首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
壳幔作用与花岗岩成因——以中国东南沿海为例   总被引:31,自引:3,他引:28  
笔者在近年来的中国东南沿海花岗岩成因研究中,注意到下地壳之下的岩石圈地幔与下地壳之间必然有着十分密切的关系,认识到壳幔作用的重要形式是发生于壳-幔接口的玄武岩浆的底侵作用,它涉及地幔对地壳在“成分”和“热”两方面的贡献。研究表明,本区底侵作用十分发育,是中国东南大陆边缘陆壳演化的重要 过程。中国东南部中生代早期形成的花岗岩多为S-型花岗岩,它们主要是板块强烈挤压和导致地壳增厚,陆壳重熔形成的岩石。而且这期大规模花岗岩浆活动是与弧后拉张、岩石圈减薄 软流圈上涌作用直接有美.早期太平洋板块向欧亚大陆板块俯冲对大陆裂解起了诱导作用中国东南部晚中生代缝合带的年龄为100~11OMa,可能代表了晚中生代构造-岩浆作用由挤压,地壳增厚,陆壳重熔向扩张岩石圈减薄一双蜂式岩浆作用机制的转变年龄。  相似文献   

2.
用分布于欧亚大陆及西太平洋地区106个宽频带数字地震台站约2万多个长周期波形记录,挑选出沿10600条大圆路径传播的瑞利面波,采用频散分析及波形拟合反演方法,对中国及相邻地区地壳上地幔进行高分辨率三维层析成像。瑞利面波高分辨率速度成像表明,从上地壳到70km深,在东亚东部及西太平洋边缘海地区均为高速分布,西部以青藏高原为中心呈极低速分布。从100~250km深,在东亚东部及西太平洋边缘海,自北向南显示出一条宽2500~4000km,长约8000km的巨型低速异常带。在深度300~400km的平面图上,速度差异幅度不大,塔里木—扬子地块仍然显示为高速分布。东西两部分岩石圈与软流圈的结构有着巨大的差异。西部主要是印度板块与欧亚板块碰撞引起的岩石圈汇聚增厚区,东部则主要是由于软流圈上涌(地幔热物质上升)引起的岩石圈拉张减薄区。古新世印度与欧亚大陆的碰撞汇聚,岩石圈板片以低角度下插到青藏高原之下,引起高原隆起和地壳增厚,西部地区成为岩石圈汇聚区。中生代中晚期东亚大陆东缘岩石圈解体,软流圈物质上涌,岩石圈减薄张裂,形成巨型低速带,并演化为东亚裂谷系。现今的西太平洋边缘海、沟弧盆体系是新生代中晚期太平洋板块、澳大利亚板块与欧亚板块相互作用形成的。  相似文献   

3.
用瑞利面波研究东亚及西太平洋地壳上地幔三维结构   总被引:6,自引:0,他引:6  
用分布于欧亚大陆及西太平洋地区106个宽频带数字地震台站约20000多个长周期波形记录,挑选出沿10600条大圆路径传播的瑞利面波,采用频散分析及波形拟合反演方法,对东亚及西太平洋边缘海地区地壳上地幔进行高分辨率三维层析成像。高分辨率速度成像表明,从上地壳到70km深,在东亚东部及西太平洋边缘海地区均为高速分布,西部以青藏高原为中心呈极低速分布。从100km至250km深,在东亚东部及西太平洋边缘海,自北向南显示出一条宽约2500km~4000km,长约8000km的巨型低速异常带。深度为300km~400km的平面图上,速度差异幅度不大,塔里木至扬子地块仍然显示为高速分布。东、西两部份岩石圈与软流圈的结构有着巨大的差异。西部主要是印度板块与欧亚板块碰撞引起的岩石圈汇聚增厚区;东部则主要是由于软流圈上涌(地幔热物质上升)引起的岩石圈拉张减薄区。古新世印度板块与欧亚板块的碰撞,岩石圈板片以低角度下插到青藏高原之下,引起高原隆起和地壳增厚,西部地区成为岩石圈汇聚区。中生代中晚期东亚大陆东缘岩石圈解体,软流圈物质上涌,岩石圈减薄张裂,形成巨型低速带,并演化为东亚裂谷系。现今的西太平洋边缘海、沟弧盆体系,是新生代中晚期太平洋板块、澳大利亚板块与欧亚板块相互作用形成的。  相似文献   

