首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
A numerical code has been developed to track the distribution of trace elements in crustal rocks undergoing melting. The model handles diffusion with moving boundaries and accounts for the processes of diffusion, dissolution and precipitation in a partially molten system. Among the various input parameters for modelling, source composition (i.e. modal abundance) variations, diffusion coefficients and partition coefficients are found to exert a significant control on the melt chemistry. The other inputs such as melt reaction stoichiometry, kinetics of melting and grain size of protolith have lesser influence. Exploration of the general behaviour indicates that for systems in which disequilibrium melting of the kind considered in this paper occurs, trace element concentrations may be used to constrain the composition of the protolith or the timescales of melting, depending on the specific circumstances. After exploring some general features of melting in a pelitic system, the model is applied to calculate trace element distributions in migmatites from the Lesser Himalayan rocks in Sikkim, India. We focus on the distribution of trace elements during the initial stages of melt formation. These partially molten rocks show disequilibrium distribution of trace elements, and the numerical code is capable of quantitatively reproducing many of the observed patterns. The results of the modelling indicate that the observed melts in this zone were formed within 50,000 years and that segregation of melts (into leucosome and restite) was complete between 50,000 and 250,000 years. These short timescales may point to deformation-enhanced melt segregation at least on a hand specimen scale. It is important to distinguish between timescales of segregation over these scales and timescales of removal of melt on an outcrop scale to form plutons—the latter, requiring higher degrees of melting and larger distances of migration, take longer.  相似文献   

2.
Gough Island: Evaluation of a fractional crystallization model   总被引:3,自引:0,他引:3  
Gough Island is composed of an alkaline olivine basalt-trachyte series. A fractional crystallization model for the development of these rocks has been evaluated by correlating the geochemical trends of major and trace elements. Beginning with an alkali olivine basalt parent the major element abundances were used to determine the varying proportions of crystallizing minerals required to generate the various residual liquids. A least-squares computer model was used for this calculation. The modal proportions of cumulative minerals and trace element distribution coefficients were used to predict the trace element abundances in each rock type.Three significant trace element trends are observed in Gough Island rocks: (1) increasing rare earth (RE) abundance and relative light RE enrichment with increasing major element differentiation, (2) marked Eu, Sr, and Ba depletions in late stage trachytes, (3) Cr and M enrichment in picrite basalt.The trace element abundances predicted by the fractional crystallization model are in good agreement with these observed trends. A fractional crystallization process involving olivine, pyroxene, feldspar, and apatite accounts for all the significant major and trace element trends observed in Gough Island rocks.  相似文献   

3.
K, Rb, Sr, Ba and rare earth elements of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system. A felsic rock is suggested to be derived by partial melting of a basaltic source, presumably in an ancient subduction zone.It is well known that the distribution coefficients (liquid/source) for the above trace elements are almost invariably greater than one. Continuous extraction of volcanic liquids from the upper mantle through geologic time would result in depletion of these elements in the upper mantle. However, all trace element abundances in many Archean volcanic rocks are almost identical to their modern equivalents. This gross constancy of trace element concentration in rocks of different geologic age raises some important questions as to the evolution of the upper mantle. It is proposed that the trace elements have been repeatedly and fully recycled in a restrictive and closed system of crust and upper mantle during the last three billion years (recycled mantle), or the trace elements have been replenished from the lower part of the mantle by some undefined process (replenished mantle). It is believed that interplay of both recycling and replenishment have been responsible for crust-mantle evolution in geological history.  相似文献   

4.
浙西南龙泉地区集中出露一套中深变质岩系,是华夏地块的重要组成部分,对其形成时代和成岩构造属性等问题历来存在争议。本文通过对龙泉变质岩中变质基性岩的地球化学研究,认为这些岩石的原岩成岩环境至少有两类:Ⅰ类岩石稀土配分曲线、微量元素蛛网图特征均显示与IAB的相似性,微量元素比值和图解判别均指示这套岩石形成于与俯冲有关的岛弧构造环境;Ⅱ类岩石稀土配分曲线和微量元素蛛网图均与OIB有相似性,微量元素比值和图解判别也指示这套岩石形成于与俯冲无关的OIB构造环境。多种不同构造属性的岩石共生,佐证了原龙泉岩群变质岩系为一形成于早古生代的俯冲增生杂岩。变质基性岩锆石U-Pb测年获得其峰期变质时间为404~402Ma。龙泉俯冲增生杂岩的厘定对重新认识丽水-余姚断裂带构造属性、区域构造格架的建立以及进一步分析华夏造山系物质组成与结构提供了新资料。  相似文献   

