首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C14H30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.  相似文献   

2.
Petrological and geochemical study of volatile bearing phases (fluid inclusions, amphibole, and nominally anhydrous minerals) in a spinel lherzolite xenolith suite from Quaternary lavas at Injibara (Lake Tana region, Ethiopian plateau) shows compelling evidence for metasomatism in the lithospheric mantle in a region of mantle upwelling and continental flood basalts. The xenolith suite consists of deformed (i.e., protogranular to porphyroclastic texture) Cl-rich pargasite lherzolites, metasomatized (LILE and Pb enrichment in clinopyroxene and amphibole) at T ? 1000 °C. Lherzolites contain chlorine-rich H2O-CO2 fluid inclusions, but no melt inclusions. Fluid inclusions are preserved only in orthopyroxene, while in olivine, they underwent extensive interaction with the host mineral. The metasomatic fluid composition is estimated: XCO2 = 0.64, XH2O = 0.33, XNa = 0.006, XMg = 0.006, XCl = 0.018, (salinity = 14-10 NaCl eq. wt.%, aH2O = 0.2, Cl = 4-5 mol.%). Fluid isochores correspond to trapping pressures of 1.4-1.5 GPa or 50-54 km depth (at T = 950 °C). Synchrotron sourced micro-infrared mapping (ELECTRA, Trieste) shows gradients for H2O-distribution in nominally anhydrous minerals, with considerable enrichment at grain boundaries, along intragranular microfractures, and around fluid inclusions. Total water amounts in lherzolites are variable from about 150 up to 400 ppm. Calculated trace-element pattern of metasomatic fluid phases, combined with distribution and amount of H2O in nominally anhydrous minerals, delineate a metasomatic Cl- and LILE-rich fluid phase heterogeneously distributed in the continental lithosphere. Present data suggest that Cl-rich aqueous fluids were important metasomatic agents beneath the Ethiopian plateau, locally forming a source of high water content in the peridotite, which may be easily melted. High Cl, LILE, and Pb in metasomatic fluid phases suggest the contribution of recycled altered oceanic lithosphere component in their source.  相似文献   

3.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

4.
Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite.An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or acquisition of strain patterns included the initial shape and size of the inclusion, and the pressure differential (ΔP) between the confining pressure (Pcf) and the internal pressure (Pi) within the inclusion. Most fluid inclusions seemed to be trapped during the first 7 days of the experiment, although few (4%) of these preserved the initial PT conditions of 276 ± 10 bar, whereas 8% preserved the second and third run of PT conditions. Overall, the majority of inclusions (88%) did not reflect accurately the PTX trapping conditions. A petrographic guide to the inclusions is presented here that allows strain identification for PVT reconstructions. Re-equilibration patterns and evidence for preferential methane leakage from aqueous inclusions in calcite are important findings revealed by this study, and may be useful for the reconstruction of post-trapping events in investigations of natural samples, and in other experiments using synthetic inclusions in calcite.  相似文献   

5.
The metastable superheated solutions are liquids in transitory thermodynamic equilibrium inside the stability domain of their vapor (whatever the temperature is). Some natural contexts should allow the superheating of natural aqueous solutions, like the soil capillarity (low T superheating), certain continental and submarine geysers (high T superheating), or even the water state in very arid environments like the Mars subsurface (low T) or the deep crustal rocks (high T). The present paper reports experimental measurements on the superheating range of aqueous solutions contained in quartz as fluid inclusions (Synthetic Fluid Inclusion Technique, SFIT) and brought to superheating state by isochoric cooling. About 40 samples were synthetized at 0.75 GPa and 530-700 °C with internally-heated autoclaves. Nine hundred and sixty-seven inclusions were studied by micro-thermometry, including measuring the temperatures of homogenization (Th: L + V → L) and vapor bubbles nucleation (Tn: L → L + V). The Th-Tn difference corresponds to the intensity of superheating that the trapped liquid can undergo and can be translated into liquid pressure (existing just before nucleation occurs at Tn) by an equation of state. Pure water (840-935 kg m−3), dilute NaOH solutions (0.1 and 0.5 mol kg−1), NaCl, CaCl2 and CsCl solutions (1 and 5 mol kg−1) demonstrated a surprising ability to undergo tensile stress. The highest tension ever recorded to the best of our knowledge (−146 MPa, 100 °C) is attained in a 5 m CaCl2 inclusion trapped in quartz matrix, while CsCl solutions qualitatively show still better superheating efficiency. These observations are discussed with regards to the quality of the inner surface of inclusion surfaces (high P-T synthesis conditions) and to the intrinsic cohesion of liquids (thermodynamic and kinetic spinodal). This study demonstrates that natural solutions can reach high levels of superheating, that are accompanied by strong changes of their physico-chemical properties.  相似文献   

