首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using various additives has been considered as one of the most common stabilization methods for improvement of engineering properties of fine-grained soils. In this research the effect of sewage sludge ash (SSA) and hydrated lime (HL) on compressive strength of clayey soil was investigated. For this purpose, 16 kinds of mixtures or treatments were made by adding different amounts of SSA; 0, 5, 10 and 15% by weight and HL; 0, 1, 3 and 5% by weight of a clayey soil. First, compaction characteristics of the treatments were determined using Harvard compaction test apparatus. So that, 12 unconfined compressive strength test specimens were made using Harvard compaction mold from each treatments taking into account four different curing ages, including 7, 14, 28 and 90 days in three replications. Therefore, a total of 192 specimens were prepared and subjected to unconfined compressive strength tests. The results of this study showed that the maximum dry density of the treated soil samples decreases and their optimum water content increases by increasing the amount of SSA and hydrated lime in the mixtures. It is also found that the adding of HL and SSA individually would increase the compressive strength up to 3.8 and 1.5 times respectively. The application of HL and SSA with together could increases the compressive strength of a clayey soil more efficiently even up to 5 times.  相似文献   

2.
Iron filling and iron filling–cement mixture were used to improve the shear strength characteristics of Irbid clayey soil. For this purpose, five types of Irbid clay soils were obtained and mixed with iron filling and iron filling–cement mixture at different percentages. Two sets of prepared samples were mixed with the admixture. The first set was prepared by mixing the soil samples with iron filling alone at 2.5, 5.0, 7.5, and 10% by dry weight of the soil. The second set was prepared by mixing with iron filling–cement mixture at equal ratio of the same percentages of the first set. An unconfined compression test was performed in this study to measure the shear strength properties of the soils. The test results showed that the increase in the percentages of the iron filling and iron filling–cement mixture up to 10% will result in increasing the maximum dry density of the soil and increase the unconfined compressive strength and the secant of modulus of elasticity of the clayey soil. Also, the addition of iron filling–cement mixture increased the unconfined compressive strength and secant modulus of elasticity of the clayey soil higher than the addition of iron filling alone.  相似文献   

3.
查甫生  刘松玉  杜延军 《岩土力学》2006,27(Z1):549-554
研究掺粉煤灰对合肥膨胀土的物理性质指标以及胀缩性指标等的影响,探讨利用粉煤灰改良膨胀土的措施与效果。试验研究结果表明,在膨胀土中掺入适量的粉煤灰可有效降低膨胀土的塑性指数、降低膨胀势、减小线缩率与降低活性。在膨胀土中掺入粉煤灰还可改变膨胀土的击实特性,一定击实功作用下,随着掺灰率的增加,土体的最优含水率与最大干密度均减小,膨胀土中掺入粉煤灰后,膨胀土可在较小的含水率下通过击实或压实达到稳定。掺灰膨胀土的膨胀量与膨胀力随养护龄期的增长而减小;没有经过养护的掺灰土,其无侧限抗压强度随掺灰率的变化几乎没有变化,经过7 d养护后,土的无侧限抗压强度有所增长,并且存在一个峰值点,合肥膨胀土的无侧限抗压强度所对应的最佳掺粉煤灰率约为15 %~20 %。  相似文献   

4.
Industrial waste generation has reached up to millions of tons yearly. One way to solve the problems of the large accumulating amount of waste could be to incorporate it into the soil; thus, finding a way for the use of industrial waste could be a quest for soil improvement studies. Industrial sludge in certain pozzolanic form reacts with soil and possesses cementitious properties. This paper illustrates the utilization of lime, steel and copper sludge in improvement of high plasticity clayey soil. The influence of stabilizer type, different curing times and various ratios of lime to sludge are evaluated by Atterberg limits, standard proctor compaction, unconfined compressive strength and unconsolidated undrained strength in triaxial test. The  test results show that adding lime and sludge results in an increase in maximum strength. Moreover, the strength of soil increases with the increase of curing time. Utilizing stabilizers also influences plasticity index and compaction parameters. Finally, the results demonstrate that steel sludge has better performance than that of copper sludge in term of strength development.  相似文献   

