首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of sedimentological analysis of two cores taken at Chatillon, Lake Le Bourget (northern French Pre‐Alps), and well dated by radiocarbon dates in addition to tree ring dates obtained from an archaeological layer, this paper presents a high‐resolution lake‐level record for the period 4500–3500 cal. a BP. The collected data provide evidence of a complex palaeohydrological (climatic) oscillation spanning the ca. 4300–3850 cal. BP time interval, with major lake‐level maxima at ca. 4200 and 4050–3850 cal. a BP separated by a lowering episode around 4100 cal. a BP. The lake‐level highstands observed at Chatillon between 4300 and 3850 cal. BP appear to be synchronous with (i) a major flooding period recorded in deep cores from the large lakes Le Bourget and Bodensee, and (ii) glacier advance and tree line decline in the Alps. Such wetter and cooler climatic conditions in west‐central Europe around 4000 cal. a BP may have been a nonlinear response to decrease and seasonal changes in insolation. They may also provide a possible explanation for the general abandonment of prehistoric lake dwellings north of the Alps between 4360 and 3750 cal. a BP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Many Northern Hemisphere paleoclimatic records, including ice cores, speleothems, lake sediments, ocean cores and glacier chronologies, indicate an abrupt cooling event about 8200 cal yr BP. A new well-dated series of sediment cores taken from Brown's Lake, a kettle in Northeast Ohio, shows two closely spaced intervals of loess deposition during this time period. The source of loess is uncertain; however, it is likely from an abandoned drainage and former glacial lake basin located to the north of the stagnant ice topography that gave rise to the kettle lake. Strong visual stratigraphy, loss on ignition data and sediment grain size analyses dated with 3 AMS radiocarbon dates place the two intervals of loess deposition between 8950 and 8005 cal yr BP. The possibility of a two-phase abrupt climate change at this time is a finding that has been suggested in other research. This record adds detail to the spatial extent and timing as well as possible structure of the 8.2-ka abrupt climate change event.  相似文献   

3.
Palaeoenvironmental and archaeological data from Arbon Bleiche, Lake Constance (Switzerland) give evidence of a rapid rise in lake‐level dated by tree‐ring and radiocarbon to 5320 cal. yr BP. This rise event was the latest in a series of three successive episodes of higher lake‐level between 5550 and 5300 cal. yr BP coinciding with glacier advance and tree‐limit decline in the Alps. This west‐central European climate change may have favoured the quick burial and the preservation of the Alpine Iceman recently found in the Tyrolean Alps. It has possible equivalents in many records from various regions in both hemispheres dating to 5600–5000 cal. yr BP and corresponds to global cooling and contrasting patterns of hydrological changes. This major mid‐Holocene climate event marks the Hypsithermal/Neoglaciation transition possibly resulting from a combination of different factors including orbital forcing, changes in ocean circulation and variations in solar activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
High-altitude lake sediments are often used as archives for environmental changes and their chemical and isotopic compositions provide significant constraints on natural and anthropogenic long-term changes that have occurred in their catchment area. Here, trace-element concentrations and Pb isotopes are presented for two sedimentary cores from Lake Blanc Huez in the French Alps, to trace the impact of climate changes and human activities over the Holocene. Lead and Ag contents are very high and clearly dominated by input from a Pb–Ag vein located a few meters from the lakeshore, a vein that also buffers the Pb isotopes. Mining of this vein in medieval times is recorded in the corresponding lake sediments with high Ag content coupled with high Pb/U ratio. These chemical characteristics can be used to constrain the major Holocene climate changes. Significant advances of glaciers next to the lake produced sediments with Ag and Pb concentration peaks and high Pb/U ratios due to accelerated erosion of the Pb–Ag vein, similar to the effects of the medieval mining. In contrast, reduced glacier activity led to the formation of organic-rich sediments with high U and As contents and low Pb/U ratios. More generally, the observed combination of chemical changes could be used elsewhere to decipher environmental changes over long periods of time.  相似文献   