6.
The pressure-volume-temperature-composition (PVTX) properties of H2O-CH4 were determined from the bubble point curve to 500 °C and 3 kbar for compositions ?4 mol.% CH4 using the synthetic fluid inclusion technique. H2O-CH4 inclusions were produced by loading known amounts of Al3C4 and H2O into platinum capsules along with pre-fractured and inclusion-free quartz cores. During heating the Al3C4 and H2O react to produce CH4, and the H2O-CH4 homogeneous mixture was trapped as inclusions during fracture healing at elevated temperature and pressure. The composition of the fluid in the inclusion was confirmed using the weight loss technique after the experiment and by Raman spectroscopic analysis of the inclusions.Homogenization temperatures of the inclusions were determined and the results were used to construct iso-Th lines, defined as a line connecting the formation temperature and pressure with the homogenization temperature and pressure. The pressure in the inclusion at the homogenization temperature was calculated from the Duan equation of state (EOS). The slope (ΔPT) of each iso-Th line was calculated and the results fitted to a polynomial equation using step-wise multiple regression analysis to estimate the slope of the iso-Th line as a function of the homogenization temperature and composition according to:
PT)=a+b·m+c·m4+d·(Th)2+e·m·Th+f·m·(Th)4,  相似文献   

7.
The sulfur concentration at pyrrhotite- and anhydrite-saturation in primitive hydrous basaltic melt of the 2001-2002 eruption of Mt. Etna was determined at 200 MPa, T = 1050-1250 °C and at log fO2 from FMQ to FMQ+2.2 (FMQ is Fayalite-Magnetite-Quartz oxygen buffer). At 1050 °C Au sample containers were used. A double-capsule technique, using a single crystal olivine sample container closed with an olivine piston, embedded in a sealed Au80Pd20 capsule, was developed to perform experiments in S-bearing hydrous basaltic systems at T > 1050 °C. Pyrrhotite is found to be a stable phase coexisting with melt at FMQ-FMQ+0.3, whereas anhydrite is stable at FMQ+1.4-FMQ+2.2. The S concentration in the melt increases almost linearly from 0.12 ± 0.01 to 0.39 ± 0.02 wt.% S at FeS-saturation and from 0.74 ± 0.01 to 1.08 ± 0.04 wt.% S at anhydrite-saturation with T ranging from 1050-1250 °C. The relationships between S concentration at pyrrhotite and/or anhydrite saturation, MgO content of the olivine-saturated melt, T, and log fO2 observed in this study and from previous data are used to develop an empirical model for estimating the magmatic T and fO2 from the S and MgO concentrations of H2O-bearing olivine-saturated basaltic melts. The model can also be used to determine maximum S concentrations, if fO2 and MgO content of the melt are known. The application of the model to compositions of melt inclusions in olivines from Mt. Etna indicates that the most primitive magmas trapped in inclusions might have been stored at log fO2 slightly higher than FMQ+1 and at T = 1100-1150 °C, whereas more evolved melts could have been trapped at T ? 1100 °C. These values are in a good agreement with the estimates obtained by other independent methods reported in the literature.  相似文献   

