首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate connections between deep tectonic and halokinetic structures and the development of recent topography, GIS-based calculation of correlation coefficients was carried out between different stratigraphic horizons of the deep Northwest German Basin (NGB) according to the “Geotektonischer Atlas von NW-Deutschland” and surface topography of Schleswig-Holstein. The results show seven areas of high correlation that are traceable from the Base Zechstein up to the recent surface topography. Five areas with high correlation are connected to NNE–SSW trending salt structures within the Glückstadt Trough, i.e. the area of the salt domes Oldensworth, Tellingstedt, Eisendorf and, to the north of Hamburg, the area of the salt domes Elmshorn and Sievershütten. Two areas, however, with NW–SE trending high correlation are located in the northwest (restricted to the Westschleswig Block) and the northeast (south of Fehmarn) outside the Glückstadt Trough. These NW–SE trending correlation areas are not related to known salt structures and/or faults but match the general orientation of faults in the NGB.  相似文献   

2.
The Cenozoic deformation of the Alxa Block resulted directly from the evolution of the northern Qinghai-Tibetan Plateau. However, many data show that the deformation occurred only in the Middle-Late Miocene. Our studies show that the Altyn Tagh fault did not pass through the Alxa Block; on the contrary it went along the southern boundary of the Jintai-Huahai Basin, linking with the Helishan—southern Longshoushan fault. Due to important tectonic events in the northern Qinghai-Tibetan plateau during the Middle-Late Miocene time, the northern plateau underwent rapid uplift and the plateau compressed the Hexi Corridor Region, resulting in a change from NS-trending to EW-trending structures in the Jinta-Huahai basin, and in the development of compressive structures in the Beishan. The southern Alxa fault underwent right lateral movement, and in the northern and central parts of the block, NS-trending Tertiary extensional structures formed. These basins controlled by Tertiary faults are similar to basins developed by lateral extrusion with a strong foreland and weak limited boundaries. The authors suggest that a regional “conjugate” fault system resulted from nearly NS-trending compression from the Qinghai-Tibetan Plateau during the Miocene and Pliocene in the Alxa Block and southern Mongolia. And due to the control of early structures in these regions, most brittle faults reactivated earlier ductile faults; NW–SE faults along the Altai Mountain and NE–SW faults to the southeast in Mongolia consist of a “conjugate” fault system to the north. The Altyn Tagh fault and southern Helishan-Longshoushan fault comprise a “conjugate” fault system to the south. The Beishan and Jinta-Huahai Basin occupied the convergent area between these two sets of faults; the compression controlled the Tertiary deposition and led to the development of the Cenozoic Jinta-Huahai Basin. The Alxa Block bounded by these two sets of faults moved eastwards, which resulted in the development of Cenozoic compressive structures to the west of Helan Shan, and superimposed early ductile shear zones along the northeastern and southwestern boundaries of the Alxa Block respectively. This model could explain the Cenozoic deformation occurring in and around the Alxa region.  相似文献   

3.
The South Indian (Peninsular) Shield which includes both the Eastern and Western Continental Margins of India is not as stable as it was originally thought of. The importance of intraplate seismicity within this Shield has recently been realized with some devastating earthquakes that occurred during the last few decades. It is also significant to note that most of the Precambrian tectonic lineaments in this Shield are oriented in either a NW–SE or W–E direction, joining the eastern offshore. In contrast, the western margin has an elevated coast, associated with a linear coast parallel escarpment, particularly on the southern side, superimposed by Deccan Trap volcanics on the northern side. The fault reactivation and the associated seismicity are hence more predominant on the east coast. Recent geophysical studies delineated land–ocean tectonics (LOTs) over the eastern margin, in some cases associated with moderate seismicity as a result of the compressional stress acting on the Indian Plate. Though the Eastern Continental Margin of India (ECMI) is considered as a passive margin, coastal seismicity due to the reactivation of the pre-existing tectonic lineaments extending offshore represents a potential natural hazard. In this context, the ECMI appears to be much more vulnerable compared to its counterpart on the west.  相似文献   