5.
Geochemical methods (major elements and Sr, Nd isotopes) have been used to (1) characterize Lake Le Bourget sediments in the French Alps, (2) identify the current sources of the clastic sediments and estimate the source variability over the last 600 years. Major element results indicate that Lake Le Bourget sediments consist of 45% clastic component and 55% endogenic calcite. In addition, several individual flood levels have been identified during the Little Ice Age (LIA) on the basis of their higher clastic content (> 70%).Potential sources of Lake Le Bourget clastic sediments have been investigated from Sr and Nd isotope compositions. The sediments from the Sierroz River and Leysse River which are mainly derived from the Mesozoic Calcareous Massifs are characterised by lower 87Sr/86Sr ratios and slightly lower ?Nd(0) ratios than the Arve River sediments which are derived from the Palaeozoic Mont-Blanc External Crystalline Massifs. The Rhône River appears to have been the main source of clastic sediments into the lake for the last 600 years, as evidenced by a similar Sr and Nd isotopic compositions analyzed in core B16 sediments (87Sr/86Sr = 0.719, ?Nd(0) = − 10) and in the sediments of the Rhône River (87Sr/86Sr = 0.719, ?Nd(0) = − 9.6).The isotopic signatures of flood events and background samples from core B16 in Lake Le Bourget are also similar. This indicates that prior to ∼ 1800, the inputs into the lake have remained relatively homogeneous with the proportion of clastic component mainly being a function of the palaeohydrology of the Rhone River. Early human modification (deforestation and agriculture) of the lake catchment before the 1800s appears to have had little influence on the source of clastic sediments.  相似文献   

6.
The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (~11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Petén Itzá, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by ~11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11 250 to 10 350 cal. yr BP, during the Preboreal period, lithologic changes in sediments from deep‐water cores (>50 m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1‐4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Petén Itzá with other records from the circum‐Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high‐latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high‐pressure system. This mechanism operated on millennial‐to‐submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Lake sediment, glacier extent and tree rings were used to reconstruct Holocene climate changes from Goat Lake at 550 m asl in the Kenai Mountains, south‐central Alaska. Radiocarbon‐dated sediment cores taken at 55 m water depth show glacial‐lacustrine conditions until about 9500 cal. yr BP, followed by organic‐rich sedimentation with an overall increasing trend in organic matter and biogenic silica content leading up to the Little Ice Age (LIA). Through most of the Holocene, the northern outlet of the Harding Icefield remained below the drainage divide that currently separates it from Goat Lake. A sharp transition from gyttja to inorganic mud about AD 1660 signifies the reappearance of glacier meltwater into Goat Lake during the LIA, marking the maximum Holocene (postglacial) extent. Meltwater continued to discharge into the lake until about AD 1900. A 207 yr tree‐ring series from 25 mountain hemlocks growing in the Goat Lake watershed correlates with other regional tree‐ring series that indicate an average summer temperature reduction of about 1°C during the 19th century compared with the early–mid 20th century. Cirque glaciers around Goat Lake reached their maximum LIA extent in the late 19th century. Assuming that glacier equilibrium‐line altitudes (ELA) are controlled solely by summer temperature, then the cooling of 1°C combined with the local environmental lapse rate would indicate an ELA lowering of 170 m. In contrast, reconstructed ELAs of 12 cirque glaciers near Goat Lake average only 34 ± 18 m lower during the LIA. The restricted ELA lowering can be explained by a reduction in accumulation‐season precipitation caused by a weakening of the Aleutian low‐pressure system during the late LIA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Analyses of sediment cores from two lakes in the central Brooks Range provide temperature and moisture balance information for the past 8500 cal yr at century-scale resolution. Two methods of oxygen isotope analysis are used to reconstruct past changes in the effective moisture (precipitation minus evaporation) and temperature. Effective moisture is inferred from oxygen isotope ratios in sediment cellulose from Meli Lake (area 0.13 km2, depth 19.4 m). The lake has a low watershed-to-lake-area ratio (7) and significant evaporation relative to input. Summer temperature shifts are based on oxygen isotope analyses of endogenic calcite from Tangled Up Lake (area 0.25 km2, depth 3.5 m). This basin has a larger watershed-to-lake-area ratio (91) and less evaporation relative to input. Sediment oxygen isotope analyses from the two sites indicate generally more arid conditions than present prior to 6000 cal yr B.P. Subsequently, the region became increasingly wet. Temperature variability is recorded minimally at centennial scale resolution with values that are generally cool for the past 6700 cal yr. The timing and direction of climate variability indicated by the oxygen isotope time series from Meli and Tangled Up lakes are consistent with previously established late Holocene glacier advances at 5000 cal yr B.P. in the central Brooks Range, and high lake-levels at Birch Lake since 5500 cal yr B.P. This unique use of oxygen isotopes reveals both moisture balance and temperature histories at previously undetected high-resolution temporal scales for northern Alaska during the middle to late Holocene.  相似文献   

