in Kakund watershed, Eastern Rajasthan for delineating groundwater potential zones. IRS-1D LISS III Geocoded FCC data in conjunction with Survey of India toposheet (1:50000 scale) and field inputs were used for thematic mapping. Geomorphic units identified through visual interpretation of FCC include: alluvial plain, plateau, valley fills, intermontane valleys, burried pediment, residual hills, and linear ridges. In addition, lineaments were mapped since they act as conduit for groundwater recharge. Majority of the lineaments trends NE-SW and a few along NW-SE directions and are confined to the southern and southeastern parts of the watershed. Based on hydrogeomorphological, geological and lineament mapping the Kakund watershed has qualitatively been categorized into four groundwater potential zones, viz. good to very good, moderate to good, poor to moderate and very poor to poor. The study reveals that only 10.97% of the area has good to very good, 35.41% area with moderate to good, 49.04 % of the area has poor to moderatel, while remaining 4.57% has poor to very poor groundwater potential.  相似文献   

19.
遥感技术成矿探测的关键在于成矿构造及蚀变矿物信息的提取,以ETM+遥感影像为数据源,结合相关地质资料通过人工目视解译建立构造解译标志,对渝东南地区线性构造解译与环形构造解译,并分析了区内蚀变矿物的波谱特征,针对遥感影像,利用阈值分割、主成分变换及掩膜分析等手段提取了研究区的羟基蚀变信息和铁染蚀变信息。最后结合区内物化探等综合异常信息圈定了6个成矿预测远景区。  相似文献   

20.
Remote sensing data can be integrated with analyses of topography, structural geology, hydrogeology and geophysics. The integration gives premises for the delineation of zones of potential groundwater resources in strongly fractured and karstified deep aquifers in the uplifted Meo Vac Highland, northern Vietnam. Remote sensing analysis outlines geological faults with hydrogeological significance. These faults are combined with a derived lineament density map, interpreted analysis of surface flow direction and existing hydrogeological data, resulting in indications of groundwater flow direction. An analysis of the SPOT 5 band ratio 4/1, together with indications of surface-flow direction in low terrains, results in a determination of underground cavern passages. The delineated zones of potential groundwater resources are verified by detailed hydrogeological field surveys and geophysical measurements. Remote sensing analysis is shown to effectively contribute to the investigation of groundwater resources for a hydrogeologically complex area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号