4.
The magnetic fabric of Late Miocene sediments from the southern Pannonian basin was studied on oriented samples collected from 19 geographically distributed localities. All of them are characterized by near-horizontal magnetic foliation plane after tilt correction, indicating weak deformation. Well-developed lineations were observed for 16 localities, which are interpreted as due to compressional/transpressional deformation, except from three localities, where the fabric must have been formed in an extensional setting. Comparison between the orientation of the map-scale folds and faults and magnetic lineation directions shows that magnetic lineation is either related to NNE-SSW directed compression, leading to the formation of folds or it can be connected to NW–SE or NNE-SSW trending dextral faults.  相似文献   

5.
In a sector placed in the SE part of the Alps–Apennine junction, a kilometre-scale shear zone has been identified as the Grognardo thrust zone (GTZ), which caused the NE-directed thrusting of metaophiolites (Voltri Group) and polymetamorphic continental crust slices (Valosio Unit) of Ligurian Alps onto Oligocene sediments of an episutural basin known as “Tertiary Piemonte Basin”. The structural setting of the GTZ is due to syn- to late-metamorphic deformation, followed by a brittle thrusting that occurred in the Late Aquitanian times and can thus be related to one of the main contractional tectonic events suffered by northern Apennines. The GTZ was then sealed by Lower Burdigalian carbonate platform sediments (Visone Formation). Transtensive faulting followed in post-Burdigalian times along NW–SE regional faults and displaced the previously coupled sedimentary and metamorphic units. The GTZ thus underwent a plastic-to-brittle evolution, during which carbonate-rich fluids largely sustained the deformation. In these stages, a complex vein network originated within both the metamorphic and sedimentary rocks. Field data and stable isotopic analyses (13C and 18O) of bulk rocks and veins show that fluid–rock interaction caused the carbonatisation of the rocks in the late-metamorphic stages and the cataclasis and recementation, by the action of isochemical cold carbonate groundwater during the thrusting events. Carbonate veins largely developed also during the transtensive faulting stages, with composition clearly different from that of the veins associated to thrust faults, as indicated by the strong depletion in 13C of carbonate fillings, suggesting the presence of exotic fluids, characterised by a high content of organic matter.  相似文献   

6.
The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW–SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW–SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north–south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.  相似文献   

7.
The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW–SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E–W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550–520 Ma). The Ranotsara Zone shows significant NW–SE striking brittle faulting that reactivates part of the NW–SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.  相似文献   

8.
Following an Early Miocene phase of N–S extension affecting the entire Hellenides, 50° clockwise rotation affected western Greece. Modern GPS analyses show rapid southwestward motion in southwestern Greece over subducting oceanic lithosphere and no motion in the northwest, where Greece collided with Apulia. We aim to identify the deformation history of western Greece associated with the rotation and the collision with Apulia. The timing of the various phases of deformation is constrained via detailed analysis of vertical motions based on paleobathymetry evolution of sedimentary sequences overlying the evolving structures. The results show that accompanying the onset of rotation, compression was re-established in western Greece in the early Langhian, around 15 Ma. Subsequently, western Greece collided with the Apulian platform, leading in the Late Miocene to a right-lateral strike-slip system running from the Aliakmon Fault Zone in northern Greece via the Kastaniotikos Fault and the Thesprotiko Shear Zone to the Kefallonia Fault Zone, offshore western Greece. NE–SW compression and uplift of the Ionian Islands was accompanied by NE–SW extension in southwestern Greece, associated with faster southwestward motion in the south than in the north. This led in the middle Pliocene (around 3.5 Ma) to collision without further shortening in northwestern Greece. From then onward, NW–SE to N–S extension east of Apulia, and gradually increasing influence of E–W extension in the south accommodated motion of the Hellenides around the Apulian platform. As a result, curved extensional basin systems evolved, including the Gulf of Amvrakikos-Sperchios Basin–Gulf of Evia system and the Gulf of Corinth–Saronic Gulf system.  相似文献   