5.
Expansive soils swell on absorbing water and shrink on evaporation thereof. Because of this alternate swelling and shrinkage, civil engineering structures founded in them are severely damaged. For counteracting the problems of expansive soils, different innovative techniques were suggested. Stabilization of expansive clays with various additives has also met with considerable success. This paper presents, by comparison, the effect of lime and fly ash on free swell index (FSI), swell potential, swelling pressure, coefficient of consolidation, compression index, secondary consolidation characteristics and shear strength. Lime content (weight of lime/weight of dry soil) was varied as 0%, 2%, 4%?and 6%?and fly ash content (weight of fly ash/weight of dry soil) as 0%, 10%?and 20%. A fly ash content of 20%?showed significant reduction in swell potential, swelling pressure, compression index and secondary consolidation characteristics and resulted in increase in maximum dry density and shear strength. Swell potential and swelling pressure decreased with increase in lime content also. Further, consolidation characteristics improved. Compaction characteristics and unconfined compression strength improved at 4%?lime and reduced at 6%?lime.  相似文献   

6.
In order to reduce the brittleness of soil stabilized by lime only, a recent study of a newly proposed mixture of polypropylene fibre and lime for ground improvement is described and reported in the paper. To investigate and understand the influence of the mixture of polypropylene fibre and lime on the engineering properties of a clayey soil, nine groups of treated soil specimens were prepared and tested at three different percentages of fibre content (i.e. 0.05%, 0.15%, 0.25% by weight of the parent soil) and three different percentages of lime (i.e. 2%, 5%, 8% by weight of the parent soil). These treated specimens were subjected to unconfined compression, direct shear, swelling and shrinkage tests. Through scanning electron microscopy (SEM) analysis of the specimens after shearing, the improving mechanisms of polypropylene fibre and lime in the soil were discussed and the observed test results were explained. It was found that fibre content, lime content and curing duration had significant influence on the engineering properties of the fibre–lime treated soil. An increase in lime content resulted in an initial increase followed by a slight decrease in unconfined compressive strength, cohesion and angle of internal friction of the clayey soil. On the other hand, an increase in lime content led to a reduction of swelling and shrinkage potential. However, an increase in fibre content caused an increase in strength and shrinkage potential but brought on the reduction of swelling potential. An increase in curing duration improved the unconfined compressive strength and shear strength parameters of the stabilized soil significantly. Based on the SEM analysis, it was found that the presence of fibre contributed to physical interaction between fibre and soil whereas the use of lime produced chemical reaction between lime and soil and changed soil fabric significantly.  相似文献   

7.
Swelling behavior of expansive soil has always created problems in the field of geotechnical engineering. Generally, the method used to assess the swelling potential of expansive soil from its plasticity index, shrinkage limit and colloidal content. Alternative way to evaluate swelling behavior is from its expansive index (EI) and swelling pressure value. The present study investigates the reduction of EI and swelling pressure for kaolinite and bentonite clay when mixed with various percentages of Ottawa sand and Class C fly ash. The percentages of Ottawa sand and Class C fly ash used were 0–50 % by weight. The results show that there is a significant reduction in the swelling properties of expansive soil with the addition of Ottawa sand and Class C fly ash. The reduction in EI ranged approximately from 10 to 50 and 4 to 49 % for kaolinite and bentonite clay, respectively. Also the maximum swelling pressure of kaolinite and bentonite clay decreased approximately 93 and 64 %, respectively with the addition of various percentages of Ottawa sand and Class C fly ash. Standard index properties test viz., liquid limit, plastic limit and linear shrinkage test were conducted to see the characteristics of expansive soil when mixed with less expansive sand and fly ash. Also, for these expansive soils one dimensional consolidation test have been conducted with sand and fly ash mixtures and the results were compared with pure kaolinite and bentonite clay.  相似文献   

8.
Stabilization of desert sands using municipal solid waste incinerator ash   总被引:1,自引:0,他引:1  
This paper presents experimental results on the use of incinerator ash in stabilizing desert sands for possible use in geotechnical engineering applications. The incinerator ash was added in percentages of 2, 4, 8, 10 and 12%, by dry weight of sand. Laboratory tests such as compaction, unconfined compression, shear box and hydraulic conductivity were performed to measure the engineering characteristics of the stabilized material. The results showed substantial improvements in unconfined compressive strength and shear strength parameters (c and φ). Thus, incinerator ash can be used to improve the shear strength characteristics of desert sands. The permeability of the sand–incinerator ash mixture was relatively low.  相似文献   