9.
A continuous record of insect (Chironomidae) remains preserved in lake sediments is used to infer temperature changes at a small lake in Arctic Canada through the Holocene. Early Holocene summers at the study site were characterized by more thermophilous assemblages and warmer inferred temperatures than today, presumably in response to the positive anomaly in Northern Hemisphere summer insolation. Peak early Holocene warmth was interrupted by two cold reversals between 9.5 and 8 cal ka BP, during which multiple cold-stenothermous chironomid taxa appeared in the lake. The earlier reversal appears to correlate with widespread climate anomalies around 9.2 cal ka BP; the age of the younger reversal is equivocal but it may correlate with the 8.2 cal ka BP cold event documented elsewhere. Widespread, abrupt climate shifts in the early Holocene illustrate the susceptibility of the climate system to perturbations, even during periods of enhanced warmth in the Northern Hemisphere.  相似文献   

10.
Holocene lacustrine sediments from two isolated lakes in north China are investigated. Based on palaeoclimatic significance of independent proxies in lake sediments, Holocene chemical weathering, and hence climate change, has been reconstructed for dated sediment cores from Daihai Lake and Aibi Lake. During early to mid-Holocene, higher weathering intensity occurred in the Daihai catchment under warm and humid climate conditions, and this reached a maximum at ∼5 kyr BP. However, synchronous proxy shifts from the two widely separated, isolated lake sediments indicate that there was a cool climate event during the early to mid-Holocene transition. This is characterized by reduced weathering in each catchment, low δ 13 C and δ 18 O of authigenic carbonate, and by lake level fluctuations. These might correspond to a global cooling signal identified in lakes, oceans, mollusc sequences, and polar ice cores, typically centred between ∼8.0 and 8.5 kyr BP. Dry conditions were experienced in Greenland, the North Atlantic and surrounding regions, and in broad monsoonal regions including Daihai at this time. However, recent extensive evidences as well as our data from the Aibi Lake sediments show that cool but wet conditions occurred in the central Eurasian continent at this time. After ∼2.5 kyr BP, a significant shift of independent sediment proxies indicates the beginning of the Neoglaciation with a higher frequency of fluctuations, including both the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Our continental records provide new evidence of the Holocene climate variability with global significance and highlight the different spatial nature of the response to oscillations associated with different climate patterns.  相似文献   

11.
This paper presents a lake-level record established for the last millennium at Lake Saint-Point in the French Jura Mountains. A comparison of this lake-level record with a solar irradiance record supports the hypothesis of a solar forcing of variations in the hydrological cycle linked to climatic oscillations over the last millennium in west-central Europe, with higher lake levels during the solar minimums of Oort (around AD 1060), Wolf (around AD 1320), Spörer (around AD 1450), Maunder (around AD 1690), and Dalton (around AD 1820). Further comparisons of the Saint-Point record with the fluctuations of the Great Aletsch Glacier (Swiss Alps) and a record of Rhône River floods from Lake Bourget (French Alps) give evidence of possible imprints of proxy sensitivity on reconstructed paleohydrological records. In particular, the Great Aletsch record shows an increasing glacier mass from AD 1350 to 1850, suggesting a cumulative effect of the Little Ice Age cooling and/or a possible reflection of a millennial-scale general cooling until the mid-19th century in the Northern Hemisphere. In contrast, the Saint-Point and Bourget records show a general trend toward a decrease in lake levels and in flood magnitude anti-correlated with generally increasing solar irradiance.  相似文献   

