首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
The Hong'an region in the Qinling–Dabie collisional zone in eastern China hosts a series of metamorphic rocks exposing a south-to-north distribution from blueschist/blueschist–greenschist, amphibolite, eclogite (kyanite free) and kyanite–eclogite to coesite–eclogite facies rocks that represent progressively deeper levels of the Mesozoic subduction–collision complex. The Hong'an area is interesting for three reasons: (1) it escaped the thermal and structural overprint imparted on much of the Dabie Mountains during Early Cretaceous intrusion of voluminous granites and granodiorites; (2) the high-pressure (HP) Hong'an eclogites are widely distributed, often preserve prograde crystallization histories and can be directly linked in time and space to the blueschist/blueschist–greenschist rocks exposed to the south; (3) the blueschist/blueschist–greenschist facies rocks are generally better exposed than their equivalents in the southeastern Dabie Mountains and offer some opportunity for simultaneous structural and metamorphic analysis. The Hong'an area HP rocks offer perhaps the closest approximation to a preserved snapshot of Mesozoic pressure–temperature (PT) conditions attending early subduction–exhumation in the region, and are thus essential to generating a coherent picture of the dynamics attending both metamorphism and exposure of the coeval ultrahigh-pressure (UHP) rocks. The purpose of this contribution is twofold: (1) to document previously unpublished metamorphic and structural data characterizing these HP sequences and their relative continuity in Hong'an; (2) to incorporate these data with recent geochronologic, structural and paleomagnetic information in the context of protracted, late Paleozoic through Mesozoic subduction, collision and exhumation. Metamorphism and exhumation of some of the southern Hong'an HP sequences appear to have occurred concomitant with oceanic subduction immediately to the west, and thus may have preceded widespread continental subduction/collision. Moreover, all of the HP–UHP sequences in the region were exhumed before the end of collision between the Sino-Korean and Yangtze cratons at ca. 160 Ma. Exhumation of HP–UHP rocks both before and during continental plate collision is neither novel for central China nor for other HP–UHP zones, but is important to take into account when reconstructing the evolution of such orogens.  相似文献   

2.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


3.
Fulai Liu  Zhiqin Xu  Huaimin Xue 《Lithos》2004,78(4):411-429
Orthogneisses are the major country rocks hosting eclogites in the Sulu UHP terrane, eastern China. All of the analyzed orthogneiss cores from the main drilling hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) have similar major and trace element compositions and a granite protolith. These rocks have relatively high LREE/HREE ratios, strong negative Eu anomalies (Eu/Eu*=0.20–0.39), and negative Ba anomalies (Ba/Ba*=0.25–0.64). Coesite and coesite-bearing UHP mineral assemblages are common inclusions in zircons separated from orthogneiss, paragneiss, amphibolite, and (retrograded) eclogite of the CCSD-MH. This suggests that the eclogite, together with its country rocks, experienced in situ ultrahigh-pressure (UHP) metamorphism. Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircons from the orthogneisses are zoned and that they have distinct mineral inclusions in the different zones. Most zircons retain early magmatic cores with abundant low-pressure mineral inclusions, which are mantled with metamorphic zircon-containing inclusions of coesite and other UHP minerals. The outermost rims on these grains contain low-pressure mineral inclusions, such as quartz and albite. SHRIMP U–Pb dating of the zoned zircons gives three discrete and meaningful groups of ages: Proterozoic ages for the protolith, 227±2 Ma for the coesite-bearing mantles, and 209±3 Ma for the amphibolite facies retrograde rims. The widespread occurrence of UHP mineral inclusions in zircons from the Sulu metamorphic belt dated at about 227 Ma suggests that voluminous continental crust experienced late Triassic subduction to depths of at least 120 km and perhaps more than 200 km. Eighteen million years later, the terrane was rapidly exhumed to midcrustal levels, and the UHP rocks were overprinted by amphibolite facies metamorphism. The exhumation rate deduced from the zircon age data and previously obtained metamorphic PT data is estimated to be 5.6–11.0 km/Ma. Such rapid exhumation of the Sulu UHP terrane may be due to the buoyancy forces produced by subduction of low-density continental material into the deep mantle.  相似文献   