8.
Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ∼80 °C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 °C. Calcite δ18O values range from ∼0 to ∼22‰ (SMOW) but most fall between 12 and 20‰. The highest Th and the lowest δ18O values are found in the older calcite. Calcite Th and δ18O values indicate that most calcite precipitated from water with δ18O values between −13 and −7‰, similar to modern meteoric waters.  相似文献   

9.
Fluid inclusions in quartz globules and quartz veins of a 3.8-3.7 Ga old, well-preserved pillow lava breccia in the northeastern Isua Greenstone Belt (IGB) were studied using microthermometry, Raman spectrometry and SEM Cathodoluminescence Imaging. Petrographic study of the different quartz segregations showed that they were affected by variable recrystallization which controlled their fluid inclusion content. The oldest unaltered fluid inclusions found are present in vein crystals that survived dynamic and static recrystallization. These crystals contain a cogenetic, immiscible assemblage of CO2-rich (+H2O, +graphite) and brine-rich (+CO2, +halite, +carbonate) inclusions. The gas-rich inclusions have molar volumes between 44.8 and 47.5 cm3/mol, while the brine inclusions have a salinity of ∼33 eq. wt% NaCl. Modeling equilibrium immiscibility using volumetric and compositional properties of the endmember fluids indicates that fluid unmixing occurred at or near peak-metamorphic conditions of ∼460 °C and ∼4 kbar. Carbonate and graphite were precipitated cogenetically from the physically separated endmember fluids and were trapped in fluid inclusions.In most quartz crystals, however, recrystallization obliterated such early fluid inclusion assemblages and left graphite and carbonate as solid inclusions in recrystallized grains. Intragranular fluid inclusion trails in the recrystallized grains of breccia cementing and crosscutting quartz veins have CO2-rich assemblages, with distinctly different molar volumes (either between 43.7 and 47.5 cm3/mol or between 53.5 and 74.1 cm3/mol), and immiscible, halite-saturated H2O-CO2-NaCl(-other salt) inclusions. Later intergranular trails have CH4-H2 (XH2 up to ∼0.3) inclusions of variable density (ranging from 48.0 to >105.3 cm3/mol) and metastable H2O-NaCl(-other salt?) brines (∼28 eq. wt% NaCl). Finally, the youngest fluid inclusion assemblages are found in non-luminescent secondary quartz and contain low-density CH4 (molar volume > 105.33 cm3/mol) and low-salinity H2O-NaCl (0.2-3.7 eq. wt% NaCl). These successive fluid inclusion assemblages record a retrograde P-T evolution close to a geothermal gradient of ∼30 °C/km, but also indicate fluid pressure variations and the introduction of highly reducing fluids at ∼200-300 °C and 0.5-2 kbar. The quartz globules in the pillow fragments only contain sporadic CH4(+H2) and brine inclusions, corresponding with the late generations present in the cementing and crosscutting veins. We argue that due to the large extent of static recrystallization in quartz globules in the pillow breccia fragments, only these relatively late fluid inclusions have been preserved, and that they do not represent remnants of an early, seafloor-hydrothermal system as was previously proposed.Modeling the oxidation state of the fluids indicates a rock buffered system at peak-metamorphic conditions, but suggests a change towards fluid-graphite disequilibrium and a logfH2/fH2O above the Quartz-Fayalite-Magnetite buffer during retrograde evolution. Most likely, this indicates a control on redox conditions and on fluid speciation by ultramafic rocks in the IGB.Finally, this study shows that microscopic solid graphite in recrystallized metamorphic rocks from Isua can be deposited inorganically from a fluid phase, adding to the complexity of processes that formed reduced carbon in the oldest, well-preserved supracrustal rocks on Earth.  相似文献   