4.
中国东部中—新生代,下部岩石圈存在壳与幔、岩石圈与软流圈两个相互作用带,它们是重要的岩浆源区,在层圈相互作用中,热和物质的交换及其动力学过程是引起中、新生代岩石圈内部层圈间的厚度调整、岩石圈不均匀减薄以及区域构造-岩浆-成矿作用的重要机理。大陆内部的壳-幔作用有3种类型:地幔来源的底侵熔体与下地壳的作用;下地壳拆沉进入弱化(weakening)了的岩石圈地幔二者发生的作用以及陆-陆碰撞深俯冲带的壳-幔相互作用。它们形成的火山岩组合有一定的差别,但源区都含有地壳组分。岩石圈-软流圈的作用带也是重要的岩浆源区,源区是以软流圈地幔为主,基本不含地壳组分。东部岩石圈的减薄时间大体与出现大规模软流圈来源的玄武岩喷发的时间一致,也与上述两类层圈作用转换的时间一致,大约在100Ma以后。  相似文献   

5.
根据近年来全球地壳上地幔探测的成果,分析了洋陆转换、地壳和岩石圈加厚的作用过程。洋陆转换作用可分为以下五个演化阶段:①同大洋扩张期的地壳增厚;②海沟发生与早期俯冲;③俯冲带成熟与沟弧盆体系形成;④俯冲带汇聚和位移;⑤陆—岛碰撞和陆壳连接。同大洋扩张期的地壳增厚作用指发生在被动大陆边缘的地质作用。包括沉积作用,岩浆底侵作用,下地壳和岩石圈地幔压裂,形成海沟等。海沟形成后陆缘转变为主动大陆边缘,大地构造机制转换为板块俯冲作用。成熟期的洋—陆转换作用特征是海盆扩张和板块俯冲造成的洋壳缩短取得平衡。弧后盆地和弧后边缘海的打开,表明俯冲带进入完全成熟的阶段。洋脊俯冲之后过成熟期的洋—陆转换作用,其特征是海盆逐渐缩小而且板块俯冲带汇聚。这里既有密集的俯冲带又有短期打开的边缘海岭;俯冲带不断位移,既可后撤也可前冲;俯冲板块经常发生断裂和拆沉。过成熟期的板块俯冲结果是边缘海微板块的萎缩。经过陆—岛碰撞,岛弧地壳增厚,与大陆板块连为一体,成为大陆内部的一个构造单元,即显生宙的"古洋—陆转换带"。  相似文献   

6.
根据近年来全球地壳上地幔探测的成果,分析了洋陆转换、地壳和岩石圈加厚的作用过程。洋陆转换作用可分为以下五个演化阶段:① 同大洋扩张期的地壳增厚;② 海沟发生与早期俯冲;③ 俯冲带成熟与沟弧盆体系形成;④ 俯冲带汇聚和位移;⑤ 陆—岛碰撞和陆壳连接。同大洋扩张期的地壳增厚作用指发生在被动大陆边缘的地质作用。包括沉积作用,岩浆底侵作用,下地壳和岩石圈地幔压裂,形成海沟等。海沟形成后陆缘转变为主动大陆边缘,大地构造机制转换为板块俯冲作用。成熟期的洋—陆转换作用特征是海盆扩张和板块俯冲造成的洋壳缩短取得平衡。弧后盆地和弧后边缘海的打开,表明俯冲带进入完全成熟的阶段。洋脊俯冲之后过成熟期的洋—陆转换作用,其特征是海盆逐渐缩小而且板块俯冲带汇聚。这里既有密集的俯冲带又有短期打开的边缘海岭;俯冲带不断位移,既可后撤也可前冲;俯冲板块经常发生断裂和拆沉。过成熟期的板块俯冲结果是边缘海微板块的萎缩。经过陆—岛碰撞,岛弧地壳增厚,与大陆板块连为一体,成为大陆内部的一个构造单元,即显生宙的“古洋—陆转换带”。  相似文献   

