首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Southeast Asia comprises collage of continental blocks that were rifted out in phases from the northern parts of the Gondwanic Indo-Australian continent during the Paleozoic-Mesozoic time and were accreted through continental collision process following closure of the Paleo- and Neo-Tethys. The South China and Indo-China blocks were possibly rifted during early Palaeozoic, whereas, the Tibetan and SIBUMASU blocks were rifted during Permo-Carboniferous when the said margin was under glacial and/or cool climatic condition. The Indo-Burma-Andaman (IBA), Sikule, Lolotoi blocks were also rifted from the same Indo-Australian margin but during late Jurassic. This was followed by break-up of the Indian and the Australian continents during early Cretaceous. The opening of the Indian Ocean during the Tertiary was synchronous with closing of the Tethys.India-Asia collision during early-middle Eocene was a mega tectonic event. Apart from initiating the Himalayan orogeny and the eastward strike-slip extrusion of the Indochina block from the Southeast Asian continental collage along the Ailao Shan — Red River shear zone, it also caused early-mid Eocene continental-flood-basalt activity in the Himalayan foreland basin. Indian continent's post-collisional indentation-induced syntaxial buckling of Asian continental collage at its eastern end possibly caused late Paleogene highly potassic magmatism around the Gongha syntaxial area that was located close to the sutured margin of South China continent with Indochina block at the outer fringe of Namche Barwa syntaxis. These magmatic bodies are soon after left-laterally displaced by the Ailao Shan — Red River shear zone. The nature and chemistry of magma at these two settings indicate that both groups result from similar petrogenetic and tectonic processes representing deep-seated melts due to mantle decompression. Some deep faults produced at the edge of flexed Indian continental lithosphere and responsible for the development of the foreland basin may have produced continental-flood-basalt and related magma by decompressional melting of enriched sub-continental mantle. The site-specific location and time sequence of magmatism from the marginal parts of South China continent and located at the outer fringe of Namche Barwa syntaxis are strongly significant. It suggests that these magmatic bodies may also be genetically related to the India-Asia collision process and indentation-induced syntaxial buckling of upper mantle beneath the marginal parts of the South China rigid continent.  相似文献   

2.
喜马拉雅特提斯中、新生代属印度板块北部被动大陆边缘。对充填这个被动大陆边缘的沉积物用“反剥法”(backstrippiog)进行研究,恢复了从被动大陆边缘到前陆盆地的抓降史。对分离出的盆地构造沉降曲线与McKenzie模式图版进行对比相关性分析,判断认为被动大陆边缘成熟期主要为热耗散沉降,前陆盆地时逆冲推覆动力为主要影响因素。  相似文献   

3.
西藏南部聂拉木—定日地区沉积地层记录着侏罗纪被动大陆边缘到白垩纪前陆盆地的盆—山转换演化历史。侏罗纪发育巨大的海侵—海退沉积序列,晚侏罗世喜马拉雅特提斯海底扩张速度明显加快,从0.32 cm/a上升为1.24 cm/a。前陆盆地演化分为早期深水复理石和晚期海相磨拉石两个阶段。前陆早期发育向上急剧加深的深水砂泥质复理石建造、黑色页岩建造和岛弧型火山岩建造沉积;前陆晚期海相磨拉石沉积总体表现为向上变粗、变浅的沉积序列。  相似文献   