10.
Rapid Pb-Pb dating of natural rutile crystals by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is investigated as a tool for constraining geological temperature-time histories. LA-MC-ICPMS was used to analyse Pb isotopes in rutile from granulite-facies rocks from the Reynolds Range, Northern Territory, Australia. The resultant ages were compared with previous U-Pb zircon and monazite age determinations and new mica (muscovite, phlogopite, and biotite) Rb-Sr ages from the same metamorphic terrane. Rutile crystals ranging in size from 3.5 to 0.05 mm with ?20 ppm Pb were ablated with a 300-25 μm diameter laser beam. Crystals larger than 0.5 mm yielded sufficiently precise 206Pb/204Pb and 207Pb/204Pb ratios to correct for the presence of common Pb, and individual rutile crystals often exhibited sufficient Pb isotopic heterogeneity to allow isochron calculations to be performed on replicate analyses of a single crystal. The mean of 12 isochron ages is 1544 ± 8 Ma (2 SD), with isochron ages for single crystals having uncertainties as low as ±1.3 Myr (2 SD). The 207Pb-206Pb ages calculated without correction for common Pb are typically <0.5% higher than the common-Pb-corrected isochron ages reflecting the very minor amounts of common Pb present in the rutile. The LA-MC-ICPMS method described samples only the outer 0.1-0.2 mm of the rutile crystals, resulting in a grain size-independent apparent closure temperature (Tc) for Pb diffusion in rutile that is less than the Tc of monazite ?0.1 mm in diameter, but significantly higher than the Rb-Sr system in muscovite (550 °C), phlogopite (435 °C) and biotite (400 °C). Even small rutile crystals are extremely resistant to isotopic resetting. For the established slow cooling rate of ca. 3 °C/Myr, the Tc for Pb diffusion in the analysed rutile is ca. 630 °C. This is in excellent agreement with recent experimental results that indicate that rutile has a higher Tc than previously thought (ca. 600-640 °C for rutile 0.1-0.2 mm diameter cooled at 3 °C/Myr; near 600 °C [Cherniak D.J., 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol. 139, 198-207], versus 400 °C [Mezger, K., Hanson G.N., Bohlen S.R., 1989a. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 96, 106-118.] for 1 °C/Myr), and with current Tc estimates for monazite and other high temperature geochronometers, which have been revised upwards in recent years. The new rutile ages, together with the other geochronological data from the region, support the interpretation that the Reynolds Range underwent prolonged slow cooling on a conductive geotherm, under nearly steady-state conditions. Slow cooling at ca. 3 °C/Myr persisted for at least 40 Myr followed the peak of high-T/low-P metamorphism to granulite-facies conditions, and probably continued at ca. 2-3 °C/Myr for ca. 200 Myr overall.  相似文献   

11.
Variations in the oxygen isotope composition (δ18O) of five cherts from the 1.9 Ga Gunflint iron formation (Canada) were studied at the micrometer scale by ion microprobe to try to better understand the processes that control δ18O values in cherts and to improve seawater paleotemperature reconstructions. Gunflint cherts show clearly different δ18O values for different types of silica with for instance a difference of ≈15‰ between detrital quartz and microquartz. Microquartz in the five samples is characterized by large intra sample variations in δ18O values, (δ18O of quartz varies from 4.6‰ to 6.6‰ at the 20 μm scale and from ≈12‰ to 14‰ at 2 μm scale). Isotopic profiles in microquartz adjacent to hydrothermal quartz veins demonstrate that microquartz more than ≈200 μm away from the veins has preserved its original δ18O value.At the micrometer spatial resolution of the ion probe, data reveal that microquartz has preserved a considerable δ18O heterogeneity that must be regarded as a signature inherited from its diagenetic history. Modelling of the δ18O variations produced during the diagenetic transformation of sedimentary amorphous silica precursors into microquartz allows us to calculate seawater temperature (Tsw at which the amorphous silica precipitated) and diagenesis temperature (Tdiagenesis at which microquartz formed) that reproduce the δ18O distributions (mean, range and shape) measured at micrometer scale in microquartz. The two critical parameters in this modelling are the δ18O value and the mass fraction of the diagenetic fluid. Under these assumptions, the most likely ranges for Tsw and Tdiagenesis are from 37 to 52 °C and from 130 to 170 °C, respectively.  相似文献   