7.
杨文采 《地质论评》2022,68(3):769-780
本文对西太平洋的洋—陆转换作用进行探讨。西太平洋洋—陆转换带在中国东部可分为华南、华北—黄海和东北3个区段。东北地区中—新生代洋—陆转换作用涉及古今太平洋板块和蒙古—鄂霍茨克洋板块两方面俯冲作用的影响,产生大面积中基性岩浆和火山活动,从侏罗纪一直延伸到现在。不同于东北和华南地区,华北—黄海有克拉通型的岩石圈,在晚侏罗世—新近纪因为太平洋板块的大角度旋转造成软流圈低黏度物质上涌,和地壳拉张与幔源岩浆的底侵,造成上地壳裂谷型沉积盆地。燕山地区在侏罗纪与东北地区类似,有强烈的软流圈上涌和岩石圈岩石部分熔融,产生强烈岩浆活动。在白垩纪到新生代,因为蒙古—鄂霍茨克洋闭合和太平洋板块大角度旋转,发生沿蒙古—鄂霍茨克洋的转换断层的拉张,产生从南蒙古过锡林浩特的NW向玄武质岩浆和火山带。洋—陆转换带不同区段有不同的动力学作用演化过程,与先期岩石圈的性质、大洋板块俯冲带的分布、方向变化和俯冲持续时间、以及后期俯冲带后撤作用都有密切关系。洋—陆转换作用的统一后果是大陆的增生,但是不同区段大陆增生和物质运动的模式是不一样的。  相似文献   

8.
杨文采 《地质论评》2022,68(1):2022020013-2022020013
本文对西太平洋的洋-陆转换作用进行探讨。西太平洋洋-陆转换带在中国东部可分为华南、华北-黄海和东北3个区段。东北地区中-新生代洋-陆转换作用涉及古今太平洋板块和蒙古—鄂霍茨克洋板块两方面俯冲作用的影响,产生大面积中基性岩浆和火山活动,从侏罗纪一直延伸到现在。不同于东北和华南地区,华北-黄海有克拉通型的岩石圈,在晚侏罗世—新近纪因为太平洋板块的大角度旋转造成软流圈低黏度物质上涌,和地壳拉张与幔源岩浆的底侵,造成上地壳裂谷型沉积盆地。燕山地区在侏罗纪与东北地区类似,有强烈的软流圈上涌和岩石圈岩石部分熔融,产生强烈岩浆活动。在白垩纪到新生代,因为蒙古—鄂霍茨克洋闭合和太平洋板块大角度旋转,发生沿蒙古—鄂霍茨克洋的转换断层的拉张,产生从南蒙古过锡林浩特的NW向玄武质岩浆和火山带。洋-陆转换带不同区段有不同的动力学作用演化过程,与先期岩石圈的性质、大洋板块俯冲带的分布、方向变化和俯冲持续时间、以及后期俯冲带后撤作用都有密切关系。洋-陆转换作用的统一后果是大陆的增生,但是不同区段大陆增生和物质运动的模式是不一样的。  相似文献   

9.
中国东南陆区岩石圈结构与大规模成矿作用   总被引:54,自引:12,他引:42       下载免费PDF全文
本文以区域地质、矿产地质为基础,与地球物理和岩石圈深部地质的研究成果相结合,对中国东南陆区的地块、造山带、古板块结合带、隆起带、坳陷带和断陷盆地的地壳厚度变化与物质结构、莫霍面形态、岩石圈地幔的厚度变化与结构进行了研究与构造区划.论述了燕山期陆内造山与喜马拉雅期大陆伸展及其导致的岩石圈物质结构调整作用,建立了隆坳构造分异与壳幔物质结构调整模式,探讨了本区地壳减薄的深部地质过程,分析了燕山期陆内造山的动力机制以及大规模成矿作用与岩石圈物质结构构造的相关关系.  相似文献   

10.
华南壳幔结构与动力学的宽频地震观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
了解华南各岩石圈块体壳幔结构和各向异性方面的差异是揭示华南深部构造演化的基础。本文利用布设于华南的两条宽频地震测线观测数据,采用多种地震学方法对华南的地壳上地幔结构和各向异性进行了研究。接收函数结果表明,华南地区地壳厚度和岩石圈厚度都较薄,地壳厚度自东南沿海向西北内陆增厚,扬子克拉通的泊松比(波速比)低于华夏块体,表明扬子克拉通地壳较华夏块体更偏长英质。约北纬29°以北的扬子克拉通地幔转换带厚度明显增厚,可能是由地幔转换带底部停滞的冷的古太平洋板片或中生代克拉通碰撞残留造成的。层析成像结果显示华南上地幔具有很强的横向差异性,上地幔中的强烈低速异常体可能对应了晚中生代发生广泛岩浆作用时的岩浆房和岩浆通道。台湾下方的上地幔存在南北横向差异明显的高速异常,分别对应台湾南部向东俯冲的欧亚板块及台湾北部向北俯冲的菲律宾海板块。俯冲的欧亚板块在台湾南部是连续的,而在台湾中北部,由于与菲律宾海板块的相互作用,俯冲的欧亚板块被折断。剪切波分裂结果显示,以江绍断裂为界,华夏块体与扬子克拉通的岩石圈地幔各向异性存在明显的横向变化,表明两者的构造演化过程有显著差异。  相似文献   

