首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Based on data from two runoff plots and ten stations in hilly loess region Dalihe drainage basin ranging in area from 0.0006 to 3983 km2 on the Loess Plateau, the relationship between mean annual specific sediment yield (Y s) and drainage area (A) is studied, which is different from those for many other drainage areas of the world, neither at the scale of whole basin nor at local scale on the Loess Plateau. With increasing drainage area, the mean annual specific sediment yield experiences two peak values: the first peak value appears at 0.00408 km2 in area corresponding to the whole slope surface, and the second peak value appears at 96.1 km2 in area. The non-linear variation in the Y sA can be explained as follows: the first peak value can be explained by the abrupt increase in slope gradient and flow shear stress resulting in highly increased sediment concentration and specific sediment yield. And the second peak value can be explained by the combined influence of flow shear stress and drainage density, represented by dimensionless variable Ω.  相似文献   

2.
Sediment dynamics is still imperfectly understood, especially at spatial scale in the highly erodible region of the Loess Plateau, and few studies have been heretofore conducted. Using 5-year continuous water and sediment records, three plots and three basins in the gullied rolling loess region were selected and sediment dynamics at spatial scale was studied. Results showed that the floods, where the peak discharge (Q p) did not come earlier than the sediment peak, were predominant in slope zones, occupying >90 and >70% of the total for the Mao slope and for the Entire slope, respectively. However, in basins, most of the sediment peaks (C p) lagged behind Q p, implying that slope zone was the main origin of sediment. More than 50% of the events presented clockwise hysteresis loops in the Mao slope area, while almost all the events had anticlockwise hysteresis loops in basins. This can be attributed to less occurring frequency of hyperconcentrated flow, as well as its instability in slope zones, compared to those in the basins. Within these contexts, gravitational erosion made the highest sediment concentration (C) in Tuanshangou basin and median developing status of C-discharge (CQ) relationships in the Entire slope area. This study provides insights into the protection of slope surface and disruption of the development of hyperconcentrated flow to reduce soil loss.  相似文献   

3.
The USA Clean Water Act requires the development of a total maximum daily load (TMDL) when Minnesota’s water quality standard for turbidity is exceeded; however, regions underlain with fine-grained lacustrine deposits yield large natural background loads of suspended inorganic sediment. A review of hydrogeologic pathways was conducted along with the statistical analysis of geomorphic metrics, collected at 15 sites with varying drainage areas in the upper Nemadji River basin, northeastern Minnesota. Regression analysis indicated a strong linkage between bankfull cross-sectional area and drainage area. Dimensionless geomorphic metric ratios were developed to predict channel evolution potential and associated channel erosion risk. Sites located in drainage areas less than 2 km2 had low erosion risk and showed a correlation between channel slope and relative roughness (D 84/mean bankfull channel depth, 88%). A principal components analysis explained over 98% of the variance between sites and indicated five important channel shape metrics to predict channel erosion: bankfull width, bankfull depth, maximum depth, cross-sectional area, and valley beltwidth. Mass wasting of cohesive stream channel sediment was influenced by groundwater discharge and produced turbid waters in the upper Nemadji River.  相似文献   

4.
This paper is an assessment of the suspended sediment yield in the Mellah Catchment of northern Algeria. We use discharge–sediment load relationships to explore the variability of water discharge and sediment load, and to investigate the impact of geomorphic factors disturbance on erosion and sedimentation. Suspended sediment load was analyzed in the Mellah Catchment (550 km²) which was controlled by a gauging station to measure discharge and sediment transport. The relations between daily mean sediment concentration and daily mean water discharge were analyzed to develop sediment rating curves. For storms with no water samples, a sediment rating curve was developed. The technique involves stratification of data into discharge-based classes, the mean of which are used to fit a rating curve according to single flow data and season to provide various rating relationships. The mean annual sediment yield during the 24 years of the study period was 562 T km?2 in the Mellah Catchment. This drainage basin had high rainfall and runoff, the erosion was high. The high sediment yield in the Mellah basin could be explained by a high percentage of sparse grassland and cultivation developed on shallow marly silty-clayey soils with steep slopes often exceeding 12%. Almost all suspended sediment loads are transported during storm events that mainly occur in the winter and spring heavy and medium downpours. The scarceness of these events leads to a very large interseasonal variability of the wadi sediment fluxes. The negative impacts of this enhanced sediment mobility are directly felt in the western part of the basin which shows many mass movements, bank and gully erosion because cultivated areas are often bared during autumnal brief flash floods and furrowed downslope during the winter season.  相似文献   