4.
张泽明  董昕  贺振宇  向华 《岩石学报》2013,29(5):1713-1726
喜马拉雅造山带是印度与亚洲大陆碰撞作用的产物,正在进行造山作用,是研究板块构造的天然实验室.高压和超高压变质岩分布在喜马拉雅造山带的核部.这些变质岩具有不同的形成条件、形成时间和形成过程,为印度与亚洲碰撞带的几何学、运动学和动力学提供了重要的限定.含柯石英的超高压变质岩产出在喜马拉雅造山带的西段,它们形成在古新世与始新世之间(53~46Ma),为印度大陆西北边缘高角度超深俯冲作用的产物,并经历了快速俯冲与快速折返过程.在约5 Myr内,超高压变质岩从>100km的地幔深度折返到了中地壳深度,且仅仅叠加角闪岩相退变质作用.高压榴辉岩产出在喜马拉雅造山带中段,形成时间约为45Ma,为印度大陆低角度深俯冲作用的产物,经历了至少20Myr的长期折返过程,叠加麻粒岩相退变质作用和部分熔融.高压麻粒岩产出在喜马拉雅造山带的东端,是印度大陆东北缘近平俯冲作用的产物,峰期变质作用时间约为35Ma,经历了约20Myr的长期折返过程,叠加了麻粒岩相和角闪岩相退变质作用,并伴随有多期部分熔融.因此,喜马拉雅造山带的变质作用具有明显的时间与空间变化,显示出大陆深俯冲与折返过程的差异性,以及大陆碰撞造山带形成机制的多样性.  相似文献   

5.
Ar/Ar analyses of phengites and paragonites from the ultrahigh-pressure metamorphic rocks (zoisite–clinozoisite schist, garnet–phengite schist and piemontite schist) in the Lago di Cignana area, Western Alps were carried out with a laser probe step-heating method using single crystals and a spot dating method on thin sections. Eight phengite and two paragonite crystals give the plateau ages of 37–42 Ma with 96–100% of 39Ar released. Each rock type also contains mica crystals showing discordant age spectra with age fractions (20–35 Ma) significantly younger than the plateau ages. Phengite inclusions in garnet give ages of 43.2 ± 1.1 Ma and 44.4 ± 1.5 Ma, which are significantly older than the spot age (36.4 ± 1.4 Ma) from the matrix phengites, and the plateau ages from the step-heating analyses. Inclusion ages (43 and 44 Ma) are consistent with a zircon SHRIMP age (44 ± 1 Ma) in this area. These results suggest that the oceanic materials that underwent a simple subduction related UHPM, form excess 40Ar-free phengite and that the peak metamorphism is ca. 44 Ma or little older. We suggest that matrix phengites experienced a retrogression reaction changing their chemistry contemporaneously with deformation related to the exhumation of rocks releasing significant radiogenic 40Ar from the crystals. This has lead to the apparent ages of the matrix phengites that are significantly younger than the inclusion age.  相似文献   

6.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


7.
The Makbal Complex in the northern Tianshan of Kazakhstan and Kyrgyzstan consists of metasedimentary rocks, which host high‐P (HP) mafic blocks and ultra‐HP Grt‐Cld‐Tlc schists (UHP as indicated by coesite relicts in garnet). Whole rock major and trace element signatures of the Grt‐Cld‐Tlc schist suggest a metasomatized protolith from either hydrothermally altered oceanic crust in a back‐arc basin or arc‐related volcaniclastics. Peak metamorphic conditions of the Grt‐Cld‐Tlc schist reached ~580 °C and 2.85 GPa corresponding to a maximum burial depth of ~95 km. A Sm‐Nd garnet age of 475 ± 4 Ma is interpreted as an average growth age of garnet during prograde‐to‐peak metamorphism; the low initial εΝd value of ?11 indicates a protolith with an ancient crustal component. The petrological evidence for deep subduction of oceanic crust poses questions with respect to an effective exhumation mechanism. Field relationships and the metamorphic evolution of other HP mafic oceanic rocks embedded in continentally derived metasedimentary rocks at the central Makbal Complex suggest that fragments of oceanic crust and clastic sedimentary rocks were exhumed from different depths in a subduction channel during ongoing subduction and are now exposed as a tectonic mélange. Furthermore, channel flow cannot only explain a tectonic mélange consisting of various rock types with different subduction histories as present at the central Makbal Complex, but also the presence of a structural ‘dome’ with UHP rocks in the core (central Makbal) surrounded by lower pressure nappes (including mafic dykes in continental crust) and voluminous metasedimentary rocks, mainly derived from the accretionary wedge.  相似文献   