12.
The Rainbow hydrothermal field is located at 36°13.8′N-33°54.15′W at 2300 m depth on the western flank of a non-volcanic ridge between the South AMAR and AMAR segments of the Mid-Atlantic Ridge. The hydrothermal field consists of 10-15 active chimneys that emit high-temperature (∼365 °C) fluid. In July 2008, vent fluids were sampled during cruise KNOX18RR, providing a rich dataset that extends in time information on subseafloor chemical and physical processes controlling vent fluid chemistry at Rainbow. Data suggest that the Mg concentration of the hydrothermal end-member is not zero, but rather 1.5-2 mmol/kg. This surprising result may be caused by a combination of factors including moderately low dissolved silica, low pH, and elevated chloride of the hydrothermal fluid. Combining end-member Mg data with analogous data for dissolved Fe, Si, Al, Ca, and H2, permits calculation of mineral saturation states for minerals thought appropriate for ultramafic-hosted hydrothermal systems at temperatures and pressures in keeping with constraints imposed by field observations. These data indicate that chlorite solid solution, talc, and magnetite achieve saturation in Rainbow vent fluid at a similar pH(T,P) (400 °C, 500 bar) of approximately 4.95, while higher pH values are indicated for serpentine, suggesting that serpentine may not coexist with the former assemblage at depth at Rainbow. The high Fe/Mg ratio of the Rainbow vent fluid notwithstanding, the mole fraction of clinochlore and chamosite components of chlorite solid solution at depth are predicted to be 0.78 and 0.22, respectively. In situ pH measurements made at Rainbow vents are in good agreement with pH(T,P) values estimated from mineral solubility calculations, when the in situ pH data are adjusted for temperature and pressure. Calculations further indicate that pH(T,P) and dissolved H2 are extremely sensitive to changes in dissolved silica owing to constraints imposed by chlorite solid solution-fluid equilibria. Indeed, the predicted correlation between dissolved silica and H2 defines a trend that is in good agreement with vent fluid data from Rainbow and other high-temperature ultramafic-hosted hydrothermal systems. We speculate that the moderate concentrations of dissolved silica in vent fluids from these systems result from hydrothermal alteration of plagioclase and olivine in the form of subsurface gabbroic intrusions, which, in turn are variably replaced by chlorite + magnetite + talc ± tremolite, with important implications for pH lowering, dissolved sulfide concentrations, and metal mobility.  相似文献   

13.
The behavior of ammonium, NH4+, in aqueous systems was studied based on Raman spectroscopic experiments to 600 °C and about 1.3 GPa. Spectra obtained at ambient conditions revealed a strong reduction of the dynamic three-dimensional network of water with addition of ammonium chloride, particularly at small solute concentrations. The differential scattering cross section of the ν1-NH4+ Raman band in these solutions was found to be similar to that of salammoniac.The Raman band of silica monomers at ∼780 cm−1 was present in all spectra of the fluid at high temperatures in hydrothermal diamond-anvil cell experiments with H2O ± NH4Cl and quartz or the assemblage quartz + kyanite + K-feldspar ± muscovite/tobelite. However, these spectra indicated that dissolved silica is less polymerized in ammonium chloride solutions than in comparable experiments with water. Quantification based on the normalized integrated intensity of the H4SiO40 band showed that the silica solubility in experiments with H2O + NH4Cl was significantly lower than that in equimolal NaCl solutions. This suggests that ammonium causes a stronger decrease in the activity of water in chloridic solutions than sodium.The Raman spectra of the fluid also showed that a significant fraction of ammonium was converted to ammonia, NH3, in all experiments at temperatures above 300 °C. This indicates a shift towards acidic conditions for experiments without a buffering mineral assemblage. The estimated pH of the fluid was ∼2 at 600 °C, 0.26 GPa, 6.6 m initial NH4Cl, based on the ratio of the integrated ν1-NH3 and ν1-NH4+ intensities and the HCl0 dissociation constant. The NH3/NH4+ ratio increased with temperature and decreased with pressure. This implies that more ammonium should be retained in K-bearing minerals coexisting with chloridic fluids upon high-P low-T metamorphism. At 500 °C, 0.73 GPa, ammonium partitions preferentially into the fluid, as constrained from infrared spectroscopy on the muscovite and from mass balance.The conversion of K-feldspar to muscovite proceeded much faster in experiments with NH4Cl solutions than in comparable experiments with water. This is interpreted as being caused by enhancement of the rate-limiting alumina solubility, suggesting complexation of Al with NH4. Nucleation and growth of mica at the expense of K-feldspar and NH4+/K+ exchange between fluid and K-feldspar occurred simultaneously, but incorporation of NH4+ into K-feldspar was distinctly faster than K-feldspar consumption.  相似文献   