5.
Water discharge from the Patuxent River into its estuary was near-average (95%) during the water year 1968–1969 although precipitation was only 79% of the average. Suspended-sediment discharge into the estuary, however, was more then double the normal yield (344 metric tons/km2 compared to 143 metric tons/km2). These increases in runoff and suspended-sediment yields, despite decreased precipitation, must be attributed to urbanization of the drainage basin.The maximum measured suspended-sediment concentrations in the rural Middle Patuxent basin (Piedmont Province) increased only 40-fold during an increase from “average” to high water runoff (15 mg/l to 600 mg/l). In the portion of the Little Patuxent River basin undergoing urbanization (Piedmont portion), stream concentrations increased by over two orders of magnitude (20 mg/l to 2400 mg/l) as a result of heavy rainfall. The area undergoing urbanization of the Little Patuxent yielded more than twice as much suspended sediment per unit area as the rural Middle Patuxent (620 metric tons/km2 versus 290 metric tons/km2). This increase also is interpreted to be the direct result of erosion of soils denuded or disturbed during urban construction.Using the Middle Patuxent as a “standard” for normal erosion rates in rural areas, construction sites contributed about 82% of the suspended sediment discharged by the Patuxent River into its estuary even though such sites represented only 23% of the drainage basin.  相似文献   

6.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

7.
The authors investigate the hydrological and geochemical characteristics of the Jamari (30430 km2) and Jiparana (60350 km2) river basins (Amazonia), during the period 1978–1984. A spectral analysis of Fourier is applied to time series of mean monthly river discharges, in order to assess the contribution (7 to 8%) of the surface runoff to the total river flow. The mean annual runoff coefficient calculated for the Jiparana river basin (36%), is higher than for the Jamari (32%), and this coefficient increases during the study period, only for the Jiparana. The total specific suspended sediment discharge calculated for both rivers shows the same value 13 t/km2/y, and the estimated suspended sediment concentration in the surface runoff is slightly superior for the Jiparana river (0.3 g/l) than for the Jamari one (0.2 g/l). The river suspended sediments are mainly composed of kaolinite, quartz and feldspar, but the Jiparana is more enriched in quartz. For both rivers, the dominant clay mineral is the kaolinite which is in agreement with the rock weathering type determined for both basins using the Tardy's weathering index: the monosiallitisation. The total chemical erosion rate calculated after correction for the atmospheric inputs (ions and CO2), is higher for the Jiparana (10.11 t/km2/y) than for the Jamari river basin (7.75 t/km2/y). These values are lower than the mechanical denudation rate calculated previously for both river basins.  相似文献   

8.
Cadmium (Cd) variations were investigated over an annual cycle (12 surveys between February 1998–January 1999) in the Morlaix estuary (Brittany, France) in both the water column and the benthic compartment in relation to hydrological conditions. The drainage basin of the Morlaix River estuary is predominantly agricultural in character. Dissolved Cd concentrations in the water column varied from 0.04 to 0.48 nM. Particulate Cd concentrations ranged from 1 to 64 nmol g−1. These concentrations reach levels commonly observed in estuaries affected by heavy industrial activities. Extensive agricultural activities in the drainage basin may be responsible for Cd levels above pristine conditions. Metal concentrations varied significantly over the seasonal cycle and the dissolved fraction exhibited high values in summer months. Particulate concentrations were always lowest during this season. In the benthic compartment, Cd concentrations in surface sediment varied from 0.4 to 5.0 nmol g−1 and from 0.2 to 5.0 nM in porewaters. Concentrations in sediment were slightly affected by Cd contamination and temporal changes were important over the seasonal cycle. The variations seem to be controlled by the succession of sedimentation and erosion processes, which are tightly linked to seasonal changes in river discharge. A box model was constructed based on known Cd sources and sinks in the estuary. Cd is chiefly brought into the estuary by the Morlaix River and accumulates within the estuary. The accumulation within the estuary represents from 6.3 to 7.2 kg yr−1.  相似文献   