9.
In this study, we analyze the recent (1990–1997) seismicity that affected the northern sector (Sannio–Benevento area) of the Southern Apennines chain. We applied the Best Estimate Method (BEM), which collapses hypocentral clouds, to the events of low energy (Md max=4.1) seismic sequences in order to constrain the location and geometry of the seismogenetic structures. The results indicate that earthquakes aligned along three main structures: two sub-parallel structures striking NW–SE (1990–1992, Benevento sequence) and one structure striking NE–SW (1997, Sannio sequence). The southernmost NW–SE structure, which dips towards NE, overlies the fault that is likely to be responsible for a larger historical earthquake (Io max=XI MCS, 1688 earthquake). The northernmost NW–SE striking structure dips towards SW. The NE–SW striking structure is sub-vertical and it is located at the northern tip of the fault segment supposed to be responsible for the 1688 earthquake. The spatio-temporal evolution of the 1990–1997 seismicity indicates a progressive migration from SE (Benevento) to NW (Sannio) associated to a deepening of hypocenters (i.e., from about 5 to 12 km). Hypocenters cluster at the interface between the major structural discontinuities (e.g., pre-existing thrust surfaces) or within higher rigidity layers (e.g., the Apulia carbonates). Available focal mechanisms from earthquakes occurred on the recognized NW–SE and NE–SW faults are consistent with dip-slip normal solutions. This evidences the occurrence of coexisting NW–SE and NE–SW extensions in Southern Apennines.  相似文献   

10.
The manganese ores in the Santa Rosalía region, western Mexico, are mainly stratiform horizons or mantos, constrained to the initial stages of sedimentary cycles of the Miocene Boléo Formation. The manganese mineralization is generally restricted to isolated paleo-basins and related to NW–SE faults formed during the early stages of the opening of the Gulf of California. Jasper, Fe, and Mn oxides associated to the NW–SE structures may represent feeder zones for the mineralized system. The manganese oxide minerals include pyrolusite, cryptomelane, todorokite, hollandite, jacobsite, and pyrochroite. Trace elements in the manganese ores indicate a hydrothermal origin for the deposits of the Santa Rosalía area. Rare earth elements (REE) patterns obtained for manganese minerals from the Lucifer and El Gavilán deposits also support a hydrothermal origin, whereas the middle REE enrichment observed in samples from the Boléo district indicates mixing between hydrothermal and hydrogenous sources. Osmium and rhenium concentrations of the manganese minerals range between 33–173 ppt and 0.14–89 ppb, respectively. The initial 187Os/188Os ratios in the manganese oxides from Lucifer and the Boléo district range between 0.43 to 0.51 and 0.70 to 0.74, respectively. These ratios are different from seawater at 7 Ma (0.84–0.89), which suggests important contributions of osmium from underlying rocks such as the Miocene volcanic rocks and the Cretaceous quartz–monzonite basement. Field evidence, manganese oxide mineralogy coupled with major and trace element geochemistry and Re–Os systematics support a hydrothermal origin for the manganese deposits from the Santa Rosalía region. The ore deposition style indicates an exhalative-intraformational environment restricted to isolated basins in a diagenetic stage related to the initial evolution of the Gulf of California.  相似文献   