11.
川西藏东板块构造体系及特提斯地质演化   总被引:5,自引:0,他引:5  
刘朝基 《地球学报》1995,16(2):121-134
川西藏东可划分为巴颜喀拉、羌塘和拉萨3个板块构造体系。每个体系由结合带、岛弧褶皱带、弧后盆地褶皱带和盆后隆起组成。它们是在晚二叠世冈瓦纳古陆和劳亚古陆沿巴塘拼合带碰撞拼合的基础上,自NE而SW经历了三叠纪巴颜喀拉板块构造体系的形成、株罗纪羌塘板块构造体系的形成和白垩纪拉萨板块构造体系的形成以及新生代以来陆-陆碰撞造山和高原隆升而逐渐形成的。  相似文献   

12.
中国岩石圈的基本特征   总被引:11,自引:2,他引:9  
李廷栋 《地学前缘》2010,17(3):1-13
中国及邻区岩石圈结构构造十分复杂,并具有若干明显的特点:中国大陆地壳西厚东薄、南厚北薄,青藏高原地壳平均厚度为60~65 km,最厚达80 km;东部地区一般为30~35 km,南中国海中央海盆平均只有5 km;中国大陆地壳平均厚度为476 km,大大超过全球地壳392 km的平均厚度。中国大陆及邻区岩石圈亦呈西厚东薄、南厚北薄的变化趋势,青藏高原及西北地区岩石圈平均厚度为165 km,塔里木盆地中东部、帕米尔与昌都地区岩石圈厚度可达180~200 km。大兴安岭-太行山-武陵山以东,包括边缘海为岩石圈减薄区,厚度为50~85 km。西部岩石圈、软流圈“层状结构”明显,反映了板块碰撞汇聚的动力学环境;东部岩石圈、软流圈呈“块状镶嵌结构”,岩石圈薄,软流圈厚,反映了地壳拉张、软流圈物质上涌的特点,并在东亚及西太平洋地区85~250 km深处形成一巨型低速异常体。中国东部上、下地壳及地壳、岩石圈地幔之间普遍存在“上老下新”年龄结构。  相似文献   

13.
Structural forms of emplacement of crustal and mantle rigid sheets in collision zones of lithospheric plates in northeastern Asia are analyzed using formalized gravity models reflecting the rheological properties of geological media. Splitting of the lithosphere of moving plates into crustal and mantle constituents is the main feature of collision zones, which is repeated in the structural units irrespective of their location, rank, and age. Formal signs of crustal sheet thrusting over convergent plate boundaries and subduction of the lithospheric mantle beneath these boundaries have been revealed. The deep boundaries and thickness of lithospheric plates and asthenospheric lenses have been traced. A similarity in the deep structure of collision zones of second-order marginal-sea buffer plates differing in age is displayed at the boundaries with the Eurasian, North American, and Pacific plates of the first order. Collision of oceanic crustal segments with the Mesozoic continental margin in the Sikhote-Alin is characterized, as well as collision of the oceanic lithosphere with the Kamchatka composite island arc. A spatiotemporal series of deep-seated Middle Mesozoic, Late Mesosoic, and Cenozoic collision tectonic units having similar structure is displayed in the transitional zone from the Asian continent to the Pacific plate.  相似文献   