4.
位于青藏高原南部的冈底斯岩浆弧形成于中生代新特提斯大洋岩石圈的长期俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,已经成为研究汇聚板块边缘岩浆作用和大陆地壳生长与再造的天然实验室。基于对现有研究成果的总结,我们将冈底斯岩浆弧的岩浆构造演化划分为5个阶段:第1阶段发生在晚白垩世之前,以新特提斯洋岩石圈长期正常俯冲和钙碱性弧岩浆岩的发育为特征;第2阶段发生在晚白垩世时期,以活动的新特提斯洋中脊发生俯冲和强烈的岩浆作用与显著的新生地壳生长为特征;第3阶段发生在晚白垩世晚期,以残余的新特提斯大洋岩石圈俯冲和正常弧型岩浆作用为特征;第4阶段发生在古新世至中始新世,以印度与亚洲大陆碰撞、俯冲的新特提斯洋岩石圈回转和断离,及其诱发的幔源岩浆作用、新生和古老地壳的强烈再造为特征;第5阶段为发生在晚渐新世到中中新世的后碰撞阶段,深俯冲印度岩石圈的回转和断离,或加厚岩石圈地幔的对流移去导致了加厚下地壳的部分熔融和埃达克质岩石的广泛发育,同时伴随幔源钾质超钾质岩浆作用。冈底斯弧岩浆作用与岩浆成分的系统时空变化很好地记录了从新特提斯洋俯冲到印度亚洲大陆碰撞的完整构造演化过程。  相似文献   

5.
The Xiukang Mélange of the Yarlung-Zangbo suture zone in south Tibet documents low efficiency of accretion along the southern active margin of Asia during Cretaceous Neotethyan subduction, followed by final development during the early Paleogene stages of the India–Asia collision. Here we present integrated petrologic, U–Pb detrital-zircon geochronology and Hf isotope data on different types of sandstone blocks in the Xiukang Mélange. Three groups of sandstone blocks with different provenance and depositional setting are distinguished by their petrographic, geochronological and isotopic fingerprints. Blocks of turbiditic quartzarenite originally sourced from the Indian continent were deposited in pre-Cretaceous time on the northernmost edge of the Indian passive margin and eventually involved into the mélange at the early stage of the India–Asia collision. Two distinct groups of volcaniclastic-sandstone blocks were derived from the central Lhasa block and Gangdese magmatic arc. One group was deposited in the trench and/or on the trench slope of the Asian margin during the early Late Cretaceous, and the other group in a syn-collisional basin just after the onset of the India–Asia collision in the Early Eocene. The largely erosional character of the Asian active margin in the Late Cretaceous is indicated by the scarcity of off-scraped trench-fill deposits and the relatively small subduction complex developed during limited episodes of accretion. The Xiukang Mélange was finally structured in the Late Paleocene/Eocene, when sandstone blocks of both Indian and Asian origin were progressively incorporated tectonically in the suture zone of the nascent Himalayan Orogen.  相似文献   

6.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

7.
中、上扬子北部盆-山系统演化与动力学机制   总被引:5,自引:0,他引:5       下载免费PDF全文
中国南方中生代经历了中国大陆最终主体拼合的陆缘及其之后的陆内构造演化。晚古生代末期,在秦岭—大别山微板块与扬子板块之间存在向西张口的洋盆,即勉略古洋盆。中三叠世末期开始,扬子板块相对于华北板块发生自南东向北西的斜向俯冲碰撞作用,扬子北缘晚三叠世至中侏罗世发育陆缘前陆褶皱逆冲带与前陆盆地系统。晚侏罗世至早白垩世,中国东部的大地构造背景发生了重要的构造转变,中、上扬子地区处于三面围限会聚的大地构造背景。在这种大地构造格局下,中、上扬子地区晚侏罗世至早白垩世发育陆内联合、复合构造与具前渊沉降的克拉通内盆地系统。自中侏罗世末期开始,扬子北缘前陆带与雪峰山—幕阜山褶皱逆冲带经历了自东向西的会聚变形过程及盆地的自东向西的迁移过程和收缩过程。扬子北缘相对华北板块的斜向俯冲导致在中扬子北缘的深俯冲及超高压变质岩的形成。俯冲之后以郯庐断裂—襄广断裂围限的大别山超高压变质地块在晚侏罗世向南强逆冲,致使扬子北缘晚三叠世至中侏罗世前陆盆地被掩覆和改造。  相似文献   

8.
Abstract

— Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya.

During the Early Cretaceous, the Indian passive margin recorded basaltic magmaüc activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt.

Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement.