12.
The location of South Georgia (54°S, 36°W) makes it a suitable site for the study of the climatic connections between temperate and polar environments in the Southern Hemisphere. Because the mass balance of the small cirque glaciers on South Georgia primarily responds to changes in summer temperature they can provide records of changes in the South Atlantic Ocean and atmospheric circulation. We use grey scale density, weight-loss-on-ignition, and grain size analyses to show that the proportion of glacially eroded sediments to organic sediments in Block Lake was highly variable during the last 7400 cal yr B.P. We expect that the glacial signal is clearly detectable above noise originating from nonglacial processes and assume that an increase in glacigenic sediment deposition in Block Lake has followed Holocene glacier advances. We interpret proglacial lake sediment sequences in terms of summer climate warming and cooling events. Prominent millennial-scale features include cooling events between 7200 and 7000, 5200 and 4400, and 2400 and 1600 cal yr B.P. and after 1000 cal yr B.P. Comparison with other terrestrial and marine records reveals that the South Georgian record captures all the important changes in Southern Hemisphere Holocene climate. Our results reveal a tentative coupling between climate changes in the South Atlantic and North Atlantic because the documented temperature changes on South Georgia are anti-phased to those in the North Atlantic.  相似文献   

13.
A continuous sediment record since 12.3 cal ka bp from Lake Wuxu (south‐eastern Tibetan Plateau) was investigated in terms of the Holocene evolution of the Indian Summer Monsoon. The molar C/N ratio and stable C isotope were used to identify the source of the organic matter as well as climate conditions. The evolution of Lake Wuxu was summarized wihtin two periods. During the first period (early to mid‐Holocene), the lake received increased fluvially transported materials, reflecting variation in the summer monsoon with solar insolation. The lake level declined and water residence time increased because of reduced river discharge during the second period (late Holocene) corresponding to a weakening of the summer monsoon. The organic material revealed a major contribution from lake primary productivity, which showed identical patterns with a high‐resolution isotope record from Dongge Cave, as well as total solar irradiance. Our record from Lake Wuxu indicates that the Holocene evolution of the Indian Summer Monsoon has been driven by the solar forcing at decadal/centennial to millennial time scales. Furthermore, an abrupt decline in the monsoon was detected at around 4.0 cal ka bp , which is probably caused by an increased frequency of EI Nino‐Southern Oscillation events. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
A sediment core from Chuna Lake (Kola Peninsula, northwest Russia) was studied for pollen, diatoms and sediment chemistry in order to infer post‐glacial environmental changes and to investigate responses of the lake ecosystem to these changes. The past pH and dissolved organic carbon (DOC) of the lake were inferred using diatom‐based transfer functions. Between 9000 and 4200 cal. yr BP, slow natural acidification and major changes in the diatom flora occurred in Chuna Lake. These correlated with changes in regional pollen, the arrival of trees in the catchment, changes in erosion, sediment organic content and DOC. During the past 4200 yr diatom‐based proxies showed no clear response to changes in vegetation and erosion, as autochthonous ecological processes became more important than external climate influences during the late Holocene. The pollen stratigraphy reflects the major climate patterns of the central Kola Peninsula during the Holocene, i.e. a climate optimum between 9000 and 5400/5000 cal. yr BP when climate was warm and dry, and gradual climate cooling and an increase in moisture during the past 5400/5000 yr. This agrees with the occurrence of the north–south humidity gradient in Fennoscandia during the Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon (EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associated climate variations of a sediment core from Huangqihai Lake, central Inner Mongolia. During 10.7 to 8.8 cal kaBP, typical steppe with small patches of forest dominated the lake area, suggesting a moderately wet climate, followed by ameliorating climatic conditions until 8.0 cal kaBP as deduced by the expansion of forest. Typical steppe recovered the lake area between 8.0 and 7.2 cal kaBP, reflecting a deterioration of climatic conditions; in combination with other proxy records in the study region, we noticed that severe aridity was prevailed in the lake area between 8.0 and 7.6 cal kaBP. During 7.2 to 3.2 cal kaBP, abundant tree pollen indicated dominance of forest-steppe around the lake, marking regionally wet conditions. A notable absence of broadleaved trees after 5.2 cal kaBP reveals a slight drying trend, and climate deterioration from 4.5 to 4.1 cal kaBP might be linked to the 4.2 ka event. After 3.2 cal kaBP, a transition to steppe was associated with dry conditions in the region. Based on our pollen record and prior paleoclimatic reconstructions in the Huangqihai Lake region, there was a generally-accepted, stepwise shift to a wet climate during the early Holocene, an overall humid climate from 7.2 to 3.2 cal kaBP, and then severe drought for the rest of the Holocene. Moreover, regional comparisons among pollen records derived from lakes situated in the temperate steppe region suggested a roughly synchronous pattern of vegetation and climate changes during the Holocene and demonstrated an intensified EASM during the middle Holocene.  相似文献   