8.
Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu‐Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh‐pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark‐luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white‐luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542–693 °C and 1.8–2.1 GPa. In contrast, the UHP metamorphic domains are grey‐luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739–866 °C and >5.5 GPa. The outermost retrograde rims have dark‐luminescent CL images, and contain low‐P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP‐MS trace‐element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U‐Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823–503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254–239 Ma, the UHP growth domains occurred at 238–230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218–206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55–60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165–175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid‐crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P–T conditions are 9–10 km Myr?1 and 6.4 km Myr?1, respectively, and these rapid subduction–exhumation rates may explain the obtained P–T–t path. Such a fast exhumation suggests that Sulu‐Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth.  相似文献   

9.
北大别超高压榴辉岩的快速折返与缓慢冷却过程   总被引:2,自引:2,他引:0  
刘贻灿  古晓锋  李曙光 《岩石学报》2009,25(9):2149-2156
岩石学研究表明,北大别超高压榴辉岩经过了超高压和高压榴辉岩相变质作用以及麻粒岩相叠加和角闪岩相退变质作用.其中,高压麻粒岩相和角闪岩相变质阶段形成的后成合晶以及石榴子石和单斜辉石等矿物中成分分带的存在,证明该区榴辉岩经历了一个快速折返过程;而不同变质阶段的温度、压力和形成时代,却反映该区榴辉岩在峰期超高压变质作用之后又经历了一个缓慢冷却过程.超高压岩石折返期间的缓慢冷却过程也许正是北大别长期难以发现柯石英和有关超高压证据的重要原因.因此,本文为大别山不同超高压岩片的差异折返模型的建立提供了新的证据.  相似文献   

10.
The occurrence of ultra high pressure (UHP) and high pressure (HP) relicts associated with oceanic material suggests the presence of a suture zone within the Rhodope Massif. Characterisation of the accreted igneous terranes and their relationship with the UHP/eclogite occurrences provide new constraints on the location of this suture. Single-zircon evaporation and sensitive high-resolution ion microprobe dating of orthogneiss protoliths define two groups of intrusion ages: Permo-Carboniferous and Late Jurassic–Early Cretaceous. Structurally, the Late Jurassic gneissic complex overthrust a unit with Permo-Carboniferous orthogneisses. A “melange zone” marked by mylonites, eclogites, amphibolites, and UHP micaschists separates these two units. We interpret these observations in terms of two distinct igneous terranes, the Thracia (Permo-Carboniferous) and Rhodope (Late Jurassic) terranes, separated by the Nestos suture, and assembled during the closure of an oceanic basin of the Tethys. Geochemically, the Late-Jurassic rocks are akin to subduction magmatism, possibly the same subduction that caused the UHP metamorphism of metasediments within the “melange zone”. Observed UHP–HP relicts are restricted to the tectonic contact zone, suggesting that a single subduction/collison event can explain the occurrences of UHP relicts and eclogites in the Central Rhodope, and that subducted rocks are exhumed only within the Nestos suture.  相似文献   

11.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

12.
Within the metamorphic basement of the Coastal Cordillera of central Chile, the Western Series constitutes the high-pressure (HP)/low-temperature (LT) part (accretionary prism) of a fossil-paired metamorphic belt dominated by metagreywackes. In its eastern part, blocks derived from small lenses of garnet amphibolite with a blueschist facies overprint are locally intercalated and associated with serpentinite and garnet mica-schist. Continuously developed local equilibria were evaluated applying various independent geothermobarometric approaches. An overall anticlockwise PT path results. The prograde path evolved along a geothermal gradient of 15 °C/km, passing the high-pressure end of greenschist facies until a transient assemblage developed within albite-epidote amphibolite facies transitional to eclogite facies at peak metamorphic conditions (600–760 °C, 11–16.5 kbar; stage I). This peak assemblage was overprinted during an external fluid infiltration by an epidote blueschist facies assemblage at 350–500 °C, 10–14 kbar (stage II) indicating nearly isobaric cooling. The retrograde equilibration stage was dated with a Rb–Sr mineral isochron at 305.3±3.2 Ma, somewhat younger (296.6±4.7 Ma) in an adjacent garnet mica-schist. Localized retrograde equilibration continued during decompression down to 300 °C, 5 kbar. The retrograde evolution is identical in the garnet amphibolite and the garnet mica-schist.