The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.  相似文献   

9.
The compression and attendant deformation of a thick and vast sedimentary prism formed since Early Riphean times on the northern continental margin of the Indian craton gave rise to the Himalaya mountains as a result of convergence and collision of the Indian and Asian plates. The oceanic trench-sediments, tectonically implanted with sea-floor material and intimately associated with calc-al-kaline volcanics in the narrow Sindhu-Tsangpo belt extending from Kohistan through Dras, Leh, Darchen (Mansarovar) to Shigatse and beyond, represent the subduction-island arc complex which developed south of the dynamic southern margin of the Asian continent and was welded to the colliding Indian plate during the late Eocene to Oligocene period. This complex is fringed to the north by a wide zone of Andean-type granitic bodies. The evolution of the Himalayan orogen is closely connected with the development of the present-day Andaman-Nicobar-Indonesia island arc-subduction system in the southeast and the Makran Ranges-Oman Trench in the southwest.The evolution of the Himalaya was accomplished in four major phases of tectonic upheaval during the late Cretaceous to Palaeocene (Karakoram phase), late Eocene to Oligocene (Malla Johar phase), middle Miocene to Pontian (Sirmurian phase), and late Pliocene to middle Pleistocene (Siwalik phase). While the Karakoram phase marks the convergence of continents and the Malla Johar phase represents the collision and subduction, it was during the Sirmurian upheaval that the main tectonic features developed and the Himalaya acquired its distinctive structural complexion  相似文献   

10.
The Upper Cretaceous (Turonian-Campanian) Muti Formation (Sayja Member) documents the transition from a passive continental margin to a foreland basin, related to overthrusting of continental margin and ophiolitic nappes derived from the Tethys ocean. Upper Cretaceous northeastward subduction culminated in collision of a trench with the Arabian margin. As the trench docked with the margin the lithosphere was flexed, forming a peripheral bulge that migrated cratonward with time. The platform edge was initially uplifted (Turonian) and deeply eroded, creating the ‘Wasia-Aruma break’. After passage of the peripheral bulge subsidence began, with accumulation first of ferruginous crusts on hardgrounds. Lime-muds were then deposited on a deepening unstable sea-floor, along with phosphatic nodules and crusts (Turonian-Coniacian). Passage of the overthrust load over the Arabian continental-margin edge downflexed the lithosphere (Santonian-Campanian), resulting in drastic foundering of the old shelf edge to form a foredeep. Upper platform horizons collapsed as slump-sheets and debris-flows. Limestone blocks and lithoclastic debris-flows were shed by mass-wasting of the already deeply eroded old platform edge. Mud and silt were derived from the uplifted Arabian continent and deposited by mainly gravitational processes in a foredeep below the C.C.D. Subsidence of the Arabian platform edge allowed the Semail ophiolite nappe finally to override the Muti basin (late Campanian) with little internal deformation. Submarine emplacement is suggested by the absence of ophiolitic detritus in the Muti Formation. The stratigraphic evolution of the Muti Formation is in good general agreement with a model of the transition of an old, thermally mature, passive continental margin to a foreland basin, where the emplaced load is submerged.  相似文献   

11.
The Himalayan range is one of the best documented continent-collisional belts and provides a natural laboratory for studying subduction processes. High-pressure and ultrahigh-pressure rocks with origins in a variety of protoliths occur in various settings: accretionary wedge, oceanic subduction zone, subducted continental margin and continental collisional zone. Ages and locations of these high-pressure and ultrahigh-pressure rocks along the Himalayan belt allow us to evaluate the evolution of this major convergent zone.

(1) Cretaceous (80–100 Ma) blueschists and possibly amphibolites in the Indus Tsangpo Suture zone represent an accretionary wedge developed during the northward subduction of the Tethys Ocean beneath the Asian margin. Their exhumation occurred during the subduction of the Tethys prior to the collision between the Indian and Asian continents.