16.
We reconstructed late Holocene fluctuations of Kluane Lake in Yukon Territory from variations in bulk physical properties and carbon and nitrogen elemental and isotopic abundances in nine sediment cores. Fluctuations of Kluane Lake in the past were controlled by changes in climate and glaciers, which affected inflow of Slims and Duke rivers, the two largest sources of water flowing into the lake. Kluane Lake fluctuated within a narrow range, at levels about 25 m below the present datum, from about 5000 to 1300 cal yr BP. Low lake levels during this interval are probably due to southerly drainage of Kluane Lake to the Pacific Ocean, opposite the present northerly drainage to Bering Sea. Slims River, which today is the largest contributor of water to Kluane Lake, only rarely flowed into the lake during the period 5000 to 1300 cal yr BP. The lake rose 7-12 m between 1300 and 900 cal yr BP, reached its present level around AD 1650, and within a few decades had risen an additional 12 m. Shortly thereafter, the lake established a northern outlet and fell to near its present level.  相似文献   

17.
末次冰消期以来的气候突变事件的时空变化特征及其区域响应是古气候环境变化研究的重要内容,然而亚洲中部干旱区末次冰消期以来的气候突变记录较少,尤其缺少末次冰消期期间快速转暖过程的区域响应.本研究通过对位于亚洲中部干旱区的新疆西天山中部亚高山湖泊赛里木湖湖心采得的长300 cm的SLM2009钻孔沉积物的碳酸盐含量和粒度变化特征的分析,在 14 个 AMS 14C测年数据的基础上,探讨了末次冰消期约23. 4 cal. ka B. P.以来亚洲中部干旱区的气候突变事件记录及其区域响应过程.结果表明:赛里木湖湖心钻孔沉积物完整记录了 H1 ( 17. 5 ~ 15. 2 cal. ka B. P.)、 YD ( 12. 6 ~ 11. 7 cal. ka B. P.)冷事件以及 B-A ( 15. 2 ~12. 9 cal. ka B. P.)暖事件等末次冰消期气候突变事件以及全新世以来的10. 5 ka、 8. 2 ka、 5. 5 ka、 4. 2 ka、 2. 8 ka和小冰期冷事件,这与亚洲中部干旱区已有的气候突变事件记录相吻合,表明末次冰消期以来亚洲中部干旱区具有相似的气候突变演化模式.同时这些气候突变事件与高纬冰芯以及低纬石笋氧同位素记录的一致性则表明气候突变具有全球性影响,受相同的成因机制因素控制.  相似文献   