11.
Gravity and magnetic data of the Kachchh basin and surrounding regions have delineated major E–W and NW–SE oriented lineaments and faults, which are even extending up to plate boundaries in the north Arabian Sea and western boundary of the Indian plate, respectively. The epicentral zone of Bhuj earthquake and its aftershocks is located over the junction of Rann of Kachchh and median uplifts viz. Kachchh mainland and Wagad uplifts, which are separated by thrust faults. Gravity data with constraints from the results of the seismic studies along a profile suggest that the basement is uplifted towards the north along thrust faults dipping 40–60° south. Similarly gravity and magnetic modeling along a profile across Wagad uplift suggest south dipping (50–60°) basement contacts separating rocks of high susceptibility and density towards the north. One of these contacts coincides with the fault plane of the Bhuj earthquake as inferred from seismological studies and its projection on the surface coincides with the E–W oriented north Wagad thrust fault. A circular gravity high in contact with the fault in northern part of the Wagad uplift along with high amplitude magnetic anomaly suggests plug type mafic intrusive in this region. Several such gravity anomalies are observed over the island belt in the Rann of Kachchh indicating their association with mafic intrusions. The contact of these intrusives with the country rock demarcates shallow crustal inhomogeneities, which provides excellent sites for the accumulation of regional stress. A regional gravity anomaly map based on the concept of isostasy presents two centers of gravity lows of −11 to −13 mGal (10−5 m/s2) representing mass deficiency in the epicentral region. Their best-fit model constrained from the receiver function analysis and seismic refraction studies suggest crustal root of 7–8 km (deep crustal inhomogeneity) under them for a standard density contrast of −400 kg/m3. It is, therefore, suggested that significant amount of stress get concentrated in this region due to (a) buoyant crustal root, (b) regional stress due to plate tectonic forces, and (c) mafic intrusives as stress concentrators and the same might be responsible for the frequent and large magnitude earthquakes in this region including the Bhuj earthquake of January 26, 2001.  相似文献   

12.
Processing of gravity and magnetic maps shows that the basement of the Upper Rhine Graben area is characterized by a series of NE–SW trending discontinuities and elongated structures, identified in outcrops in the Vosges, Black Forest, and the Odenwald Mountains. They form a 40 km wide, N30–40° striking, sinistral wrench-zone that, in the Visean, shifted the Variscan and pre-Variscan structures by at least 43 km to the NE. Wrenching was associated with emplacement of several generations of plutonic bodies emplaced in the time range 340–325 Ma. The sub-vertical, NE–SW trending discontinuities in the basement acted as zones of weakness, susceptible to reactivation by subsequent tectonism. The first reactivation, marked by mineralizations and palaeomagnetic overprinting along NE–SW faults of the Vosges Mountains, results from the Liassic NW–SE extension contemporaneous with the break-up of Pangea. The major reactivation occurred during the Late Eocene N–S compression and the Early-Middle Oligocene E–W extension. The NE–SW striking basement discontinuities were successively reactivated as sinistral strike-slip faults, and as oblique normal faults. Elongated depocenters appear to form in association with reactivated Variscan wrench faults. Some of the recent earthquakes are located on NE–SW striking Variscan fault zones, and show sinistral strike-slip focal mechanisms with the same direction, suggesting also present reactivation.  相似文献   

13.
Three felt earthquakes with local magnitudes 4.0 (June 29th, 2000), 4.2 (July 07th, 2005) and 3.7 (October 30th, 2007) occurred to the southeast of Cairo along the Suez-Cairo shear zone. Being the most well recorded events by the Egyptian National Seismic Network (ENSN) in this area, they provide us an excellent opportunity to study the tectonics, the stress field, the source parameters, and the expected ground motion at Cairo. The focal mechanisms of the three events based on the first motion P-wave polarities indicate mainly normal faulting with a slight strike-slip component along nodal planes trending nearly EW and NW–SE. The three focal solutions imply a rejuvenation of the pre-existing EW and NW–SE faults due to a partly transfer of rifting deformation from the Red Sea-Gulf of Suez along these trends. Dynamic source parameters of these events are estimated from the P-wave spectra of the closest ENSN stations. The average values of the seismic moment, stress drop, rupture radius, and fault dislocation are estimated from six stations and interpreted in the context of the tectonic setting. These parameters in addition to the effects of site and path are used to synthesize the ground motion seismograms using stochastic modeling technique at the recorded stations and at some strategic sites.  相似文献   