The counterclockwise PT path contrasts the usual clockwise PT paths derived from rocks of the Western Series. In addition, their ages related to stage II are the oldest recorded within the fossil wedge at the given latitude. Its “exotic” occurrence is interpreted by the path of the earliest and deepest subducted material that was heated in contact with a still hot mantle. Later accreted and dehydrated material caused hydration and cooling of the earliest accreted material and the neighbouring mantle. After this change also related to rheological conditions, effective exhumation of the early subducted material followed at the base of the hydrated mantle wedge within a cooler environment (geothermal gradient around 10–15 °C/km) than during its burial. The exotic blocks thus provide important time markers for the onset of subduction mass circulation in the Coastal Cordillera accretionary prism during the Late Carboniferous. Continuous subduction mass flow lasted for nearly 100 Ma until the Late Triassic.  相似文献   


13.
董杰  魏春景  张建新 《地球科学》2019,44(12):4004-4008
南阿尔金造山带是目前报道的具有最深俯冲记录的大陆超高压变质带,其内出露有高压-超高温麻粒岩,它们对深入理解大陆地壳岩石超深俯冲与折返过程具有重要意义.介绍了对南阿尔金巴什瓦克地区长英质麻粒岩和基性麻粒岩的岩相学、矿物化学、相平衡模拟及锆石U-Pb年代学研究成果.其中基性麻粒岩主要记录了深俯冲大陆地壳折返过程的变质演化:包括高压榴辉岩相、高压-超高温麻粒岩相、低压-超高温麻粒岩相及随后的近等压降温演化阶段;长英质麻粒岩除了记录与基性麻粒岩相似的折返过程外,还记录了从角闪岩相到超高压榴辉岩相的进变质演化过程.结合已有研究资料,确定超高压榴辉岩阶段峰期条件> 7~9 GPa和>1 000℃,可达到斯石英稳定域.锆石年代学显示两种岩石类型的原岩和变质年龄均分别在900 Ma和500 Ma左右.变质作用与年代学研究表明,南阿尔金大陆地壳岩石在早古生代发生超深俯冲至200~300 km后,折返至加厚地壳底部发生高压-超高温变质作用,随后被快速抬升至地壳浅部发生低压-超高温变质作用并经历迅速冷却.   相似文献   

14.
张泽明  丁慧霞  董昕  田作林 《地球科学》2019,44(5):1602-1619
印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50Ma、45~47Ma和35~40Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为>2.1GPa和>750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.  相似文献   

15.
苏鲁造山带超高压变质岩岩石学、氧同位素、流体包裹体和名义上无水矿物的研究表明,流体-岩石相互作用在大陆地壳的俯冲与折返过程中起到多重的重要作用,并形成了复杂的流体演化过程:(1)大陆表壳岩通过与高纬度大气降水的交换作用被广泛水化,并获得了异常低的氧同位素成分;(2)在水化陆壳物质的俯冲过程中发生了一系列的进变质脱水反应,所释放的流体主要结合进了高压、超高压含水矿物和名义上无水超高压矿物;(3)在超高压变质过程中,以水为主的变质流体通过选择性的吸收使其盐度逐渐升高,并在峰期出现高密度、高盐度的H2O或CO2-H2O流体。有机质的分解反应在局部形成了以CO2、N2、CH4或它们的混合物为主要成分的变质流体;(4)名义上无水超高压矿物的结构水出溶是早期退变质流体的主要来源,并在局部富集形成了高压变质脉体;(5)透入性的中、低盐度水流体活动使超高压变质岩通过一系列的水化反应转变成角闪岩相变质岩;(6)沿韧性剪切带和脆性破碎带的强烈水流体活动为绿片岩相退变质作用和低压石英脉的形成提供了变质流体;(7)可变盐度的H2O或CO2-H2O流体是整个超高压变质岩形成与折返过程中的主要流体,但局部的流体.岩石相互作用形成了非极性的变质流体。  相似文献   