9.
The present research work deals with an expansive high plastic clayey soil with cement kiln dust (CKD) and stabilizer (RBI Grade 81). The physical and engineering properties of soil are plasticity, compaction, unconfined compressive strength (UCS), consolidation and California bearing ratio (CBR) of the clayey soil and clay treated with CKD and stabilizer were determined. Soil chemistry was examined before and after treatment using scanning electron microscope (SEM) and elemental dispersive spectrometer. The clay mixed with CKD, CKD and RBI Grade 81 was found that optimum contents are 10 % (CKD), 15 % CKD with 4 % RBI Grade 81, respectively. The result indicates that CKD alone will decrease maximum dry density and increase optimum moisture content. CKD with RBI Grade 81 slightly increases maximum dry density and decreases optimum moisture content. UCS increased with CKD alone and CKD with RBI Grade 81 from 88.3 to 976 kN/m2, respectively. CBR values were increased by the addition of CKD, CKD with RBI Grade 81 from 1.65 to 21.7 %. With the curing time of 3, 14 and 28 days, UCS and CBR values were increased due to pozzolanic reaction from cementations material. The treated soil has considerable reduction in compression index. SEM images clearly indicate the formation of CSH and CAH gel.  相似文献   

10.
This paper studies the effects of sodium-based alkaline activators and class F fly ash on soil stabilisation. Using the unconfined compressive strength test (UCS), the effectiveness of this binder is compared with that of a common cement-based binder. Influence of the activator/ash ratio, sodium oxide/ash ratio and sodium hydroxide concentration was also analysed. Sodium hydroxide concentrations of 10, 12.5 and 15 molal were used for the alkaline-activated specimens (AA), with activator/ash ratios between 1 and 2.5 and ash percentages of 20, 30 and 40 %, relatively to the total solids (soil + ash). UCS was determined at curing periods of 7, 28, 90 and 365 days, and the most effective mixtures were analysed for mineralogy with XRD. The results showed a clear increase in strength with decreasing activator/ash ratio (up to a maximum of 43.4 MPa), which is a positive result since the activator is the most expensive component in the mixture. Finally, UCS results of the cement and AA samples, at 28 days curing, were very similar. However, AA results proved to be just between 20 and 40 % of the maximum UCS obtained at 1 year curing, while cement results at 28 days are expected to be between 80 and 90 % of its maximum.  相似文献   

11.
Behavior of expansive soils stabilized with fly ash   总被引:6,自引:0,他引:6  
Expansive soils cause serious problem in the civil engineering practice due to swell and shrinkage upon wetting and drying. Disposal of fly ash, which is an industrial waste in both cost-effective and environment-friendly way receives high attention in China. In this study, the potential use and the effectiveness of expansive soils stabilization using fly ash and fly ash-lime as admixtures are evaluated. The test results show that the plasticity index, activity, free swell, swell potential, swelling pressure, and axial shrinkage percent decreased with an increase in fly ash or fly ash-lime content. With the increase of the curing time for the treated soil, the swell potential and swelling pressure decreased. Soils immediately treated with fly ash show no significant change in the unconfined compressive strength. However, after 7 days curing of the fly ash treated soils, the unconfined compressive strength increased significantly. The relationship between the plasticity index and swell-shrinkage properties for pre-treated and post-treated soils is discussed.  相似文献   

12.
At present, nearly 100 million tonnes of fly ash is being generated annually in India posing serious health and environmental problems. To control these problems, the most commonly used method is addition of fly ash as a stabilizing agent usually used in combination with soils. In the present study, high-calcium (ASTM Class C—Neyveli fly) and low-calcium (ASTM Class F—Badarpur fly ash) fly ashes in different proportions by weight (10, 20, 40, 60 and 80 %) were added to a highly expansive soil [known as black cotton (BC) soil] from India. Laboratory tests involved determination of physical properties, compaction characteristics and swell potential. The test results show that the consistency limits, compaction characteristics and swelling potential of expansive soil–fly ash mixtures are significantly modified and improved. It is seen that 40 % fly ash content is the optimum quantity to improve the plasticity characteristics of BC soil. The fly ashes exhibit low dry unit weight compared to BC soil. With the addition of fly ash to BC soil the maximum dry unit weight (γdmax) of the soil–fly ash mixtures decreases with increase in optimum moisture content (OMC), which can be mainly attributed to the improvement in gradation of the fly ash. It is also observed that 10 % of Neyveli fly ash is the optimum amount required to minimize the swell potential compared to 40 % of Badarpur fly ash. Therefore, the main objective of the study was to study the effect of fly ashes on the physical, compaction, and swelling potential of BC soils, and bulk utilization of industrial waste by-product without adversely affecting the environment.  相似文献   

