首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

2.
Trace element partition coefficients (D's) for up to 13 REE, Nb, Ta, Zr, Hf, Sr and Y have been determined by SIMS analysis of seven garnets, four clinopyroxenes, one orthopyroxene and one phlogopite crystallized from an undoped basanite and a lightly doped (200 ppm Nb, Ta and Hf) quartz tholeiite. Experiments were conducted at 2–7.5 GPa, achieving near-liquidus crystallization at relatively low temperatures of 1080–1200°C under strongly hydrous conditions (5–27 wt.% added water). Garnet and pyroxene DREE show a parabolic pattern when plotted against ionic radius, and conform closely to the lattice strain model of Blundy and Wood (Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454). Comparison, at constant pressure, between hydrous and anhydrous values of the strain-free partition coefficient (D0) for the large cation sites of garnet and clinopyroxene reveals the relative importance of temperature and melt water content on partitioning. In the case of garnet, the effect of lower temperature, which serves to increase D0, and higher water content, which serves to decrease D0, counteract each other to the extent that water has little effect on garnet–melt D0 values. In contrast, the effect of water on clinopyroxene–melt D0 overwhelms the effect of temperature, such that D0 is significantly lower under hydrous conditions. For both minerals, however, the lower temperature of the hydrous experiments tends to tighten the partitioning parabolas, increasing fractionation of light from heavy REE compared to anhydrous experiments.

Three sets of near-liquidus clinopyroxene–garnet two-mineral D values increase the range of published experimental determinations, but show significant differences from natural two-mineral D's determined for subsolidus mineral pairs. Similar behaviour is observed for the first experimental data for orthopyroxene–clinopyroxene two-mineral D's when compared with natural data. These differences are in large part of a consequence of the subsolidus equilibration temperatures and compositions of natural mineral pairs. Great care should therefore be taken when using natural mineral–mineral partition coefficients to interpret magmatic processes.

The new data for strongly hydrous compositions suggest that fractionation of Zr–Hf–Sm by garnet decreases with increasing depth. Thus, melts leaving a garnet-dominated residuum at depths of about 200 km or greater may preserve source Zr/Hf and Hf/Sm. This contrasts with melting at shallower depths where both garnet and clinopyroxene will cause Zr–Hf–Sm fractionation. Also, at shallower depths, clinopyroxene-dominated fractionation may produce a positive Sr spike in melts from spinel lherzolite, but for garnet lherzolite melting, no Sr spike will result. Conversely, clinopyroxene megacrysts with negative Sr spikes may crystallize from magmas without anomalous Sr contents when plotted on mantle compatibility diagrams. Because the characteristics of strongly hydrous silicate melt and solute-rich aqueous fluid converge at high pressure, the hydrous data presented here are particularly pertinent to modelling processes in subduction zones, where aqueous fluids may have an important metasomatic role.  相似文献   


3.
Partitioning coefficients between olivine and silicate melts   总被引:3,自引:0,他引:3  
J.H. Bdard 《Lithos》2005,83(3-4):394-419
Variation of Nernst partition coefficients (D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO2, H2O, MgO and MgO/MgO + FeOtotal. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE–Sc–Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta–Hf–Zr–Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.  相似文献   

4.
Strontium chemical diffusion has been measured in albite and sanidine under dry, 1 atm, and QFM buffered conditions. Strontium oxide-aluminosilicate powdered sources were used to introduce the diffusant and Rutherford Backscattering Spectroscopy (RBS) used to measure diffusion profiles. For the 1 atm experiments, the following Arrhenius relations were obtained:
Sanidine (Or61), temperature range 725–1075°C, diffusion normal to (001): D=8.4 exp(−450±13 kJ mol−1/RT) m2s−1. Albite (Or1), temperature range 675–1025°C, diffusion normal to (001): D=2.9 × exp(−224±11 kJ mol−1/RT) m2s−1.
The alkali feldspars in this and earlier work display a broad range of activation energies for Sr diffusion, which may be a consequence of the thermodynamic non-ideality of the alkali feldspar system and/or the mixed alkali effect.  相似文献   