14.
Experiments were conducted to determine the extent and mechanism by which the composition of quartz-hosted silicate melt inclusions (SMI) and aqueous fluid inclusions (FI) can undergo post-entrapment modification via diffusion. Quartz slabs containing assemblages of SMI and FI were reacted with synthetic HCl bearing and metalliferous aqueous fluids at T = 500-720 °C and P = 150-200 MPa. SMI from the single inclusion assemblages were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and electron probe microanalysis (EPMA) before and after the experiments. Analyses revealed that rapid diffusion of the univalent cations Na+, Li+, Ag+, Cu+ and H+ occurred through the quartz from the surroundings, resulting in significant changes in the concentrations of these elements in the inclusions. Concentrations of other elements with an effective ionic radius larger than that of Ag+, or multiple valence states were not modified in the inclusions during the experiments. Our results warn inclusion‘‘ researchers that the interpretation of Na, Li, Cu and Ag concentrations from quartz-hosted SMI and FI should be treated critically.  相似文献   

15.
We have studied the formation conditions of Al-rich chondrules by doing isothermal and dynamic crystallization experiments at one atmosphere on four different chondrule analogue compositions within the pure CaO-MgO-Al2O3-SiO2 system. For the dynamic crystallization experiments, we cooled from both liquidus and subliquidus peak temperatures (Tmax), at cooling rates from 5-1000 °C/h. The starting compositions include two with anorthite and two with forsterite as the dominant liquidus phases, all at or near spinel-saturation. One of each pair evolves towards diopside crystallization, and the others cordierite or enstatite crystallization, giving a total of four completely different crystallization sequences analogous to the four basic varieties of Al-rich chondrule recently proposed. Bulk composition is the main controlling factor, both in terms of mineralogy and texture. The textures of the anorthite-rich compositions are more sensitive to Tmax than they are to cooling rate, whereas the textures of the forsterite-rich compositions are more sensitive to cooling rate. Comparisons of natural Al-rich chondrules having similar compositions to our synthetic analogues indicate that the natural objects reflect a range of peak heating temperatures, ∼1400-1500 °C, and cooling rates of 10-500 °C/h for porphyritic chondrules and possibly higher (1000 °C/h) for barred chondrules. These conditions are consistent with the conditions inferred for ferromagnesian chondrules but differ from those inferred for some calcium-aluminum-rich inclusions.  相似文献   