9.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

10.
The numerical model HydroTrend, that produces daily time series of water discharge and sediment load to the ocean, is applied to three Mediterranean drainage basins to: (i) simulate the water and sediment flux changes to sedimentary basins through time and (ii) determine the impact of potential forcing factors on sediment and water fluxes to sedimentary basins and how this impact varied through time. Climate (precipitation, temperature and glacier equilibrium line) and drainage basin (basin elevation, drainage area and reservoir) reconstructions of the Po, Rhône and Têt river basins over the last 21 000 Cal. years B.P. are used as input to the model.Simulated sediment fluxes at the river mouth for the Po, Rhône and Têt River systems during the late Pleistocene were considerably higher compared to Holocene pristine sediment flux, with a factor 3.5, 2.4 and 2.4 respectively. For the Po River system and the Rhône River, deglaciation in the late Pleistocene is the main factor, responsible for these higher sediment fluxes. Drainage basin area change due to sea-level rise is the main cause of decrease in sediment flux for the Têt River system and to a certain extent for the Po River system. Man-made reservoirs reduced sediment flux to the ocean for the Po, Rhône and Têt rivers over the last 3–6 decades with a factor of 1.3, 3.8 and 2.4 respectively.Fluvial responses to climate and basin variations are reflected in the peak flood discharge and sediment concentration curves, where present-day water peak flood curves for all three rivers are the highest in the last 21 000 Cal. years B.P. However, their associated sediment concentration curves show opposite results because of diminishing glacial area and the impact of reservoirs. The Têt River system has the ability to generate hyperpycnal plumes although the occurrence frequency changes over time. Prior to 15 500 Cal. years B.P. the river system area was extended due to the low sea level, causing a less favorable regime to generate hyperpycnal events. Presently sediment trapping due to man-made reservoirs alters the river ability to generate hyperpycnal events.  相似文献   

11.
Water and suspended sediment samples were collected along a longitudinal transect of the Bhagirathi – a headwater stream of the river Ganga, during the premonsoon and postmonsoon seasons, in order to assess the solute acquisition processes and sediment transfer in a high elevation river basin. Study results show that surface waters were dominated by HCO3 and SO4 in anionic abundance and Ca in cationic concentrations. A high concentration of sulphate in the source region indicates oxidative weathering of sulphide bearing minerals in the drainage basin. The combination of high concentrations of calcium, bicarbonate and sulphate in river water suggests that coupled reaction involving sulphide oxidation and carbonate dissolution are mainly controlling the solute acquisition processes in the drainage basin. The sediment transfer reveals that glacial weathering and erosion is the major influence on sediment production and transfer. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The sediment mineralogy and water mineral equilibrium indicate that water composition is in equilibrium with kaolinite. The river Bhagirathi annually delivers 0.74 M.tons of dissolved and 7.88 M.tons of suspended load to the river Ganga at Devprayag. The chemical and physical denudation rate of the Bhagirathi is 95 and 1010 tons/km2/yr, higher than the Indian and global average.  相似文献   