(2) Eclogitic rocks with unknown age are reported at one location in the Indus Tsangpo Suture zone, east of the Nanga Parbat syntaxis. They may represent subducted Tethyan oceanic lithosphere.

(3) Ultrahigh-pressure rocks on both sides of the western syntaxis (Kaghan and Tso Morari massifs) formed during the early stage of subduction/exhumation of the Indian northern margin at the time of the Paleocene–Eocene boundary.

(4) Granulitized eclogites in the Lesser Himalaya Sequence in southern Tibet formed during the Paleogene underthrusting of the Indian margin beneath southern Tibet, and were exhumed in the Miocene.

These metamorphic rocks provide important constraints on the geometry and evolution of the India–Asia convergent zone during the closure of the Tethys Ocean. The timing of the ultrahigh-pressure metamorphism in the Tso Morari massif indicates that the initial contact between the Indian and Asian continents likely occurred in the western syntaxis at 57 ± 1 Ma. West of the western syntaxis, the Higher Himalayan Crystallines were thinned. Rocks equivalent to the Lesser Himalayan Sequence are present north of the Main Central Thrust. Moreover, the pressure metamorphism in the Kaghan massif in the western part of the syntaxis took place later, 7 m.y. after the metamorphism in the eastern part, suggesting that the geometry of the initial contact between the Indian and Asian continents was not linear. The northern edge of the Indian continent in the western part was 300 to 350 km farther south than the area east of the Nanga Parbat syntaxis. Such “en baionnette” geometry is probably produced by north-trending transform faults that initially formed during the Late Paleozoic to Cretaceous Gondwana rifting. Farther east in the southern Tibet, the collision occurred before 50.6 ± 0.2 Ma. Finally, high-pressure to ultrahigh-pressure rocks in the western Himalaya formed and exhumed in steep subduction compared to what is now shown in tomographic images and seismologic data.  相似文献   


12.
In the Ladakh area of India, a passive Triassic to Lower Cretaceous continental margin is indicated by Indian-shield-derived clastics on the shelf and Atlantic-type turbidites off the continental margin. Mid-Cretaceous initiation of ocean closing is reflected in Pacific-type flysch and associated island are volcanics, which were initially emplaced over the northern Indian continental margin in late Cretaceous times-resulting in the formation of a fore-deep in which flysch and minor continental molasse accumulated briefly during the late Cretaceous. These transient uplifts were, however, rapidly destroyed for by the latest Cretaceous to latest Palaeocene, uniform carbonate sediments were being laid down over the area.

With the early Eocene, the development of a second fore-deep, this time filled with very thick flysch and molasse sediment, indicates a major uplift of the northern Indian margin, which we attribute to the development of an Andean-type magmatic arc on the northern edge of the Indian plate. Uplift and molasse sedimentation in this fore-deep continued through the Oligocene and Miocene, when the collision of India and Asia caused extensive deformation of all the sequences and the shift of molasse sedimentation southwards to the Himalaya foothills and Indo-Gangetic plain.  相似文献   