16.
We have determined Cr diffusion coefficients (D) in orthopyroxene parallel to the a-, b-, and c-axial directions as a function temperature at f(O2) corresponding to those of the wüstite-iron (WI) buffer. Diffusion is found to be significantly anisotropic with D(//c) > D(//b) > D(//a), conforming to an earlier theoretical prediction. Increase of f(O2) from WI buffer conditions to 4.5 log unit above the buffer at 950 and 1050 °C leads to decrease of D(Cr) by a factor of two to three, possibly suggesting significant contribution from an interstitial diffusion mechanism. We have used the diffusion data to calculate the closure temperatures (Tc) of the Mn-Cr decay system in orthopyroxene as a function of initial temperature (T0), grain size (a) and cooling rate for spherical and plane sheet geometries. We also present graphical relations that permit retrieval of cooling rates from knowledge of the resetting of Mn-Cr ages in orthopyroxene during cooling, T0 and a. Application of these relations to the Mn-Cr age data of the cumulate eucrite Serra de Magé yields a Tc of 830-980 °C, and cooling rates of 2-27 °C/Myr at Tc and ∼1-13 °C/Myr at 500 °C. It is shown that the cooling of Serra de Magé to the closure temperature of the Mn-Cr system took place at its original site in the parent body, and thus implies a thickness for the eucrite crust in the commonly accepted HED parent body, Vesta, of greater than 30 km. This thickness of the eucrite crust is compatible only with a model of relatively olivine-poor bulk mineralogy in which olivine constitutes 19.7% of the total asteroidal mass.  相似文献   

17.
Important He and Ar isotope studies on rocks and minerals, relevant to the geochemical and degassing history of the Earth, are often hampered by insufficient knowledge of the retentivity of different types of sites in minerals (inclusions, matrix) for these species, and of the relative importance of radiogenic and trapped components and possible differences in their behavior.To identify sites of noble gas isotopes, shed some light on their origin and estimate their residence times in olivine, which is a mineral considered as a good natural sampler, we investigated 2.5 Ga old ultramafic rocks from the Monche Pluton (Kola Peninsula, north-east part of the Baltic shield) using several extraction methods: crushing, fusion, slow step-wise and rapid incremental heating. Previous studies indicated that these rocks contain mainly trapped noble gases; however, to constrain the possible contribution of in-situ generated radiogenic helium, U and Th concentrations were also measured in the samples.The helium release pattern obtained by relatively fast (∼1.5 h long) incremental heating of olivine includes three distinct release peaks for helium: a low-temperature (600 °C) l-peak, a middle (800-1100 °C) m-peak and a high-temperature (∼1400 °C) h-peak. However, helium extraction from a powdered aliquot of the same olivine yields mainly the middle m-peak indicating that gases released in the l- and h-peaks occupy gas-liquid inclusions opened in the course of crushing and grinding. Moreover, slow step-wise heating (14 h) also results in a broad He release peak but in two well-separated l- and h-peaks of non-atmospheric 40Ar∗. This feature implies helium migration from l- and h-vesicles into the matrix m during long step-wise heating experiments, whereas less movable Ar remains in inclusions at even relatively high almost-magmatic temperatures.Using a simple phenomenological model envisaging the three different residence sites for noble gases, both fast- and slow-heating release patterns for 40Ar∗ and He, including those for the crushed sample, could be reproduced. The diffusion parameters inferred from the modeling of olivine (D0 = 2.4 × 10−2 cm2 s−1 and Ea = 133 kJ mol−1) are similar to those published by Shuster et al. (2003) and Blard et al. (2008). The high matrix/fluid solubility coefficient for helium, HHe ∼ 0.01, exceeds estimates reported by Trull and Kurz (1993); however, the product DHe(T) × HHe, the “permeability” (that governs He migration in vesicles + matrix composed materials), is very similar to their value. Extrapolation to the ambient temperature (0 °C) gives long and similar helium residence times in l- and h-vesicles, exceeding 1010 yrs, and even longer time scales ∼1016 yrs are obtained for the helium residence in the matrix. Therefore, at low temperatures our samples may be considered as excellent samplers of trapped volatile species, including helium.  相似文献   