14.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

15.
为了揭示粤北地区岩石圈深部结构、深大断裂性质及花岗岩分布规律等科学问题,布设了乳源-潮州宽频带大地电磁探测剖面。由二维反演得出的电性结构,讨论了粤北地区岩石圈导电性结构特点。沿剖面存在3个花岗岩分布区,呈现不同的类型,可能代表不同的成因模式。沿剖面划分3条北东向断裂带:吉安-四会断裂、赣江断裂于韶关东形成宽度近20km的低阻区域,其间形成断陷盆地;河源-邵武断裂带,其两侧发育壳幔高导层并发育壳幔混合型花岗岩,深部电性结构复杂,可能为壳幔剧烈作用的场所;丽水-海丰断裂带,控制了燕山晚期花岗岩的分布。韶关、连平之间和龙川、丰顺之间50~150km存在2个巨大的低阻体,可能是地幔物质底侵作用的"通道";且底侵方向指向连平和龙川之间的区域,由于底侵作用力贡献,发育了一系列的壳内和上地幔高导层。粤北地区岩石圈从西向东逐渐减薄,从100余km减薄到60km,反映了太平洋板块对欧亚板块的消减作用。潮州100km深度以下的中-低阻特征,推断为太平洋板块俯冲作用留下的"洋壳"物质。  相似文献   

16.
印度板块与亚洲板块的碰撞使喜马拉雅-青藏高原隆升,地壳增厚并生长扩展。探测青藏高原深部结构,揭露两个大陆如何碰撞以及碰撞如何使大陆变形的过程,是对全球关切的科学奥秘的探索。深地震反射剖面探测是打开这个科学奥秘的最有效途径之一。二十多年来,运用这项高技术探测到青藏高原巨厚地壳的精细结构,攻克了难以得到下地壳和Moho面信息的技术瓶颈,揭露了陆-陆碰撞过程。本文在探测研究成果的基础上,从青藏高原南北-东西对比,再到高原腹地,系统地综述了青藏高原之下印度板块与亚洲板块碰撞-俯冲的深部行为。印度地壳在高原南缘俯冲在喜马拉雅造山带之下,亚洲板块的阿拉善地块岩石圈在北缘向祁连山下俯冲,祁连山地壳向外扩展,塔里木地块与高原西缘的西昆仑发生面对面的碰撞,在高原东缘发现龙日坝断裂(而不是龙门山断裂)是扬子板块的西缘边界,高原腹地Moho面厚度薄而平坦,岩石圈伸展垮塌。多条深反射剖面揭露了在雅鲁藏布江缝合带下印度板块与亚洲板块碰撞的行为,不仅沿雅鲁藏布江缝合带走向印度地壳俯冲行为存在东西变化,而且印度地壳向北行进到拉萨地体内部的位置也不同。在缝合带中部,研究显示印度地壳上地壳与下地壳拆离,上地壳向北仰冲,下地壳向北俯冲,并在俯冲过程中发生物质的回返与构造叠置,这导致印度地壳减薄,喜马拉雅地壳加厚。俯冲印度地壳前缘与亚洲地壳碰撞后沉入地幔,处于亚洲板块前缘的冈底斯岩基与特提斯喜马拉雅近于直立碰撞,冈底斯下地壳呈部分熔融状态,近乎透明的弱反射和局部出现的亮点反射以及近于平的Moho面都反映出亚洲板块南缘处于伸展构造环境。  相似文献   

17.
AN INTRACONTINENTAL EXTENSIONAL TECTONIC SETTING FOR THE ORIGIN OF YULONG PORPHYRY COPPER DEPOSIT IN EAST TIBET  相似文献   

18.
It is proposed that major continental collision normally causes two orogenies. The first is characterized by ophiolite obduction, and the second by widespread deformation, often accompanied by metamorphism and granite intrusion. The two orogenies are separated by a relatively quiescent orogenic pause of 40–60 Ma. The two stages of continental collision are illustrated by examples from the Paleozoic Newfoundland Appalachians, and the Mesozoic-Cenozoic Tethyan collision belts of the Zagros and Himalayas.

The stages of continental collision are explained in terms of the forces driving plate motions, which are dominated by the downward pull of subducting oceanic lithosphere and, to a lesser extent, by the outward push of spreading oceanic ridges.

The Taconic stage marks attempted subduction of continental crust. The buoyancy of continental crust offsets the negative buoyancy of subducting oceanic lithosphere and other driving forces so that plate motion is halted. Orogeny involves vertical buoyancy forces and is concentrated along the narrow belt of plate overlap at the subduction zone.

In a major collision the Taconic stage destroys a substantial proportion of the earth's subducting capacity. It is an event of such magnitude that it has global consequences, reducing sea-floor spreading and the rate of convection. This results in retention of heat within the earth and a consequent increase in the forces driving the plates. The orogenic pause represents the time taken for these forces to become strong enough to overcome the obstruction of buoyant continental crust and renew subduction at the collision zone.