12.
A systematic study of the major ion chemistry of the Ganga source waters—the Bhagirathi, Alaknanda and their tributaries—has been carried out to assess the chemical weathering processes in the high altitude Himalaya. Among major ions, Ca, Mg, HCO3 and SO4 are the most abundant in these river waters. These results suggest that weathering of carbonate rocks by carbonic and sulphuric acids dominates in these drainage basins. On an average, silicate weathering can contribute up to ∼ 30% of the total cations. The concentration of total dissolved salts in the Bhagirathi and the Alaknanda is 104 and 115mg/l, respectively. The chemical denudation rate in the drainage basins of the Bhagirathi and the Alaknanda is, respectively, 110 and 137 tons/km2/yr, significantly higher than that derived for the entire Ganga basin, indicating intense chemical erosion of the Himalaya.  相似文献   

13.
An accurate quantification of erosion, based on high-frequency monitoring of river discharge and suspended sediment fluxes is proposed for two watersheds in the western Paris Basin, a sensitive area with respect to erosion phenomena. This continuous monitoring makes it possible to include flood events of short duration, but significant erosion potential. The obtained erosion rate (16 and 21 t?km?2?yr?1) is among the weakest of the planet (3.5 to 18?000 t?km?2?yr?1). However, this annual balance does not reflect the behaviour of these rivers which can be torrential in certain cases. To cite this article: B. Laignel et al., C. R. Geoscience 338 (2006).  相似文献   

14.
Hydrogeomorphic methods for the regional evaluation of flood hazards   总被引:1,自引:0,他引:1  
The “upstream” approach to flood hazard evaluation involves the estimation of hydrologic response in small drainage basins. This study demonstrates the application of geomorphology to such studies in a region of unusually intense flooding in central Texas. One approach to flood hazard evaluation in this area is a parametric model relating flood hydrograph characteristics to quantitative geomorphic properties of the drainage basins. A preliminary model uses multiple regression techniques to predict potential peak flood discharge from basin magnitude, drainage density, and ruggedness number. After mapping small catchment networks (4 to 20 km2) from remote sensing imagery, input data for the model are generated by network digitization and analysis by a computer-assisted routine of watershed analysis. The study evaluated the network resolution capabilities of the following data formats: (1) large-scale (1:24,000) topographic maps, employing Strahler's “method of v's”, (2) low altitude black-and-white aerial photography (1:13,000 and 1:20,000 scales), (3) NASA-generated aerial infrared photography at scales ranging from 1:48,000 to 1:123,000, and (4) Skylab Earth Resources Experiment Package S-190A and S-190B sensors (1:750,000 and 1:500,000 respectively). Measured as the number of first order streams or as the total channel length identified in small drainage areas, resolution is strongly dependent on basin relief. High-density basins on the Edwards Plateau were poorly depicted on orbital imagery. However, the orbital network definition of low-relief basins on the inner Texas Coastal Plain is nearly as accurate as results from large-scale topographic maps. Geomorphic methods are also useful for flood hazard zonation in “downstream” flood plain areas. Studies of the Colorado River valley near Austin, Texas, easily distinguished infrequent (100- to 500-year recurrence interval), intermediate (10- to 30-year), and frequent (1- to 4-year) hazard zones. These mapping techniques are especially applicable to the rapid regional evaluation of flood hazards in areas for which there is a lack of time and money to generate more accurate engineering-hydraulic flood hazard maps.  相似文献   

15.
The drainage basin parameters of the groundwater-fed Chhoti Gandak River originating in the terai area of the Ganga Plain were analyzed using topographical sheets, satellite data, and field documentation with emphasis to its implication for flood mitigation and recharging of groundwater. The analyses indicate dominance of first order streams, gentle slope gradient, low surface run-off, low sediment production, high infiltration rate, and low value of basin relief. The low water storage capacity, spreading of water and concentration of peak discharge in the distal part of the river basin explain that whenever precipitation is high in the catchment area there is flood in the distal part of the basin. The bifurcation ratio value (4.34) of this basin describes that the drainage is carved naturally by slope and local relief and not influenced by geological structures like lineaments and faults.  相似文献   