18.
In order to investigate the incorporation of Sr, Mg, and U into coral skeletons and its temperature dependency, we performed a culture experiment in which specimens of the branching coral (Porites cylindrica) were grown for 1 month at three seawater temperatures (22, 26, and 30 °C). The results of this study showed that the linear extension rate of P. cylindrica has little effect on the skeletal Sr/Ca, Mg/Ca, and U/Ca ratios. The following temperature equations were derived: Sr/Ca (mmol/mol) = 10.214(±0.229) − 0.0642(±0.00897) × T (°C) (r2 = 0.59, p < 0.05); Mg/Ca (mmol/mol) = 1.973(±0.302) + 0.1002(±0.0118) × T (°C) (r2 = 0.67, p < 0.05); and U/Ca (μmol/mol) = 1.488(±0.0484) − 0.0212(±0.00189) × T (°C) (r2 = 0.78, p < 0.05). We calculated the distribution coefficient (D) of Sr, Mg, and U relative to seawater temperature and compared the results with previous data from massive Porites corals. The seawater temperature proxies based on D calibrations of P. cylindrica established in this study are generally similar to those for massive Porites corals, despite a difference in the slope of DU calibration. The calibration sensitivity of DSr, DMg, and DU to seawater temperature change during the experiment was 0.64%/°C, 1.93%/°C, and 1.97%/°C, respectively. These results suggest that the skeletal Sr/Ca ratio (and possibly the Mg/Ca and/or U/Ca ratio) of the branching coral P. cylindrica can be used as a potential paleothermometer.  相似文献   

19.
Field and experimental investigations demonstrate the chemistry of mid-ocean ridge hydrothermal vent fluids reflects fluid-mineral reaction at higher temperatures than those typically measured at the seafloor. To account for this and, in turn, be able to better constrain sub-seafloor hydrothermal processes, we have developed an empirical geothermometer based on the dissolved Fe/Mn ratio in high-temperature fluids. Using data from basalt alteration experiments, the relationship; T (°C) = 331.24 + 112.41*log[Fe/Mn] has been calibrated between 350 and 450 °C. The apparent Fe-Mn equilibrium demonstrated by the experimental data is in good agreement with natural vent fluids, suggesting broad applicability. When used in conjunction with constraints imposed by quartz solubility, associated sub-seafloor pressures can be estimated for basalt-hosted systems. As an example, this methodology is used to interpret new data from 13°N on the East Pacific Rise, where high-temperature fluids both enriched and depleted in chloride (339-646 mmol/kg), relative to seawater, are actively venting within a close proximity. Accounting for these variable salinities, active phase separation is clearly taking place at 13°N, yet the fluid Fe/Mn ratios and the silica concentrations suggest equilibration at temperatures less than those coinciding with the two-phase region. These data show the chloride-enriched fluid reflects the highest temperature and pressure (∼432 °C, 400 bars) of equilibration, consistent with circulation near the top of the inferred magma chamber. This is in agreement with the elevated CO2 concentration relative to the chloride-depleted fluids. The noted temperature derived from the Fe/Mn geothermometer is higher than the critical temperature for a fluid of equivalent salinity. This carries the important implication that, despite being chloride-enriched relative to seawater, these fluids evolved as the vapor component of even higher salinity brine.  相似文献   

20.
The position of the Raman methane (CH4) symmetric stretching band (ν1) over the range 1-650 bar and 0.3-22 °C has been determined using a high-pressure optical cell mounted on a Raman microprobe. Two neon emission lines that closely bracket the CH4 band were collected simultaneously with each CH4 spectrum. The peak position was determined after least squares fitting using a summed Gaussian-Lorentzian method, resulting in a precision of ≈±0.02 cm−1 in peak position determination. The CH4ν1 band position shifts to lower wave number with increasing pressure. At a given pressure, the band shifts to lower wave number with decreasing temperature, and the magnitude of the temperature shift increases with increasing pressure. The relationship between the Raman CH4ν1 band position and temperature and pressure determined here may be used to estimate the internal pressure in natural or synthetic CH4-bearing fluid inclusions. This information, in turn, may be used to determine the density of pure CH4 fluid inclusions and the salinity of CH4-bearing aqueous inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号