14.
Five stages of faulting were observed in and around the Stephanian Decazeville basin, in the SW French Massif Central, at the southern edge of the Sillon houiller fault. The older stage ends during middle Stephanian time, and corresponds to a strike-slip regime with N–S shortening and E–W extension. Before the end of the middle Stephanian, three other stages were recorded: two strike-slip regimes with NW–SE, then E–W compression and NE–SW, then N–S extension; and finally a NNE–SSW extensional regime during the main subsidence of the basin from the end of the middle Stephanian to late Stephanian. Based on mining documents, a new interpretation of the N–S striking folds of the Decazeville basin is proposed. Folding may not be associated with E–W compression but with diapirism of coal seams along syn-sedimentary normal faults during the extensional phase. A last strike-slip regime with N–S compression and E–W extension may be related to Cainozoic Pyrenean orogeny. At a regional scale, it is suggested that from the end of the middle Stephanian to the late Stephanian, the main faults in the Decazeville basin may represent a horsetail splay structure at the southern termination of the Sillon houiller fault.  相似文献   

15.
In this work, we report the results of combined geological, structural, and anisotropy of magnetic susceptibility (AMS) studies carried out on Quaternary deposits in the Picentini Mountains, southern Apennines (Italy). The study concerns four small continental basins, Acerno, Tizzano, Iumaiano, and Piano del Gaudo, related to fluvial–lacustrine depositional environments, ranging in altitude from 600 to 1,200 m a.s.l. and strongly incised during recent time. Stratigraphic and structural analyses, integrated by low- and high-field anisotropy of magnetic susceptibility (AMS), show that the formation of these basins has been controlled by extensional and transtensional tectonics. Most of the AMS sites exhibit a well-defined magnetic foliation parallel to the bedding planes. A well-defined magnetic lineation has also been measured within the foliation planes. In the Iumaiano, Tizzano, and Piano del Gaudo basins, magnetic lineations cluster around NNE–SSW trend and are parallel to the stretching directions inferred by structural analysis of faults and fractures. On the basis of structural, sedimentological, and high-field AMS data, we suggest a tectonic origin for the magnetic lineation, analogously to what has been observed in other weakly deformed sediments from Neogene and Quaternary extensional basins of the Mediterranean region. Our results demonstrate that onset and the evolution of the investigated basins have been mainly controlled since lower Pleistocene by NW–SE normal and transtensional faults. This deformation pattern is consistent with a prevalent NE–SW extensional tectonic regime, still active in southern Apennines, as revealed by seismological and geodetic data.  相似文献   

16.
As a result of oblique collision, the Taiwan orogen propagates southward. The Hengchun peninsula in the southern tip of the Taiwan Central Range, preserving the youngest, the least deformed and the most complete accretionary prism sequences, allows therefore better understanding of the tectonic evolution of Taiwan orogen. On the Hengchun peninsula, four main stages of paleostress can be recognized by the analysis of brittle tectonics. After recording the first two stages of paleostress, rocks of the Hengchun peninsula (the Hengchun block) have undergone both tilting and counterclockwise rotation of about 90°. The structural boundaries of this rotated Hengchun block are: the Kenting Mélange zone in the southwest, the Fongkang Fault in the north, and a submarine backthrust in the east. The angle of this rotation is principally calculated by the paleomagnetic analysis data and a physical model experiment. Through a systematic back-tilting and back-rotating restoration, the original orientations of the four paleostress stages of Hengchun peninsula are recognized. They are, from the ancient to the recent, a NW–SE extension, a combination of NW–SE transtension and NE–SW transpression, a NE–SW compression, and finally a combination of NE–SW transtension and NW–SE transpression. This result can be explained by a phenomenon of stress axes permutation, instead of a complex polyphase tectonism. This stress axes permutation is caused by the horizontal compression increase accompanying the propagation of the accretionary prism. Combining the tectonic and paleomagnetic data with paleocurrent and stratigraphic data enables us to reconstruct the tectonic evolution of the Hengchun peninsula. This reconstruction corresponds to the deformation history of a continental margin basin, from its opening to its intense deformation in the accretionary prism.  相似文献   