13.
万晓樵 《地学前缘》2020,27(6):116-127
有孔虫化石资料是地质历史的真实记录,对不同地质时期古地理格局和生态环境的变迁具有动态响应。西藏特提斯构造带的演化、板块相对地理位置变迁等诸多问题一直是地学界关注的热点。研究西藏特提斯沉积盆地内有孔虫动物群的古生态特征和古地理分布,能够识别生物地理区系,进而恢复不同时期的大地构造演化格局。西藏地区中、新生代古生物地理区系的分化是西藏特提斯地质演变的具体反映。西藏南部早侏罗世产底栖大有孔虫Orbitopsella喜暖动物群,晚侏罗世出现双壳类Buchia喜冷动物群。由此推测,侏罗纪新特提斯洋扩张尤其是中大西洋的开张,将位于印度大陆北缘的特提斯喜马拉雅带,从早侏罗世较低纬度的温暖位置向南推移至较高纬度的低温地区。白垩纪中期Orbitolina有孔虫类群繁盛于特提斯北侧亚洲大陆的拉萨地块和羌塘盆地,但没有出现在印度大陆。这说明当时印度大陆已脱离冈瓦纳大陆向北漂移,受四周深水环境的阻隔,Orbitolina动物群未能向印度大陆扩散。此时深水环境中生活着浮游有孔虫Ticinella-Rotalipora动物群。Turonian晚期开始形成海退,拉萨地块的海洋环境基本消失。Coniacian-Campanian早期印度大陆北缘浮游有孔虫继续占优势,繁盛Marginotruncana-Globotruncana动物群。直至白垩纪末,印度和欧亚大陆之间的深海阻隔仍然存在,雅鲁藏布江缝合带两侧动物群一直存在根本性差异。印度大陆北缘发育着Orbitoides-Omphaloceclus 动物群,冈底斯南缘则以Lepidorbitoides-Pseudorbitoides动物群为特征。古新世Danian期生态环境发生变化,显示大印度与亚洲大陆发生初始碰撞(66~61 Ma)。Selandian期之后,缝合带两侧才出现相同的Miscellanea-Daviesina有孔虫类群,生物区系的分异基本结束。始新世早期缝合带两侧为完全相同的生物区系,共同发育底栖大有孔虫Nummulites-Discocyclina动物群。有孔虫古地理证据表明,大印度与欧亚大陆的初始碰撞在古新世早期发生,时间大致在Danian期,沿雅鲁藏布缝合带的深海演变为残留海环境。小个体货币虫Nummulites willcoxi和浮游有孔虫Globigerina ouachitaensis的存在,代表特提斯喜马拉雅最高海相沉积,时代属于始新世Priabonian晚期(35~34 Ma)。随后,特提斯喜马拉雅海封闭,海水完全退出西藏境内。  相似文献   

14.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚和生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞,碰撞如何使大陆变形的过程,是全球关切的科学奥秘。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。20多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho清晰结构的技术瓶颈,揭露了陆陆碰撞过程。本文在探测研究成果基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂而不是龙门山断裂是扬子板块的西缘边界,高原腹地Moho 薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,印度地壳不仅沿雅鲁藏布江缝合带存在由西向东的俯冲角度变化,而且其向北行进到拉萨地体内部的位置也不同。在缝合带中部,显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程发生物质的回返与构造叠置,使印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射,以及近于平的Moho都反映出亚洲板块南缘的伸展构造环境。  相似文献   

15.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

16.
冈底斯岩浆弧的形成与演化   总被引:10,自引:6,他引:4  
位于青藏高原南部的冈底斯岩浆弧是新特提斯大洋岩石圈长期俯冲导致的中生代岩浆作用的产物,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用,是世界上典型的复合型大陆岩浆弧,也是研究增生与碰撞造山作用和大陆地壳生长与再造的天然实验室。基于岩浆、变质和成矿作用研究成果,我们将冈底斯弧的形成与演化历史划分5期,即新特提斯洋早期俯冲、新特提斯洋中脊俯冲、新特提斯洋晚期俯冲、印度-亚洲大陆碰撞和后碰撞期。第1期发生在晚白垩世之前,是以新特提斯洋岩石圈的长期俯冲、地幔楔部分熔融形成钙碱性弧岩浆岩为特征。长期的幔源岩浆作用导致了整个冈底斯弧发生显著的新生地壳生长,并在岩浆弧西部形成了一个大型的与俯冲相关的斑岩型铜矿。第2期发生在晚白垩世,活动的新特提斯洋中脊发生俯冲,软流软圈沿板片窗上涌,使上升的软流圈、地幔楔和俯冲洋壳发生部分熔融,导致了强烈的幔源岩浆作用和显著的新生地壳生长与加厚,并以不同类型和不同成分岩浆岩的同时发育和伴随的高温变质作用为特征。第3期发生在晚白垩世晚期,为新特提斯洋脊俯冲后残余大洋岩石圈的俯冲期,以正常的弧型岩浆作用为特征。第4期发生在古新世至中始新世,伴随印度与亚洲大陆的碰撞,俯冲的新特提斯洋岩石圈回转和断离引起软流圈上涌,诱发了强烈的幔源岩浆作用。在此阶段,大陆碰撞导致的地壳挤压缩短和幔源岩浆的底侵与增生,使冈底斯弧经历了显著的地壳生长和加厚,新生和古老加厚下地壳的高压、高温变质和部分熔融,幔源和壳源岩浆岩的共生和强烈的岩浆混合。所形成的I型花岗岩大多继承了新生地壳弧型岩浆岩的化学成分,并多显出埃达克岩的地球化学特征。在岩浆弧北部形成了一系列与起源于古老地壳花岗岩相关的Pb-Zn矿床。第5期发生在晚渐新世到早-中中新世的后碰撞挤压过程中,以地壳的继续加厚,加厚下地壳的高温变质、部分熔融和埃达克质岩石的形成为特征。在岩浆弧东段南部形成了一系列与起源于新生加厚下地壳埃达克质岩石相关的斑岩型Cu-Au-Mo矿。冈底斯带的多期岩浆、变质与成矿作用为其从新特提斯洋俯冲到印度-亚洲大陆碰撞的构造演化提供了重要限定。  相似文献   