5.
This paper considers the distribution of trace elements (including rare earth elements) in zircons dated by the ion-microprobe U-Th-Pb isotope method and its genetic implications. Two problems were addressed on the basis of the investigation of trace element compositions of zircons: (1) genesis of zircons from subalkaline magmatic rocks, sysenites, and sanukitoids and their comparison with tonalites as exemplified by the rocks of the Karelian region, and (2) determination of trace element signatures of zircons from the oldest granulite-facies rocks of the Ukrainian shield. It was shown that the REE distribution patterns of the tonalites, which crystallized in equilibrium with melt, are strictly governed by crystal-chemical laws. The REE distribution patterns show a positive slope with an increase from La to Lu, a positive Ce anomaly, and a negative Eu anomaly. Similar patterns were observed in zircons from the syenites. The trace element contents of zircons are related to those of melts through partition coefficients. Zircons from the sanukitoids show a considerable LREE enrichment, which is inconsistent with the calculated zircon/melt partition coefficients and presumably related to the inherently imperfect zircon structure. Such a structure was formed during zircon crystallization from melt at high temperatures and the anomalous fluid regime that is characteristic, in particular, of sanukitoid melts. The REE distribution patterns of zircons that crystallized under granulite-facies conditions are sharply different from typical distributions in HREE depletion, which was caused by the competitive growth of garnet during zircon crystallization.  相似文献   

6.
The major and trace element distribution was studied in the Eocene-Miocene stratotype section of the northern Aral region, northern coast of the Perovskii Gulf. The geochemical specific of ore-bearing rocks is shown. Qualitative trends in the distribution of element in genetically diverse rocks are established.  相似文献   

7.
In terms of major element, trace element and REE geochemical characteristics ofvolcanic rocks in the area studied and by making use of the TiO2-K2O-P2O5,The-Hf-Ta and Zr-Nb-Y trianglar diagrams and the environmental discrimination diagrams of incompatible ele-ment distribution pattems,the authors have drawn some conclusions that are different from those by previous workers.It is concluded that volcanic rocks in the Laochang Ag polymetallic deposit at Lancang,Yunnan belong to continental within-plate alkali basalts, and that their geotectonic setting seems to be at the northeastern margin of East Gondwana Land.  相似文献   

8.
Many lamprophyre dike and sill rocks in the Monteregian Hills petrographic province of southwestern Quebec contain felsic segregations (ocelli) which have been interpreted as globules of immiscible liquid (Philpotts 1976). Ocelli and matrix material were separated from a number of these rocks and analyzed for major and trace elements. The major element data, when plotted on a Greig diagram, outline a field of possible silicate-liquid immiscibility at higher alumina+alkali content than that previously mapped in iron-rich experimental systems. The trace element data support a liquid immiscibility hypothesis for the formation of these ocelli since high-charge density cations are preferentially concentrated in the matrix (mafic) material, a result which is consistent with theoretical and experimental studies. The distribution of minor and trace elements between ocelli and matrix indicates that several factors control the partitioning of these elements between immiscible felsic and mafic liquids. These factors include the difference in relative polymerization (as measured by the Si∶O ratio) of the two liquids, with an increase in this difference favoring partitioning of the high-charge density cations into the mafic liquid; the concentration of P2O5 in the mafic liquid which favors the partitioning of high-charge density cations into this liquid; the presence of a CO2 vapor (?) phase which favors the partitioning of high-charge density cations into the CO2 enriched phase; and the presence of solid phases at the onset of immiscibility. These observations indicate that the chemical compositions of two possibly immiscible melts should be known if minor and trace element data are to be used as evidence for silicate-liquid immiscibility.  相似文献   