17.
扬子断块区基底的形成与演化   总被引:2,自引:0,他引:2       下载免费PDF全文
孙焕章 《地质科学》1985,(4):334-341
扬子断块区的躯干主要位于长江流域两侧,向东经江苏滨海穿过黄海南部伸进朝鲜南部。扬子断块区的周界被岩石圈深断裂带所围限,以此与其毗邻的其它大地构造区隔开(张文佑等,1983)。扬子断块区的形成与演化是一个很复杂的地质问题,它经过了漫长的地质历史,包括前震旦纪晋宁地槽发展阶段和震旦纪至第四纪的地台发展阶段,前者形成了断块基底,后者形成断块盖层,盖层与基底之间被区域性不整合面分开。本文主要讨论扬子断块区基底的形成与演化。  相似文献   

18.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

19.
 The Basque country magnetic anomaly follows a NW–SE trend over the Basque country (northern Spain) with intensities up to 250 nT measured at 3000 m above sea level. The paired negative part of the anomaly is located to the north and presents intensities down to –60 nT. A model of the magnetic properties of the crust in the area, taking into account previous geological and geophysical data, indicates a wedge of material with a magnetic susceptibility of 0.07 SI emplaced along a NE-directed basal thrust. The anomalous wedge is composed of basic and/or ultrabasic Cretaceous intrusives and lower crustal rocks, and reaches a minimum depth which increases towards the northwest from 5–7 to 12 km. According to previous works, geological features of the rocks on top of the anomalous wedge indicate that during the Cretaceous this zone constituted a deep marine environment which underwent important crustal thinning related to rifting. The transition towards the southwest was to a normal continental platform. Alpine deformation gave rise to displacement on a basal thrust, which can be correlated with the lower contact of the magnetic wedge, and emplacement of this wedge towards the northeast. The southeastern termination of the anomaly can be related to the lateral termination of the basic rocks which constitute the anomalous wedge in a transform fault related to the rifting event. Received: 30 January 1995 / Accepted: 9 February 1996  相似文献   

20.
Systematic inversion of double couple focal mechanisms of shallow earthquakes in the northern Andes reveals relatively homogeneous patterns of crustal stress in three main regions. The first region, presently under the influence of the Caribbean plate, includes the northern segment of the Eastern Cordillera of Colombia and the western flank of the Central Cordillera (north of 4°N). It is characterized by WNW–ESE compression of dominantly reverse type that deflects to NW–SE in the Merida Andes of Venezuela, where it becomes mainly strike–slip in type. A major bend of the Eastern thrust front of the Eastern Cordillera, near its junction with the Merida Andes, coincides with a local deflection of the stress regime (SW–NE compression), suggesting local accommodation of the thrust belt to a rigid indenter in this area. The second region includes the SW Pacific coast of Colombia and Ecuador, currently under the influence of the Nazca plate. In this area, approximately E–W compression is mainly reverse in type. It deflects to WSW–ENE in the northern Andes south of 4°N, where it is accommodated by right-lateral displacement of the Romeral fault complex and the Eastern front of the northern Andes. The third, and most complex, region is the area of the triple junction between the South American, Nazca and Caribbean plates. It reveals two major stress regimes, both mainly strike–slip in type. The first regime involves SW–NE compression related to the interaction between the Nazca and Caribbean plates and the Panama micro-plate, typically accommodated in an E–W left-lateral shear zone. The second regime involves NW–SE compression, mainly related to the interaction between the Caribbean plate and the North Andes block which induces left-lateral displacement on the Uramita and Romeral faults north of 4°N.Deep seismicity (about 150–170 km) concentrates in the Bucaramanga nest and Cauca Valley areas. The inversion reveals a rather homogeneous attitude of the minimum stress axis, which dips towards the E. This extension is consistent with the present plunge of the Nazca and Caribbean slabs, suggesting that a broken slab may be torn under gravitational stresses in the Bucaramanga nest. This model is compatible with current blocking of the subduction in the western northern Andes, inhibiting the eastward displacement of slabs, which are forced to break and sink in to the asthenosphere under their own weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号