17.
Tectonics of Northeast Asia: An overview   总被引:1,自引:0,他引:1  
The tectonic units of the Verkhoyansk-Chukotka Mesozoides and the Koryak-Kamchatka Fold Region substantially differ from each other in the structure and composition of terranes. The geodynamic settings of terrane formation are defined and the main stages of their tectonic history are reconstructed. The formation of Mesozoides was mainly controlled by collision, largely between the continent and the Kolyma-Omolon and Chukchi microcontinents. The accretionary structure of the Koryak Highland comprises various terranes transported by Pacific plates and docked to the Asian continent, periodically accreting its margin. The following evolutionary stages are established: destruction of the North Asian continent (Ordovician, Late Devonian-Early Carboniferous, Permian-Triassic); amalgamation (Middle Jurassic for Kolyma and Mid-Cretaceous for Koryak terranes); collision (terminal Early Cretaceous); and continental growth (terminal Early Cretaceous, terminal Late Cretaceous, middle Eocene).  相似文献   

18.
In order to reconstruct tectonic evolution history of the southern margin of Asia (i.e., Lhasa terrane) before the India-Asia collision, here we present a comprehensive study on the clastic rocks in the southern Lhasa terrane with new perspectives from sedimentary geochemistry, detrital zircon geochronology and Hf isotope. Clasts from the Jurassic-Early Cretaceous sedimentary sequences (i.e., Yeba and Chumulong Formations) display high compositional maturity and experienced moderate to high degree of chemical weathering, whereas those from the late Early-Late Cretaceous sequences (Ngamring and Shexing Formations) are characterized by low compositional maturity with insignificant chemical weathering. Our results lead to a coherent scenario for the evolution history of the Lhasa terrane. During the Early-Middle Jurassic (∼192-168Ma), the Lhasa terrane was speculated to be an isolated geological block. The Yeba Formation is best understood as being deposited in a back-arc basin induced by northward subduction of the Neo-Tethys ocean with sediments coming from the interiors of the Lhasa terrane. The Middle Jurassic-Early Cretaceous Lhasa-Qiangtang collision resulted in the formation of a composite foreland basin with southward-flowing rivers carrying clastic materials from the uplifted northern Lhasa and/or Qiangtang terranes. During the late Early-Late Cretaceous (∼104-72Ma), the Gangdese magmatic arc was uplifted rapidly above the sea level, forming turbidites (Ngamring Formation) in the Xigaze forearc basin and fluvial red beds (Shexing Formation) on the retro-arc side. At the end of Late Cretaceous, the Lhasa terrane was likely to have been uplifted to high elevation forming an Andean-type margin resembling the modern South America before the India-Asia collision.  相似文献   