9.
Many lamprophyre dike and sill rocks in the Monteregian Hills petrographic province of southwestern Quebec contain felsic segregations (ocelli) which have been interpreted as globules of immiscible liquid (Philpotts 1976). Ocelli and matrix material were separated from a number of these rocks and analyzed for major and trace elements. The major element data, when plotted on a Greig diagram, outline a field of possible silicate-liquid immiscibility at higher alumina+alkali content than that previously mapped in iron-rich experimental systems. The trace element data support a liquid immiscibility hypothesis for the formation of these ocelli since high-charge density cations are preferentially concentrated in the matrix (mafic) material, a result which is consistent with theoretical and experimental studies.The distribution of minor and trace elements between ocelli and matrix indicates that several factors control the partitioning of these elements between immiscible felsic and mafic liquids. These factors include the difference in relative polymerization (as measured by the Si∶O ratio) of the two liquids, with an increase in this difference favoring partitioning of the high-charge density cations into the mafic liquid; the concentration of P2O5 in the mafic liquid which favors the partitioning of high-charge density cations into this liquid; the presence of a CO2 vapor (?) phase which favors the partitioning of high-charge density cations into the CO2 enriched phase; and the presence of solid phases at the onset of immiscibility. These observations indicate that the chemical compositions of two possibly immiscible melts should be known if minor and trace element data are to be used as evidence for silicate-liquid immiscibility.  相似文献   

10.
Zircon populations of Neoproterozoic and early Paleozoic age occur in metabasites of a high-pressure amphibolite-facies unit of the Austroalpine basement south of the Tauern Window. The host rocks for these zircons are eclogitic amphibolites of N-MORB-type character, hornblende gneisses with volcanic-arc basalt signature, and alkaline within-plate-basalt amphibolites. Bulk rock magmatic trace element patterns were preserved during amphibolite-facies high-pressure and subsequent high-temperature events, as well as a greenschist-facies overprint. Positive Ce and negative Eu anomalies and enrichment of HREE in normalized zircon REE patterns, as analysed by LA-ICP-MS, are typical for an igneous origin of these zircon suites. Zircon Y is well correlated to HREE, Ce, Th, U, Nb, and Ta and allows discrimination of compositional fields for each host rock type. Low Th/U ratios are correlated to low Y and HREE abundances in zircon from low bulk Th/U host rocks. This is likely a primary igneous characteristic that cannot be attributed to metamorphic recrystallization. Variations of zircon/host rock element ratios confirm that ionic radii and charges control abundances of many trace elements in zircon. The trace element ratios—presented as mineral/melt distribution coefficients—indicate a selectively inhibited substitution of Zr and Si by HREE and Y in zircon which crystallized from a N-MORB melt. Correlated host rock and zircon trace element concentrations indicate that the metabasite zircons are not xenocrysts but crystallized from mafic melts, represented by the actual host rocks.  相似文献   

11.
There is a dearth of information about the distribution of trace elements in kerogen from shale rocks despite several reports on trace element composition in many shale samples. In this study, trace elements in shale rocks and their residual kerogens were determined by inductively coupled plasma–mass spectrometry. The results from this study show redox-sensitive elements relatively concentrated in the kerogens as compared to the shales. This may be primarily due to the adsorption and complexation ability of kerogen, which enables enrichment in Ni, Co, Cu, and Zn. For the rare earth elements (REEs), distinct distribution characteristics were observed for shales dominated by terrigenous minerals and their kerogen counterparts. However, shales with less input of terrigenous minerals showed similar REE distribution patterns to their residual kerogen. It is speculated that the distribution patterns of the REEs in shales and kerogens may be source-related.  相似文献   

12.
Abstract The Bergen-Jotun kindred rocks of this study, the Storådalen Complex (SCX), Svartdalen Gneiss (SG) and Mjølkedøla Purple Gabbro (MPG), have been shown to be a co-magmatic series with calc-alkaline affinities. The analyses of Ba, Nb, Y, and Zr presented here show no variation in these elements between the three rock units and are consistent with the calc-alkaline character of the rocks. The lithophile elements Ba, K, and Sr are enriched relative to MORB and the high field strength elements Nb, Y, and Zr are depleted relative to MORB, Zr especially so.
The SCX contains rocks with low (>30) differentiation indices which are interpreted as plagioclase + pyroxene ± olivine ± amphibole cumulates. The remainder of the SCX, together with the MPG and SG, is regarded as the congealed liquid in equilibrium with these cumulates. The distribution of trace elements between these two components of the SCX can be adequately modelled using a Rayleigh fractionation process, measured 'liquid'compositions, and calculated bulk distribution coefficients. It is thus concluded that the trace element geochemistry of the rocks of this study is consistent with subduction-related, mantle-derived magmas that fractionate within a continental or mature island arc environment. Subsequent high-grade metamorphism and deformation of Sveconorwegian age have been essentially isochemical.  相似文献   