5.
Musa Güner 《Tectonophysics》1982,90(3-4):309-312
The palaeomagnetism of basic rocks and sulphide ores has been studied in the Küre area, Pontic Ranges, Turkey. Progressive alternating-field demagnetization revealed a characteristic remanent magnetization in all investigated rock types except a dacite. The following virtual geomagnetic poles were obtained:

Basalt and quartz diabase (oldest): D = 59°, I = +66°, 95 = 4.8, pole 49°N, 93°E. Diabase: D = 210°, I = −15°, 95 = 15.0, pole 47°N, 167°E. Massive sulphide ores: D = 107°, I = +63°, 95 = 8.7, pole 18°N, 80°E. Peridotite: D = 131°, I = +54°, 95 = 10.9, pole 2°S, 72°E. Amphibolitized diabase (youngest): D = 293°, I = +59°, 95 = 12.6, pole 40°S, 145°E.

The longidutinal difference in pole positions between the oldest and the youngest rocks is interpreted as being due to a post-Permian counterclockwise rotation of the studied region in relation to the African continent. In addition, there are indications of local rotational movements within the Küre area.  相似文献   


6.
为阐明青藏高原多年冻土区高寒草甸退化过程中土壤粒径分布(PSD)非均匀性和异质性的变化特征, 在青藏高原长江源区, 根据高寒草甸的退化梯度, 选取了未退化区域、 轻度退化区域、 中度退化区域、 重度退化区域和极重度退化区域, 测定了高寒草甸退化过程中土壤的粒径分布、 饱和导水率、 孔隙度与有机质含量. 运用多重分形理论, 并结合土壤颗粒分布与土壤理化特性等参数的相关性进行分析, 为高寒草甸退化对长江源高寒土壤性质变化的影响的定量研究提供一种精确的分析方法. 结果表明: 随着青藏高原多年冻土区高寒草甸退化程度的增加, 土壤颗粒呈粗粒化趋势, 多重分形参数中容量维数(D0)随之增大, 表征PSD宽度随之增大; 信息维数(D1)、 信息维数/容量维数(D1/D0)、 关联维数(D2)、 奇异谱宽(Δα)可从不同角度反映的土壤PSD的非均匀性与局部异质性随着高寒草甸退化有先增大后减小的趋势, 中度退化区域的土壤PSD不均匀性最大. 研究发现, 研究区土壤多重分形参数与细砂含量、 土壤的孔隙度、 有机质含量具有较明显的相关性. 多重分形参数能准确描述高寒草甸退化过程中土壤粒径分布的细微差别, 可作为反映土壤性质的潜在指标.  相似文献   

7.
Status report on stability of K-rich phases at mantle conditions   总被引:1,自引:0,他引:1  
George E. Harlow  Rondi Davies 《Lithos》2004,77(1-4):647-653
Experimental research on K-rich phases and observations from diamond inclusions, UHP metamorphic rocks, and xenoliths provide insights about the hosts for potassium at mantle conditions. K-rich clinopyroxene (Kcpx–KM3+Si2O6) can be an important component in clinopyroxenes at P>4 GPa, dependent upon coexisting K-bearing phases (solid or liquid) but not, apparently, upon temperature. Maximum Kcpx content can reach 25 mol%, with 17 mol% the highest reported in nature. Partitioning (K)D(cpx/liquid) above 7 GPa=0.1–0.2 require ultrapotassic liquids to form highly potassic cpx or critical solid reactions, e.g., between Kspar and Di. Phlogopite can be stable to about 8 GPa at 1250 °C where either amphibole or liquid forms. When fluorine is present, it generally increases in Phl upon increasing P (and probably T) to about 6 GPa, but reactions forming amphibole and/or KMgF3 limit F content between 6 and 8 GPa. The perovskite KMgF3 is stable up to 10 GPa and 1400 °C as subsolidus breakdown products of phlogopite upon increasing P. (M4)K-substituted potassic richterite (ideally K(KCa)Mg5Si8O22(OH,F)2) is produced in K-rich peridotites above 6 GPa and in Di+Phl from 6 to 13 GPa. K content of amphibole is positively correlated with P; Al and F content decrease with P. In the system 1Kspar+1H2O K-cymrite (hydrous hexasanidine–KAlSi3O8·nH2O–Kcym) is stable from 2.5 GPa at 400 to 1200 °C and 9 GPa; Kcym can be a supersolidus phase. Formation of Kcym is sensitive to water content, not forming within experiments with H2O2O>Kspar. Phase X, a potassium di-magnesium acid disilicate ((K1−xn)2(Mg1−nMn3+)2Si2O7H2x), forms in mafic compositions at T=1150–1400 °C and P=9–17 GPa and is a potential host for K and H2O at mantle conditions with a low-T geotherm or in subducting slabs. The composition of phase-X is not fixed but actually represents a solid solution in the stoichiometries □2Mg2Si2O7H2–(K□)Mg2Si2O7H–K2Mg2Si2O7 (□=vacancy), apparently stable only near the central composition. K-hollandite, KAlSi3O8, is possibly the most important K-rich phase at very high pressure, as it appears to be stable to conditions near the core–mantle boundary, 95 GPa and 2300 °C. Other K-rich phases are considered.  相似文献   