16.
北祁连山和柴北缘是典型的早古生代大陆造山带,分别发育有北祁连山大洋型俯冲缝合带和柴北缘大陆型俯冲碰撞带.作为早古生代大洋冷俯冲的典型代表,北祁连山经历了从新元古代-寒武纪大洋扩张、奥陶纪俯冲和闭合及早泥盆世隆升造山的过程.高压变质岩变质年龄为490~440Ma,证明古祁连洋经历了至少50m.y.的俯冲过程.柴北缘超高压变质带是大陆深俯冲的结果,岩石学、地球化学和同位素年代学表明,柴北缘超高压变质带中榴辉岩的原岩分别来自洋壳和陆壳两种环境.高压/超高压变质的蛇绿岩原岩的年龄为517±11Ma,与祁连山蛇绿岩年龄一致.榴辉岩早期的变质年龄为443~473Ma,与祁连山高压变质年龄一致,代表大洋地壳俯冲的时代,而柯石英片麻岩和石榴橄榄岩所限定的超高压变质时代为420~426Ma,代表大陆俯冲的年龄.从大洋俯冲结束到大陆俯冲最大深度的转换时间最少需要20m.y..自420Ma起,俯冲的大洋岩石圈与跟随俯冲的大陆岩石圈断离,大陆地壳开始折返,发生隆升和造山.北祁连山和柴北缘两个不同类型的高压-超高压变质带反映了早古生代从大洋俯冲到大陆俯冲、隆升折返的造山过程.  相似文献   

17.
The Himalayan range is one of the best documented continent-collisional belts and provides a natural laboratory for studying subduction processes. High-pressure and ultrahigh-pressure rocks with origins in a variety of protoliths occur in various settings: accretionary wedge, oceanic subduction zone, subducted continental margin and continental collisional zone. Ages and locations of these high-pressure and ultrahigh-pressure rocks along the Himalayan belt allow us to evaluate the evolution of this major convergent zone.

(1) Cretaceous (80–100 Ma) blueschists and possibly amphibolites in the Indus Tsangpo Suture zone represent an accretionary wedge developed during the northward subduction of the Tethys Ocean beneath the Asian margin. Their exhumation occurred during the subduction of the Tethys prior to the collision between the Indian and Asian continents.

(2) Eclogitic rocks with unknown age are reported at one location in the Indus Tsangpo Suture zone, east of the Nanga Parbat syntaxis. They may represent subducted Tethyan oceanic lithosphere.

(3) Ultrahigh-pressure rocks on both sides of the western syntaxis (Kaghan and Tso Morari massifs) formed during the early stage of subduction/exhumation of the Indian northern margin at the time of the Paleocene–Eocene boundary.

(4) Granulitized eclogites in the Lesser Himalaya Sequence in southern Tibet formed during the Paleogene underthrusting of the Indian margin beneath southern Tibet, and were exhumed in the Miocene.

These metamorphic rocks provide important constraints on the geometry and evolution of the India–Asia convergent zone during the closure of the Tethys Ocean. The timing of the ultrahigh-pressure metamorphism in the Tso Morari massif indicates that the initial contact between the Indian and Asian continents likely occurred in the western syntaxis at 57 ± 1 Ma. West of the western syntaxis, the Higher Himalayan Crystallines were thinned. Rocks equivalent to the Lesser Himalayan Sequence are present north of the Main Central Thrust. Moreover, the pressure metamorphism in the Kaghan massif in the western part of the syntaxis took place later, 7 m.y. after the metamorphism in the eastern part, suggesting that the geometry of the initial contact between the Indian and Asian continents was not linear. The northern edge of the Indian continent in the western part was 300 to 350 km farther south than the area east of the Nanga Parbat syntaxis. Such “en baionnette” geometry is probably produced by north-trending transform faults that initially formed during the Late Paleozoic to Cretaceous Gondwana rifting. Farther east in the southern Tibet, the collision occurred before 50.6 ± 0.2 Ma. Finally, high-pressure to ultrahigh-pressure rocks in the western Himalaya formed and exhumed in steep subduction compared to what is now shown in tomographic images and seismologic data.  相似文献   


18.
Sm-Nd isotope tracer techniques are powerful tools in identification of the protolith nature of UHP and HP rocks and can be used to constrain modeling of tectonic processes of continental collision. UHP rocks may have diverse origins, and not all of them carry the same significance for subduction of continental blocks. In this paper, Sm-Nd isotopic data are compiled for UHP and HP rocks, mostly represented by eclogites and garnet peridotites, from the Alpine, Hercynian (Variscan), and Caledonian belts of western Europe; the Pan-African belts of northern Africa; and the Ross belt of Antarctica. These data then are compared with the isotopic characteristics of the UHP rocks from the Dabie orogen of central China. Except for the coesite-bearing quartzitic metasediments of Dora-Maira (Western Alps), which are clearly of continental origin, all HP and UHP rocks (eclogites and ultramafic rocks) from the Alpine, Hercynian, and Pan-African belts have oceanic affinities with the characteristic positive εNd(T) values (= metamorphic initial 143Nd/144Nd ratios). They represent segments of oceanic lithosphere that were subducted, underwent eclogite-facies metamorphism, and later were tectonically transported into orogenic zones during continental collisions. By contrast, the majority of UHP rocks from the European Caledonide and the Dabie orogen have negative εND(T) values, indicating continental affinity. This suggests that these mafic and ultramafic rocks have had a long crustal residence time and that their UHP metamorphism is indicative of subduction of ancient and cold continental blocks, as represented by some Precambrian gneiss terranes containing mafic components including greenschists, amphibolites, or basic granulites.