19.
The Tibetan block originated during the late Palaeozoic-early Mesozoic by separation from Gondwanic India and the opening of Neo-Tethys. The event, which was responsible for reactivating the Tibetan basement, closed Palaeo-Tethys, lying to the north of it, and created the Kun Lun fold system as a consequence of the collision of the north-moving Tibetan block with the Tarim—Tsaidam block.During the late Cretaceous, South Tibet developed into an Andean-type foldbelt (Nyenchen Thangla) by subduction of Neo-Tethyan lithosphere beneath Tibet which had begun in the late Triassic. Mesozoic sedimentary sequences in Tibet are the response to an extensional regime behind an active margin. A Neo-Tethys island arc system at this margin was crushed during the early Eocene with the development of the Transhimalayan ophiolite and plutonic belts. Final collision during mid-Eocene times between the Himalayan microcontinent, a fragment of India and reworked Tibet in the Mid-Eocene produced the Indus—Tsangpo suture zone. A large part of the microcontinent, with an unconsumed segment of Neo-Tethys oceanic crust attached to it, presumably underthrust Tibet prior to the Himalayan orogeny. This feature is responsible for the double thickness of Tibetan crust and its young volcanism.  相似文献   

20.
East and Southeast Asia is a complex assembly of allochthonous continental terranes, island arcs, accretionary complexes and small ocean basins. The boundaries between continental terranes are marked by major fault zones or by sutures recognized by the presence of ophiolites, mélanges and accretionary complexes. Stratigraphical, sedimentological, paleobiogeographical and paleomagnetic data suggest that all of the East and Southeast Asian continental terranes were derived directly or indirectly from the Iran-Himalaya-Australia margin of Gondwanaland. The evolution of the terranes is one of rifting from Gondwanaland, northwards drift and amalgamation/accretion to form present day East Asia. Three continental silvers were rifted from the northeast margin of Gondwanaland in the Silurian-Early Devonian (North China, South China, Indochina/East Malaya, Qamdo-Simao and Tarim terranes), Early-Middle Permian (Sibumasu, Lhasa and Qiangtang terranes) and Late Jurassic (West Burma terrane, Woyla terranes). The northwards drift of these terranes was effected by the opening and closing of three successive Tethys oceans, the Paleo-Tethys, Meso-Tethys and Ceno-Tethys. Terrane assembly took place between the Late Paleozoic and Cenozoic, but the precise timings of amalgamation and accretion are still contentious. Amalgamation of South China and Indochina/East Malaya occurred during the Early Carboniferous along the Song Ma Suture to form “Cathaysialand”. Cathaysialand, together with North China, formed a large continental region within the Paleotethys during the Late Carboniferous and Permian. Paleomagnetic data indicate that this continental region was in equatorial to low northern paleolatitudes which is consistent with the tropical Cathaysian flora developed on these terranes. The Tarim terrane (together with the Kunlun, Qaidam and Ala Shan terranes) accreted to Kazakhstan/Siberia in the Permian. This was followed by the suturing of Sibumasu and Qiangtang to Cathaysialand in the Late Permian-Early Triassic, largely closing the Paleo-Tethys. North and South China were amalgamated in the Late Triassic-Early Jurassic and finally welded to Laurasia around the same time. The Lhasa terrane accreted to the Sibumasu-Qiangtang terrane in the Late Jurassic and the Kurosegawa terrane of Japan, interpreted to be derived from Australian Gondwanaland, accreted to Japanese Eurasia, also in the Late Jurassic. The West Burma and Woyla terranes drifted northwards during the Late Jurassic and Early Cretaceous as the Ceno-Tethys opened and the Meso-Tethys was destroyed by subduction beneath Eurasia and were accreted to proto-Southeast Asia in the Early to Late Cretaceous. The Southwest Borneo and Semitau terranes amalgamated to each other and accreted to Indochina/East Malaya in the Late Cretaceous and the Hainanese terranes probably accreted to South China sometime in the Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号