8.
Angstrom公式参数对ET0的影响及FAO建议值适用性评价   总被引:6,自引:0,他引:6       下载免费PDF全文
作为计算太阳总辐射(Rs)的主要公式,Angstrom公式参数(a、b)的合理取值是计算参照腾发量(ET0)的重要前提。针对FAO所提出的a、b建议值(a=0.25、b=0.5)在中国无辐射观测资料地区被大量使用,而其合理性尚未得到系统评价的情况,基于中国104个地面站的观测数据,在逐月时间尺度上,讨论了a、b变化对ET0的影响,分析了a、b的地区分布规律,评价了FAO建议值所导致的ET0计算误差,进而阐明了该建议值在中国7个区域的适用性。提出了无辐射资料情况下a、b的地区综合取值方法。主要研究结论是:①参数a、b偏差对ET0的计算有重要影响,在中国无资料地区采用FAO建议值将导致较大的太阳总辐射(Rs)和ET0计算误差。②大多数站点,a的率定值较FAO建议值明显偏小,而b的率定值明显偏大。新疆地区和华南地区a、b率定值分布比较集中,而在其它区域比较分散。③FAO建议参数值在东北、西北和新疆3个区域计算ET0的适用性较好,而在西南和华南两个区域的适用性很差,计算的ET0偏高较大。④提出的地区综合取值方法,能使Rs和ET0的计算精度较FAO建议值显著提高。  相似文献   

9.
Depth profiles of in situ-produced cosmogenic nuclides, including 10Be (T1/2=1.5×106 years) and 26Al (T1/20.73×106 years), in the upper few meters of the Earth's crust may be used to study surficial processes, quantifying denudation and burial rates and elucidating mechanisms involved in landform evolution and soil formations. In this paper, we discuss the fundamentals of the method and apply it to two lateritic sequences located in African tropical forests.  相似文献   

10.
为研究实际水利条件下农业干旱的发生规律,简化农业干旱事件的评估方法,提出基于区域农业用水量的干旱重现期计算方法。通过构建农业用水量距平百分率干旱指标WA,在基于降雨量距平百分率干旱指标PA识别干旱事件的基础上,提取WA干旱指标下的干旱历时和干旱烈度特征变量,并根据以PA为干旱指标的干旱烈度频率分布曲线FS(x)和干旱历时频率分布曲线FD(x),运用Copula的简化方法计算基于WA的干旱事件重现期T,最后结合基于PA的干旱事件重现期T0,回归分析出T与T0间关系的计算公式。选取干旱灾害影响严重的亳州市为实证区域开展应用研究,计算得到1975-2007年各场干旱事件的T0和T以及T0与T的经验关系式。结果表明:T比T0更合理地反映区域农业实际受旱状况,重现期T0和T间存在高度的相关关系,采用T的回归方程可简化计算考虑区域实际抗旱能力下的干旱事件重现期,在区域防旱减灾实践中具有推广应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号