The Acadian stage of collision occurs when renewed subduction is achieved by detachment of continental crust from its underlying lithosphere. As the subcrustal lithosphere is subducted, the crust moves horizontally. The result is crustal shortening with widespread deformation and generation of anatectic granitic magma, as well as subduction related volcanism.

The effects of continental collision on the rate of sea-floor spreading can be related to eustatic changes in sea level, glaciations, and mass extinctions. There may also be connections, through changes in the rate of mantle convection, to the earth's magnetic polarity bias and rotation rate.  相似文献   


19.
西藏冈底斯地块中新生代中酸性侵入岩特征与构造环境   总被引:4,自引:0,他引:4  
冈底斯地块上的中新生代中酸性岩浆活动,是北部班公湖一怒江和南部雅鲁藏布两个特提斯演化及其后的陆内汇聚碰撞造山和后造山伸展等大地构造事件的完整记录。地块上的中酸性岩浆活动可划分为三个带,其中北部岩带岩浆岩形成于燕山期,其类型从早期的Ⅰ型到中期的过渡型再演化为晚期的S型,分别形成于板块俯冲-缝合-碰撞等构造条件下,是北部班公湖一怒江特提斯演化的集中反映。中部和南部岩浆岩带则集中体现了南部雅鲁藏布特提斯时空演化的完整经历,其中,南部岩带岩体以燕山晚期为主,喜山早期次之,成因及形成环境与特提斯洋壳向北俯7中作用密切相关(燕山晚期),同时俯冲结束后的同碰撞条件下的岩浆活动在该岩带内也有明显的反映(喜山早期);中部岩带岩体以喜山早期为主,燕山晚期次之,岩体大部分为同碰撞环境下岩浆活动的产物,它表征了随着洋壳板块向北俯冲程度的加深和强度的加剧,岩浆活动中心在不断向北迁移,并最终缝合碰撞的过程。因此,该岩带内岩浆岩主要形成于俯冲的晚阶段及缝合后的同碰撞条件下。喜山晚期的小斑岩体实际上广泛出露于整个冈底斯地块上,它反映的是该区在经历了碰撞造山后发生的陆内伸展的构造过程。  相似文献   

20.
One of the major processes in the formation and deformation of continental lithosphere is the process of arc volcanism. The plate-tectonic theory predicts that a continuous chain of arc volcanoes lies parallel to any continuous subduction zone. However, the map pattern of active volcanoes shows at least 24 areas where there are major spatial gaps in the volcanic chains (> 200 km). A significant proportion (~ 30%) of oceanic crust is subducted at these gaps. All but three of these gaps coincide with the collision or subduction of a large aseismic plateau or ridge.The idea that the collision of such features may have a major tectonic impact on the arc lithosphere, including cessation of volcanism, is not new. However, it is not clear how the collision or subduction of an oceanic plateau perturbs the system to the extent of inhibiting arc volcanism. Three main factors necessary for arc volcanism are (1) source materials for the volcanics—either volatiles or melt from the subducting slab and/or melt from the overlying asthenospheric wedge, (2) a heat source, either for the dehydration or the melting of the slab, or the melting within the asthenosphere and (3) a favorable state of stress in the overlying lithosphere. The absence of any one of these features may cause a volcanic gap to form.There are several ways in which the collision or subduction of an oceanic plateau may affect arc volcanism. The clearest and most common cases considered are those where the feature completely resists subduction, causing local plate boundaries to reorganize. This includes the formation of new plate-bounding transform faults or a flip in subduction polarity. In these cases, subduction has slowed down or stopped and the lack of source material has created a volcanic gap.There are a few cases, most notably in Peru, Chile, and the Nankai trough, where the dip of subduction is so shallow that effectively no asthenospheric wedge exists to produce source material for volcanism. The shallow dip of the slab may be a buoyant effect of the plateau imbedded in the oceanic lithosphere.The cases which are the most enigmatic are those where subduction is continuous, the oceanic plateau is subducted along with the slab, and the dip of the slab is clearly steep enough to allow arc volcanism; yet a volcanic gap exists. In these areas, the subducted plateau may have a fundamental effect on the physical process of arc volcanism itself. The presence of a large topographic feature on the subducting plate may affect the stress state in the are by increasing the amount of decoupling between the two plates. Alternatively, the subduction of the plateau may change the chemical processes at depth if either the water-rich top of the plateau with accompanying sediments are scraped off during subduction or if the ridge is compositionally different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号