16.
Natural runoff observation fields with different vegetation coverage were established in the Zuomaoxikongqu River basin in the headwater area of the Yangtze River, and in the Natong River basin and the Kuarewaerma River basin in the headwater area of the Yellow River, China. The experiments were conducted using natural precipitation and artificially simulated precipitation between July and August to study the runoff and sediment-producing effects of precipitation under the conditions of the same slope and different alpine meadow land with coverage in the headwater areas. The results show that, in the three small river basins in the headwater areas of the Yangtze and the Yellow Rivers, the surface runoff yield on the 30° slope surface of the alpine meadow land with a vegetation cover of 30% is markedly larger than that of the fields with a vegetation cover of 95, 92, and 68%. Furthermore, the sediment yield is also obviously larger than the latter three; on an average, the sediment yield caused by a single precipitation event is 2–4 times as large as the latter three. Several typical precipitation forms affecting the runoff yield on the slope surface also influence the process. No matter how the surface conditions are; the rainfall is still the main precipitation form causing soil erosion. In some forms of precipitation, such as the greatest snow melting as water runoff, the sediment yield is minimal. Under the condition of the same precipitation amount, snowfall can obviously increase the runoff yield, roughly 2.1–3.5 times as compared to the combined runoff yield of the Sleet or that of rainfall alone; but meanwhile, the sediment yield and soil erosion rate decrease, roughly decreasing by 45.4–80.3%. High vegetation cover can effectively decrease the runoff-induced erosion. This experimental result is consistent in the three river basins in the headwater areas of the Yangtze and Yellow Rivers.  相似文献   

17.
During the Middle Pleistocene late Saalian glaciation of northern central Europe numerous pro‐glacial lakes formed along the southwestern margin of the Scandinavian Ice Sheet. Little is known about the drainage history of these lakes, the pathways of glacial lake outburst floods and their impacts on erosion, sedimentation and landscape evolution. This study investigated the impact of the late Saalian Weser and Münsterland Lake (Germany) outburst floods. In particular, we reconstructed the routing and flow dynamics of the lake outburst flood and analysed the flood related sediments. We employed one‐dimensional hydraulic modelling to calculate glacial lake outburst flood hydrographs. We modelled the flow pathway and local flow conditions along the pathway based on the boundary conditions of two different hydrographs and two different ice‐margin positions. The modelling results were compared with geomorphological and sedimentological field data in order to estimate the magnitude and impact of the flood on erosion and sedimentation. Two major lake drainage events are reconstructed for the study area, during which approximately 90–50 km3 of water was released. Modelling results indicate that the lake outburst floods created a high‐energy flood wave with a height of 35–50 m in confined valley areas that rapidly spread out into the Lower Rhine Embayment eventually flowing into the North Sea basin. The sedimentary record of the outburst floods comprises poorly sorted coarse‐grained gravel bars, long‐wavelength bedforms and sandy bedforms deposited by supercritical and subcritical flows. Some parts of the sandy flood deposits are rich in reworked mammoth bones or mammoth and horse teeth, pointing to reworking of older fluvial sediments, hydraulic concentration and subsequent re‐sedimentation of vertebrate remains. These deposits are preserved in sheltered areas or at high elevations, well above the influence of postglacial fluvial erosion. The flood‐related erosional features include up to 80‐m‐deep scour pools, alluvial channels and streamlined hills.  相似文献   

18.
The study of the hydrologic characters of a water course permits the correct management of the corresponding basin and a greater control over the water resources of the whole basin; therefore, a suitable planning and maintenance of the necessary interventions along the water course, especially in proximity of the outlet to sea, becomes necessary. An evaluation of the solid transport allows an estimation of the erosion to which the basin is subjected as a result of the river flow, and further helps to prevent hydrologic disasters in the possible risk zones. Among the various experimental techniques in use for measuring the suspended-solid transport, nuclear methods have been preferably used in this research, which are based on monitoring the concentration of the suspended sediments. The suspended-solid concentration is detected by the attenuation of radioactivity emitted by a source of 241Am dipped in the water. This attenuation, due to the presence of the sediments transported in great amounts during events of flood is measured using a scintillation detector made up of a crystal of NaI(Tl). With appropriate calibration curves built both in the laboratory and in the field, it is possible to trace the amount of suspended-solid transport in a certain river section that is located in the proximity of the river outlet. This methodology, applied to different equipped basins in Italy and Africa, is particularly useful for small and medium water courses (similar to those of the Apennine ranges in Italy), allowing an assessment of the erosion in the whole watershed. In this note, the techniques used are introduced in detail, with particular attention to the instrument calibration, and the numerical results obtained for some basins in the Marche region (Italy) are compared with some empirical formulae used in previous reports for the calculation of erosion.  相似文献   