18.
A Holocene sedimentary record from the deep-silled Malangen fjord in northern Norway reveals regional changes in sedimentary environment and climate. Down-core analysis of two sediment cores includes multi-core sensor logging, grain size, x-radiography, foraminifera, oxygen isotopes, dinoflagellates, pollen, trace elements and radiocarbon datings. The cores are located just proximal to the submarine Younger Dryas moraine complex, and reveal the deglaciation after Younger Dryas and the postglacial evolution. Five sedimentary units have been identified. The oldest units, V and IV, bracket the Younger Dryas glacial readvance in the fjord between 12 700 cal. years BP and 11 800 cal. years BP. This is followed by deposition of glaciomarine sediments (units IV and III) starting around 12 100 cal. years BP. Glaciomarine sedimentation ceased in the fjord c. 10 300 cal. years BP and was replaced by open marine sedimentation (units II and I). A rapid stepwise warming occurred during the Preboreal. Onset of surface water warming lagged bottom water warming by several hundred years. The δ[Formula: See Text]O record indicates a significant, gradual bottom water cooling (c. 4°C) between 8000 and 2000 cal. years BP, a trend also supported by the other proxy data. Other records in the region, as well as GCM simulations, also support this long-term climatic evolution. Superimposed on this cooling were brief warmings around 6000 cal. years BP and 2000 cal. years BP. The long-term change may be driven by orbitally forced reduction in insolation, whereas the short-term changes may be linked to for example solar forcing, meltwater and NAO changes all causing regional changes in the North Atlantic heat transport.  相似文献   

19.
通过对狮子潭柱状沉积物的放射性定年、地球化学与硅藻分析,反演桂林会仙岩溶湿地全新世的古湖沼演替,与其响应的气候变迁与人类活动记录。放射性210Pb、14C定年结果显示该湖在6 400 cal BP开始有湖积物保存,在2 700 cal BP—公元1943年间有沉积间断事件,且于公元1943年再度沉积。在6400—5 200 cal BP,高比例的浮游型硅藻反映高水位状态,可对应到气候暖湿的中国全新世大暖期鼎盛期。在5 200—2 700 cal BP,沉积物内稀酸可溶相Ca、Mg、Sr浓度降低,Mg/Ca、Sr/Ca值明显增加,且浮游型硅藻几乎消失,显示当时湖泊水位显著降低,气候逐渐变干。在公元1943年沉积物再度沉积,可能与战争造成人口迁徙与废耕有关。自公元1973年以来,硅藻壳片大量堆积,反映人类过度活动造成藻华的现象。湖泊沉积物内硅藻组成及沉积物的地球化学特征能够很好地反演古气候、环境变迁。  相似文献   

20.
Holocene palaeolimnological conditions were reconstructed by analysing fossil diatom assemblages within a lacustrine sediment core from Lake Sokoch, southern Kamchatka (Russia). Sediments of this proglacial lake cover the past 9400 years and hence represent almost the whole Holocene history. The biosiliceous muddy sample material was analysed for several geochemical and biological parameters, such as the total organic carbon and biogenic silica content, and the diatom community (quantitative and qualitative changes). Based on changes in the relative abundances of the most frequent species Aulacoseira subarctica, Staurosira martyi and Stephanodiscus alpinus and a depth‐constrained cluster analyses (CONISS), five diatom assemblage zones could be identified. The oldest stage recovered lies between 9400 and 9000 cal. a BP and reflects the initial lake stage after the retreat of local glaciers, with a high detrital sediment supply, shallow‐water conditions and a high diatom diversity. The next zone (9000–6200 cal. a BP) shows a more mature lake system with accumulating biogenic remains and higher water levels during climate amelioration. This is followed by the most obvious change in the diatom assemblage, delineated by an occurrence of S. alpinus, between 6200 and 2700 cal. a BP. Wet conditions in spring probably led to an enhanced fluvial runoff and eutrophic to hypertrophic conditions. The end of this period might reflect climate deterioration related to the Neoglacial epoch of the Holocene. Between 2700 and 1600 cal. a BP the sediments of Lake Sokoch reveal oligotrophic water conditions in a windy high‐energy environment. The youngest interval, between 1600 cal. a BP and the Present, indicates shallow‐water conditions and a very short growing season, which might reflect the Little Ice Age. The results may offer a baseline for the interpretation of Holocene palaeoenvironmental changes in Kamchatka and their relation to regional climate change from a palaeoecological perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号