In the Dabie orogen, none of the UHP eclogites analyzed thus far have shown oceanic affinity; thus they do not represent subducted Tethys Ocean crust. The preservation of ultrahigh εND(0) values (+170 to +260) in eclogites of very low Nd concentrations (average 0.5 ppm) from the Weihai region and of the extraordinarily low δ18O in many eclogites and gneisses, the general absence of syntectonic granites in the Dabie Shan, and the available age data obtained by different techniques all point to a rapid rate of exhumation and the absence of a pervasive aqueous fluid phase during the entire process of subduction and exhumation of the Dabie UHP terrane.  相似文献   

19.
Petrological analysis, zircon trace element analysis and SHRIMP zircon U–Pb dating of retrogressed eclogite and garnet granulite from Bibong, Hongseong area, SW Gyeonggi Massif, South Korea provide compelling evidence for Triassic (231.4 ± 3.3 Ma) high-pressure (HP) eclogite facies (M1) metamorphisms at a peak pressure–temperature (PT) of ca. 16.5–20.0 kb and 775–850 °C. This was followed by isothermal decompression (ITD), with a sharp decrease in pressure from 20 to 10 kb and a slight temperature rise from eclogite facies (M1) to granulite facies (M2), followed by uplift and cooling. Granitic orthogneiss surrounding the Baekdong garnet granulite and the ophiolite-related ultramafic lenticular body near Bibong records evidence for a later Silurian (418 ± 8 Ma) intermediate high-pressure (IHP) granulite facies metamorphism and a prograde PT path with peak PT conditions of ca. 13.5 kb and 800 °C. K–Ar ages of biotite from garnet granulites, amphibolites, and granitic orthogneisses in and around the Bibong metabasite lenticular body are 208–219 Ma, recording cooling to about 310 °C after the Early Triassic metamorphic peak. Neoproterozoic zircon cores in the retrogressed eclogite and granitic orthogneiss provide evidence that the protoliths of these rocks were  800 and  900 Ma old, respectively, similar to the ages of tectonic episodes in the Central Orogenic Belt of China. This, and the evidence for Triassic HP/UHP metamorphism in both China and Korea, is consistent with a regional tectonic link within Northeast Asia from the time of Rodinia amalgamation to Triassic continent–continent collision between the North and South China Blocks, and with an eastward extension of the Dabie–Sulu suture zone into the Hongseong area of South Korea.  相似文献   

20.
超高压变质岩的折返过程是陆陆碰撞边界演化的关键问题。南倾的花凉亭-弥陀剪切带位于南大别低温-超高压变质 带和中大别中温-超高压变质带之间,矿物拉伸线理倾伏向为SE,逆冲和走滑分量大致相等。电子背散射衍射分析表明: 花凉亭-弥陀剪切带大多数样品的石英组构记录了上盘向NW的剪切变形,反映了中大别超高压变质岩向SE的快速折返, 而部分样品的石英具有上盘向SE的剪切指向,与早白垩世花岗岩穹隆发育导致的区域伸展有关。对前人的岩石学和年代学 成果进行总结,发现大别山进变质和超高压变质峰期/退变质的锆石U-Pb年龄从南往北逐渐变新,南大别和中大别在215~ 225 Ma同时经历了高压榴辉岩相退变质作用,在191~195 Ma经历了绿片岩相变质作用。超高压变质岩的白云母和黑云母的 40Ar/39Ar年龄靠近郯庐断裂时偏年轻,可能受到郯庐断裂活动的影响。南大别和中大别变质峰期温压的等值线与花凉亭-弥 陀剪切带的走向斜交,反映了超高压变质岩的斜向折返。因此,南大别低温-超高压变质带在~236 Ma最先开始折返,之后 中大别和北大别依次发生快速折返,具有不同折返速率和折返角度的构造岩片通过韧性剪切带调节相对运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号