13.
Performance of fine-grained soil treated with industrial wastewater sludge   总被引:1,自引:0,他引:1  
This paper is likely one of the very recent researches based on an experimental study, which aims to investigate some geotechnical performances of fine-grained soil treated with industrial wastewater sludge. The experimental program conducts the standard compaction, direct shear, California bearing ratio (CBR), and unconfined compressive strength (UCS) tests. The sludge proportions in samples of the soil + sludge mixtures are 0, 5, 10, 20, 30, 40, 50, 60, 70, and 80 % by dry weight of the mixture. The results indicate that the internal friction angle of untreated soil is significantly enhanced at most of the sludge dosages (p < 0.05). The CBR values offer that the soil quality can be improved to “good” rating quality to use “base” layers in stabilizations up to the 50 % sludge dosage. The contribution is also obtained by the UCS values that increase with the sludge addition. Moreover, the stress–strain responses promise to develop the ductility behavior due to the sludge inclusion. Consequently, the soil mixtures treated with the sludge have exhibited satisfactory geotechnical characteristics. Thus, this study suggests that the industrial wastewater sludge can be potentially employed for improvement of fine-grained soil in the stabilizations. The proposed soil stabilization with locally available industrial wastewater sludge can also provide recycling and sustainability to the environment.  相似文献   

14.
Lime stabilization is an effective way of stabilizing expansive clays, which cause significant environmental problems both as earth and foundation materials. There are considerable environmental benefits in using the in situ lime-stabilized expansive soils in the construction of road pavements, fill or foundations instead of importing valuable granular materials. However, due to high plastic nature of these clays, achieving appropriate pulverization in field applications is a difficult task. This paper presents the results of a laboratory investigation to determine the effects of soil pulverization quality on lime stabilization of a local expansive clay. Effect of mellowing the soil–lime mixtures for 24 h was also studied to find out whether this would compensate for poor pulverization. The clay studied had swelling pressures varying between 300 and 500 kN/m2 and free swell potential as high as 19%. In this study, 3, 6 and 9% lime by dry weight were used for lime-stabilized samples. Unconfined compression strength, failure strain and Secant Elasticity Modulus values were measured through unconfined compression strength testing. The results of the study showed that lime stabilization improved plasticity, workability, compressive strength, elastic moduli and swelling and compressibility behavior of the expansive clay. While mellowing did not have a definite effect on the measured strength and moduli values, soil pulverization quality considerably affected the unconfined compression strength and Secant Elasticity Modulus values. The higher the percentage passing No. 4 sieve, the higher the effectiveness of lime treatment. Based on the data obtained in this study, two original equations were derived to assign Secant Elasticity Modulus based on unconfined compression strength, for different soil pulverization qualities. Microfabric investigations conducted by Environmental Scanning Electron Microscope and Mercury Intrusion Porosimetry exposed the effect of lime stabilization on fabric, porosity and pore size distributions. The results of the study clearly demonstrated that if enough time and effort were not given to soil pulverization process in lime stabilization works in field applications, lower performance and therefore increased environmental problems should be expected.  相似文献   

15.
This study evaluates the applicability of residually derived lateritic soil stabilized with cement kiln dust (CKD), a waste product from the cement manufacturing process as liner in waste repositories. Lateritic soil sample mixed with 0–16 % CKD (by dry weight of the soil) was compacted with the British Standard Light, West African Standard and British Standard Heavy compaction efforts at water contents ranging from the dry to wet of optimum moistures. Geotechnical parameters such as Atterberg limits, compaction characteristics, hydraulic conductivity, unconfined compressive strength and volumetric shrinkage strain were determined. Results indicate that the plasticity index, the maximum dry unit weight and hydraulic conductivity together with the volumetric shrinkage decreased with increased amount of CKD while the optimum moisture content and unconfined compressive strength increased with higher CKD content for all the efforts. When measured properties were compared with standard specifications adopted by most environmental regulatory agencies for the construction of barrier systems in waste containment structures, the resulting values showed substantial compliance. Besides developing an economically sustainable liner material, the present study demonstrated effective utilization of an industrial by-product otherwise considered as waste by the producers, in addition to a systematic expansion in the use of the lateritic soil for geotechnical works.  相似文献   