19.
In Scandinavia, most fluvial erosion takes place in the Quaternary glacial overburden at a restricted number of small source areas along individual drainage channels. As a consequence, a sample of active stream sediment is representative of only a very limited portion of the drainage area. This restriction makes stream sediment less reliable for regional exploration than generally expected. Overbank (levee or river-plain) sediment produced during large floods is an alternate more representative sampling medium. The sediment suspended during a flood has a much more widespread origin, and when the load is deposited upon the flood plain, nearly horizontal strata are formed and preserved at levels above the ordinary stream channel. A composite sample through a vertical section of such strata represents a great number of sediment sources that have been active at different times and forms an integrated sample of the entire catchment area. Because young sediments overlay older, the uppermost layers will be contaminated by pollutants in industrialized regions, but those at depth may remain pristine and will to a greater extent reflect the natural pre-industrial environment. In regional geochemical mapping, overbank sediment can be sampled at widely spaced sites, keeping costs per unit area low. Examples from Norway (1 sample station per 500 km2) show that overbank sediment produces broad geochemical patterns with high contrasts reflecting the bedrock geochemistry. Some patterns agree with known geological units and metallogenic provinces, but hitherto unknown major structures have also been indicated. A large Mo-deposit missed by a traditional stream survey is readily detected in the overbank sediment. It is concluded that overbank sediment is a promising alternate sample medium that should be tested in other physiographic regions.  相似文献   

20.
The main objective of the study was to assess the integrated multiple hydrological hazards and their environmental and socio-economic risks in Himalaya through geographical information system (GIS) and database management system (DBMS). The Dabka Watershed constitutes a part of the Kosi Basin in the Kumaun Lesser Himalaya has been selected for the case illustration. The Dabka DBMS is constituted of three GIS modules, that is, geo-informatics, hydro-informatics and hazard-informatics. Through the integration and superimposing of these modules prepared Hydrological Hazard Index to identify the level of vulnerability for existing hydrological hazards and their socio-economic and environmental risks. The results suggested that geo-environmentally most stressed barren land areas have high rate of runoff, flood magnitude, erosion sediment load and denudation during rainy season particularly in the month of August (i.e., respectively, 84.56 l/s/km2, 871.80 l/s/km2, 78.60 t/km2 and 1.21 mm/year), which accelerates high hazards and their socio-economic and environmental risks, whereas geo-environmentally least stressed dense forest areas experience low rate of stream runoff, flood magnitude, erosion sediment load and denudation in the same season and month (i.e., respectively, 20.67 l/s/km2, 58.12 l/s/km2, 19.50 t/km2 and 0.20 mm/year) comparatively have low hazards and their socio-economic and environmental risks. The other frazzled geo-environment that also found highly vulnerable for natural hazards and their risks is agricultural land due to high stream runoff, flood magnitude, erosion sediment load and denudation rates (i.e., respectively, 53.15 l/s/km2, 217.95 l/s/km2, 90.00 t/km2 and .92 mm/year). This makes it necessary to take up an integrated and comprehensive sustainable land use policy for the entire Himalaya region based on the scientific interpretation of the crucial linkages between land use and hydrological hazards, that is, floods, erosion, landslides during rainy season and drought due to dry-up of natural springs and streams during summer season. The study would help the village, district and state development authority to formulate decision support system for alternate planning and management for the Himalaya region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号