13.
The Halle Volcanic Complex (HVC) is part of the transtensional intracontinental Saale Basin, which formed on the Mid-German Crystalline Rise located at the southern margin of the late Carboniferous/early Permian volcanic province of central Europe. Magmatic activity ranged from early trachybasalts, trachyandesites, and trachydacites followed by calc-alkaline, mildly peraluminous low-Si rhyolites, the latter of which had intruded at a very shallow crustal level. Two groups of geochemically heterogeneous and isotopically distinct mafic-intermediate rocks have to be distinguished, which originated from enriched mantle (lower crustal) sources and experienced crustal contamination to various extents. These rocks preceded the emplacement of rhyolites that are remarkably uniform in major and trace element chemistry as well as Nd isotope composition. Distinctly negative )Nd(T=300 Ma) (-6.7 to -7.0) of the rhyolites implies significant involvement of crustal material. The Pb isotopic composition of K-feldspar and trace element content of the rhyolites are compatible with remelting of Saxothuringian rather than Rhenohercynian crustal domains of the Variscan orogen. Slightly differing REE abundances in the rhyolites are attributed to an inhomogeneous distribution of accessory minerals. In conflict with their generation in an extensional environment, the trace element signature of the HVC rocks indicates a magmatic arc or collisional setting rather than an intracontinental within-plate setting. The composition of rhyolites from extensional settings at Halle and the adjacent Northeast German Basin demonstrates that trace element composition and geodynamic environment may not be correlated. Furthermore, the geochemistry of these rocks implies that the same type of magmatism may take entirely different chemical expressions in dependence of the structural and chemical composition of the underlying lithospheric block, which might be used to map hidden destroyed terrain boundaries in ancient orogens.  相似文献   

14.
This paper reports the first petrological and geochemical evidence for the Meso-Neoproterozoic metamorphic and metaintrusive rocks of the Shaw Mountain massif (Prince Charles Mountains, East Antarctica). It was shown that the orthogneisses (plagiogneisses) and metabasites of the massif were formed as constituents of a volcanoplutonic complex, which included a variety of igneous rocks of normal and subalkaline groups, from ultrabasic to silicic and was assigned to the volcanic tholeiite basalt-andesite-rhyolite, plutonic peridotite-gabbro, and late (?) calc-alkaline gabbro-diorite-plagiogranite associations. The distribution of major and compatible trace elements indicates the fractionation of the primary melts that produced the volcanoplutonic association of the Shaw massif. With respect to the distribution of REE and trace elements and some trace element ratios, the metabasic rocks of the Shaw massif correspond mainly to enriched and normal basalts of mid-ocean ridges, continental rifts, and ocean islands, which suggests a contribution from a plume mantle source. It was found that the region of the Shaw massif is a high-grade metamorphosed margin of the Fisher volcanoplutonic complex, a Mesoproterozoic structure of single geodynamic nature. This is supported by the spatial proximity of the Shaw and Fisher regions, the similar behaviors of most major elements and distribution patterns of trace elements and REE in comparable magmatic associations, and the similar ages of some plutonic associations. Based on the petrological and geochemical data, an alternative geotectonic model was proposed for this region. According to this model, the Fisher complex was formed in a setting of continental rifting coupled with the processes of mantle diapirism, which was subsequently changed by the compression stage. During rifting, the structure could experience significant opening accompanied by ultrabasic-basic tholeiitic magmatism with a significant contribution of mantle material. A subsequent inversion resulted in that the rift structure underwent considerable horizontal compression accompanied by calc-alkaline magmatism and the formation of narrow intracratonic fold zones. The cyclic character of rifting processes and superposition of young rift systems on older ones was also established in the Phanerozoic geotectonic history of the region of the Prince Charles Mountains.  相似文献   