16.
冻融条件TG固化剂石灰土基层性能研究   总被引:2,自引:2,他引:0  
杨林  朱金莲  焦厚滨 《冰川冻土》2015,37(4):1016-1022
为了进一步研究TG固化剂石灰土在冻融条件下的各项性能, 分别对TG固化剂石灰土进行冻融作用前后的无侧限抗压强度试验和劈裂试验以及干缩试验. 结果表明: 随着冻融循环次数的增加, 无侧限抗压强度以及劈裂强度逐渐减小, 经历8次冻融循环以后强度衰减达到最大值. 经过冻融循环作用后试件的无侧限抗压强度以及劈裂强度残留值随着含水率和压实度的增加而增加, 通过冻融试验得到的抗冻性能指标BDR值在51%以上, 与未饱水冻融循环得到的最终残留强度值保持一致. 经冻融循环作用后TG固化剂石灰土的干缩应变和干缩系数减小, 干缩性能有所提高. 冻融循环条件下TG固化剂石灰土抗冻性能良好, 可以应用于路面基层.  相似文献   

17.
An expansive tropical black clay (also known as black cotton soil because the cotton plant thrives well on it) was treated with up to 15 % locust bean waste ash (LBWA) to assess its soil improvement potential. Samples were subjected to index, compaction using three energy levels (British Standard light, BSL, West African Standard, WAS or ‘Intermediate’ and British Standard heavy, BSH), shear strength (unconfined compressive strength, UCS), California bearing ratio, CBR and durability tests. Results obtained show that the natural soil is not suitable for road construction. The maximum dry density (MDD) and optimum moisture content (OMC) decreased and increased, respectively. Regardless of the compactive effort and curing period, strength and durability properties increased with higher LBWA content with the BSL effort recording the best improvement. However, based on durability results, the optimal 12.5 % LBWA treatment of black cotton soil did not satisfy criteria for its use in road construction as a stand alone additive. Also, significant improvement in soil properties was obtained using the BSL compactive effort, which is easily achieved in the field. The benefits of the application include reduction in the cost of soil improvement and the adverse environmental impact of locust bean waste.  相似文献   

18.
水泥粉煤灰加固有机质土的试验研究   总被引:3,自引:0,他引:3  
对于高有机质含量的泻湖相软土,单纯采用水泥不能有效提高该软土的力学性能,因此提出了采用水泥和粉煤灰作为固化剂的加固方法。通过不同水泥掺入量、粉煤灰掺入量和龄期下水泥土的无侧限抗压强度试验,分析了水泥粉煤灰固化土的强度规律和变形规律,探讨了水泥和粉煤灰加固高有机质含量软土的机理。结果表明,粉煤灰对于水泥试块的早期强度影响较小,对后期强度影响较大;粉煤灰最佳掺入量为12%,超过此掺入量水泥土强度反而会降低,粉煤灰水泥土的破坏应变、E50也在粉煤灰掺量为12%时分别达到最低值和最大值。水泥掺加粉煤灰可有效地提高高有机质含量软土的强度。  相似文献   

19.
干密度和含水率对稻草加筋土强度与变形的影响   总被引:3,自引:0,他引:3  
以防腐处理后的稻草加筋滨海盐渍土,完成了三种干密度和三种含水率的稻草加筋土的抗压实验和三轴UU压缩实验。结果表明:干密度较大时,加筋土的抗压强度和抗剪强度较高,达到峰值强度的应变较大,即抗变形能力较强;随含水率的增加,加筋土的强度降低,抗变形能力减弱;加筋稻草增强了土的抗变形能力,提高了土的粘聚力,但对内摩擦角的影响很小;在最优含水率和最大干密度下,加筋效果最优。   相似文献   

20.
Stabilization of fuel oil contaminated soil—A case study   总被引:1,自引:0,他引:1  
Fuel oil contamination brings adverse effect on basic geotechnical properties of foundation soil. The present study pertains to one such case, from the petrochemical complex near Vadodara City in Gujarat State, India. Here, the fuel oil contaminated soil samples exhibit drastic changes in their geotechnical parameters. Noteworthy among such deleterious changes are: decrease in maximum dry density (–4%), cohesion (–66%), angle of internal friction (–23%) and unconfined compressive strength (UCS) (–35%) and increase in liquid limit (+11%). An attempt has been made to stabilize the contaminated soil using various additives viz., lime, fly ash and cement independently as well as an admixture of different combinations. It is apparent from the test results that the stabilization agents improved the geo-technical properties of the soil by way of cation exchange, agglomeration, and pozzuolanic actions. The best results were observed when a combination of 10% lime, 5% fly ash and 5% cement was added to the contaminated soil. The improvement in unconfined compressive strength (UCS), cohesion and angle of internal friction can be attributed to neo-formations such as Calcium Silicate Hydrates (CSH, CSH-1) that coats and binds the soil particles. Formation of stable complex between oil and metallic cations, results in reduction of leachableoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号