15.
 The parameters which control the behaviour of isovalent trace elements in magmatic and aqueous systems have been investigated by studying the distribution of yttrium, rare-earth elements (REEs), zirconium, and hafnium. If a geochemical system is characterized by CHArge-and-RAdius-Controlled (CHARAC) trace element behaviour, elements of similar charge and radius, such as the Y-Ho and Zr-Hf twin pairs, should display extremely coherent behaviour, and retain their respective chondritic ratio. Moreover, normalized patterns of REE(III) should be smooth functions of ionic radius and atomic number. Basic to intermediate igneous rocks show Y/Ho and Zr/Hf ratios which are close to the chondritic ratios, indicating CHARAC behaviour of these elements in pure silicate melts. In contrast, aqueous solutions and their precipitates show non-chondritic Y/Ho and Zr/Hf ratios. An important process that causes trace element fractionation in aqueous media is chemical complexation. The complexation behaviour of a trace element, however, does not exclusively depend on its ionic charge and radius, but is additionally controlled by its electron configuration and by the type of complexing ligand, since the latter two determine the character of the chemical bonding (covalent vs electrostatic) in the various complexes. Hence, in contrast to pure melt systems, aqueous systems are characterized by non-CHARAC trace element behaviour, and electron structure must be considered as an important additional parameter. Unlike other magmatic rocks, highly evolved magmas rich in components such as H2O, Li, B, F, P, and/or Cl often show non-chondritic Y/Ho and Zr/Hf ratios, and “irregular” REE patterns which are sub-divided into four concave-upward segments referred to as “tetrads”. The combination of non-chondritic Y/Ho and Zr/Hf ratios and lanthanide tetrad effect, which cannot be adequately modelled with current mineral/melt partition coefficients which are smooth functions of ionic radius, reveals that non-CHARAC trace element behaviour prevails in highly evolved magmatic systems. The behaviour of high field strength elements in this environment is distinctly different from that in basic to intermediate magmas (i.e. pure silicate melts), but closely resembles trace element behaviour in aqueous media. “Anomalous” behaviour of Y and REEs, and of Zr and Hf, which are hosted by different minerals, and the fact that these minerals show “anomalous” trace element distributions only if they crystallized from highly evolved magmas, indicate that non-CHARAC behaviour is a reflection of specific physicochemical properties of the magma. This supports models which suggest that high-silica magmatic systems which are rich in H2O, Li, B, F, P, and/or Cl, are transitional between pure silicate melts and hydrothermal fluids. In such a transitional system non-CHARAC behaviour of high field strength elements may be due to chemical complexation with a wide variety of ligands such as non-bridging oxygen, F, B, P, etc., leading to absolute and relative mineral/melt or mineral/aqueous-fluid partition coefficients that are extremely sensitive to the composition and structure of this magma. Hence, any petrogenetic modelling of such magmatic rocks, which utilizes partition coefficients that have not been determined for the specific igneous suite under investigation, may be questionable. But Y/Ho and Zr/Hf ratios provide information on whether or not the evolution of felsic igneous rocks can be quantitatively modelled: samples showing non-chondritic Y/Ho and Zr/Hf ratios or even the lanthanide tetrad effect should not be considered for modelling. However, the most important result of this study is that Y/Ho and Zr/Hf ratios may be used to verify whether Y, REEs, Zr, and Hf in rocks or minerals have been deposited from or modified by silicate melts or aqueous fluids. Received: 4 September 1995 / Accepted: 30 October 1995  相似文献   

16.
新疆土屋铜矿床某些成矿地球化学特征探讨   总被引:1,自引:0,他引:1  
在分析土屋铜矿床I号矿体中部主要围岩和矿(化)体的硅酸盐、稀土元素、微量元素及成矿元素含量的基础上,借助MVSP等专业软件系统统计对比了上述示踪元素在各类围岩和矿(化)体中的分布分配规律.根据矿区的斑岩体与矿(化)体在多种元素组合特征上的相似性判断,二者有物质上的亲缘关系.而成矿元素表现出的某些地球化学行为则说明初步聚集了成矿元素Cu、Au、Ag、Sb、(Mo)的斑岩体,经热液蚀变使其中的成矿物质活化迁移,并富集在有利的构造和岩相部位,在后期复合成因热液所携矿质的多期次叠加下,形成大型斑岩-热液型铜矿床.  相似文献   

17.
The study of melt inclusions in Cr-spinels from melanocratic troctolites provided the first direct information on the physicochemical parameters of enriched magmatic systems that produced high-Fe and high-Ti intrusive complexes in the Sierra-Leone region (Central Atlantic, 6°N). These complexes are made up of predominating hornblende Fe-Ti oxide gabbronorites and gabbrodiorites with subordinate amount of ultramafics, diorites, quartz diorites, and trondhjemites. The study of melt inclusions and rocks showed that the majority of gabbroids of the Central Atlantic (Sierra Leone area and 15°20′ Fracture Zone) were derived from N-MORB-type melts, whereas differentiated Fe-Ti-oxide rocks were crystallized from other melts, which were preserved as inclusions in the Cr-spinels from the melanocratic troctolites of the Sierra Leone region. The ion-microprobe study of these inclusions yield direct evidence on the elevated water content (up to 1.24–1.77 wt %) in the parental melts of Fe-Ti oxide rocks. Data on trace and rare-earth element distribution together with high (La/Sm)N and (Ce/Yb)N ratios in the inclusions indicate the possible influence of deep plume source on the generation of these magmas. Simulation based on melt inclusion data testifies that high-Fe intrusions of the Sierra Leone area were crystallized from the water-saturated magmas at relatively low temperatures (1020–1240°C). It was shown that the geochemically enriched Fe-Ti melts were presumably formed regardless of N-MORB-type magmatism predominant in Central Atlantic, under the influence of new mantle plume that caused melting of hydrated oceanic lithosphere.  相似文献   

18.
柴西地区南翼山构造上新统混积岩中含有大量盐类矿物,其物源分析对盐矿物质来源研究有一定的参考价值。本文在野外观察和镜下鉴定的基础上,对南翼山构造上新统狮子沟组混积岩的地球化学特征进行了分析,并结合周缘造山带花岗岩的稀土元素数据,探讨了混积岩中陆源碎屑的物质来源。结果显示:南翼山构造狮子沟组混积岩中碎屑矿物、碳酸盐矿物和黏土矿物呈均匀混合的状态,元素含量与矿物组分密切相关,除Ca、Na、Sr元素外,其余元素含量普遍低于上地壳平均含量,其中CaO和Na2O受碳酸盐和石盐形成影响,不能用于判别构造背景,而Sc、Th、Zr、Hf等微量元素和稀土元素较完整地保留了源岩的地球化学信息,可用于源区构造背景的判别及物源示踪,同时稀土元素配分模式一致性较好,表明混积岩中陆源碎屑具有相同的物源特征。稀土元素配分模式、La Th Sc、Th Sc Zr/10、La/Th Hf图解以及Al2O3/TiO2比值共同指示南翼山混积岩的陆源碎屑组分来源于大陆岛弧背景下的长英质火成岩,通过与周缘造山带花岗岩稀土配分模式对比,推断晚志留世和晚二叠世花岗岩是混积岩中陆源碎屑和盐类矿物的主要源岩,南部的祁漫塔格是主要的物源区,且西部的阿尔金南段也有部分物源贡献。  相似文献   

19.
In most alkaline-ultrabasic-carbonatite ring complexes, the distribution of trace elements in the successive derivatives of mantle magmas is usually controlled by the Rayleigh equation of fractional crystallization in accordance with their partition coefficients, whereas, that of late derivatives, nepheline syenites and carbonatites, is usually consistent with trends characteristic of silicate-carbonate liquid immiscibility. In contrast to the carbonatites of ring complexes, carbonatites from deep-seated linear zones have no genetic relation with alkaline-ultrabasic magmatism, and the associated alkaline rocks are represented only by the nepheline syenite eutectic association. The geochemical study of magmatic rocks from the Vishnevye Gory nepheline syenite-carbonatite complex (Urals), which is assigned to the association of deep-seated linear zones, showed that neither differentiation of a parental melt nor liquid immiscibility could produce the observed trace element distribution (Sr, Rb, REE, and Nb) in miaskites and carbonatites. Judging from the available fragmentary experimental data, the distribution patterns can be regarded as possible indicators of element fractionation between alkaline carbonate fluid and alkaline melt. Such trace element distribution is presumably controlled by a fluid-melt interaction; it was also observed in carbonatites and alkaline rocks of some ring complexes, and its scarcity can be explained by the lower density of aqueous fluid released from magma at shallower depths.  相似文献   

20.
通过对额济纳旗雅干地区二叠系埋汗哈达组进行剖面实测、室内薄片鉴定、化石鉴定、X-衍射、微量元素、粘土矿物、重矿物等的分析,研究了埋汗哈达组主要岩性的岩石学特征。在此基础上,根据岩性特征、古生物化石、微量元素含量及其比值、饱和烃气相色谱地球化学参数等研究了埋汗哈达组的沉积环境,综合分析认为雅干地区二叠系埋汗哈达组形成于半咸水的滨海—浅海的还原环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号